// Copyright (c) Tailscale Inc & AUTHORS // SPDX-License-Identifier: BSD-3-Clause // Package netstack wires up gVisor's netstack into Tailscale. package netstack import ( "bytes" "context" "errors" "fmt" "io" "log" "net" "net/netip" "os" "os/exec" "runtime" "strconv" "strings" "sync" "sync/atomic" "time" "gvisor.dev/gvisor/pkg/bufferv2" "gvisor.dev/gvisor/pkg/refs" "gvisor.dev/gvisor/pkg/tcpip" "gvisor.dev/gvisor/pkg/tcpip/adapters/gonet" "gvisor.dev/gvisor/pkg/tcpip/header" "gvisor.dev/gvisor/pkg/tcpip/link/channel" "gvisor.dev/gvisor/pkg/tcpip/network/ipv4" "gvisor.dev/gvisor/pkg/tcpip/network/ipv6" "gvisor.dev/gvisor/pkg/tcpip/stack" "gvisor.dev/gvisor/pkg/tcpip/transport/icmp" "gvisor.dev/gvisor/pkg/tcpip/transport/tcp" "gvisor.dev/gvisor/pkg/tcpip/transport/udp" "gvisor.dev/gvisor/pkg/waiter" "tailscale.com/envknob" "tailscale.com/ipn/ipnlocal" "tailscale.com/net/dns" "tailscale.com/net/netaddr" "tailscale.com/net/packet" "tailscale.com/net/tsaddr" "tailscale.com/net/tsdial" "tailscale.com/net/tstun" "tailscale.com/syncs" "tailscale.com/types/ipproto" "tailscale.com/types/logger" "tailscale.com/types/netmap" "tailscale.com/types/nettype" "tailscale.com/version/distro" "tailscale.com/wgengine" "tailscale.com/wgengine/filter" "tailscale.com/wgengine/magicsock" ) const debugPackets = false var debugNetstack = envknob.RegisterBool("TS_DEBUG_NETSTACK") var ( magicDNSIP = tsaddr.TailscaleServiceIP() magicDNSIPv6 = tsaddr.TailscaleServiceIPv6() ) func init() { mode := envknob.String("TS_DEBUG_NETSTACK_LEAK_MODE") if mode == "" { return } var lm refs.LeakMode if err := lm.Set(mode); err != nil { panic(err) } refs.SetLeakMode(lm) } // Impl contains the state for the netstack implementation, // and implements wgengine.FakeImpl to act as a userspace network // stack when Tailscale is running in fake mode. type Impl struct { // ForwardTCPIn, if non-nil, handles forwarding an inbound TCP connection. // // TODO(bradfitz): convert this to the GetUDPHandlerForFlow pattern below to // provide mechanism for tsnet to reject a port other than accepting it and // closing it. ForwardTCPIn func(c net.Conn, port uint16) // GetUDPHandlerForFlow conditionally handles an incoming UDP flow for the // provided (src/port, dst/port) 4-tuple. // // A nil value is equivalent to a func returning (nil, false). // // If func returns intercept=false, the default forwarding behavior (if // ProcessLocalIPs and/or ProcesssSubnetIPs) takes place. // // When intercept=true, the behavior depends on whether the returned handler // is non-nil: if nil, the connection is rejected. If non-nil, handler takes // over the UDP flow. GetUDPHandlerForFlow func(src, dst netip.AddrPort) (handler func(nettype.ConnPacketConn), intercept bool) // ProcessLocalIPs is whether netstack should handle incoming // traffic directed at the Node.Addresses (local IPs). // It can only be set before calling Start. ProcessLocalIPs bool // ProcessSubnets is whether netstack should handle incoming // traffic destined to non-local IPs (i.e. whether it should // be a subnet router). // It can only be set before calling Start. ProcessSubnets bool ipstack *stack.Stack linkEP *channel.Endpoint tundev *tstun.Wrapper e wgengine.Engine mc *magicsock.Conn logf logger.Logf dialer *tsdial.Dialer ctx context.Context // alive until Close ctxCancel context.CancelFunc // called on Close lb *ipnlocal.LocalBackend // or nil dns *dns.Manager peerapiPort4Atomic atomic.Uint32 // uint16 port number for IPv4 peerapi peerapiPort6Atomic atomic.Uint32 // uint16 port number for IPv6 peerapi // atomicIsLocalIPFunc holds a func that reports whether an IP // is a local (non-subnet) Tailscale IP address of this // machine. It's always a non-nil func. It's changed on netmap // updates. atomicIsLocalIPFunc syncs.AtomicValue[func(netip.Addr) bool] mu sync.Mutex // connsOpenBySubnetIP keeps track of number of connections open // for each subnet IP temporarily registered on netstack for active // TCP connections, so they can be unregistered when connections are // closed. connsOpenBySubnetIP map[netip.Addr]int } const nicID = 1 const mtu = tstun.DefaultMTU // maxUDPPacketSize is the maximum size of a UDP packet we copy in startPacketCopy // when relaying UDP packets. We don't use the 'mtu' const in anticipation of // one day making the MTU more dynamic. const maxUDPPacketSize = 1500 // Create creates and populates a new Impl. func Create(logf logger.Logf, tundev *tstun.Wrapper, e wgengine.Engine, mc *magicsock.Conn, dialer *tsdial.Dialer, dns *dns.Manager) (*Impl, error) { if mc == nil { return nil, errors.New("nil magicsock.Conn") } if tundev == nil { return nil, errors.New("nil tundev") } if logf == nil { return nil, errors.New("nil logger") } if e == nil { return nil, errors.New("nil Engine") } if dialer == nil { return nil, errors.New("nil Dialer") } ipstack := stack.New(stack.Options{ NetworkProtocols: []stack.NetworkProtocolFactory{ipv4.NewProtocol, ipv6.NewProtocol}, TransportProtocols: []stack.TransportProtocolFactory{tcp.NewProtocol, udp.NewProtocol, icmp.NewProtocol4, icmp.NewProtocol6}, }) sackEnabledOpt := tcpip.TCPSACKEnabled(true) // TCP SACK is disabled by default tcpipErr := ipstack.SetTransportProtocolOption(tcp.ProtocolNumber, &sackEnabledOpt) if tcpipErr != nil { return nil, fmt.Errorf("could not enable TCP SACK: %v", tcpipErr) } linkEP := channel.New(512, mtu, "") if tcpipProblem := ipstack.CreateNIC(nicID, linkEP); tcpipProblem != nil { return nil, fmt.Errorf("could not create netstack NIC: %v", tcpipProblem) } // By default the netstack NIC will only accept packets for the IPs // registered to it. Since in some cases we dynamically register IPs // based on the packets that arrive, the NIC needs to accept all // incoming packets. The NIC won't receive anything it isn't meant to // since WireGuard will only send us packets that are meant for us. ipstack.SetPromiscuousMode(nicID, true) // Add IPv4 and IPv6 default routes, so all incoming packets from the Tailscale side // are handled by the one fake NIC we use. ipv4Subnet, _ := tcpip.NewSubnet(tcpip.Address(strings.Repeat("\x00", 4)), tcpip.AddressMask(strings.Repeat("\x00", 4))) ipv6Subnet, _ := tcpip.NewSubnet(tcpip.Address(strings.Repeat("\x00", 16)), tcpip.AddressMask(strings.Repeat("\x00", 16))) ipstack.SetRouteTable([]tcpip.Route{ { Destination: ipv4Subnet, NIC: nicID, }, { Destination: ipv6Subnet, NIC: nicID, }, }) ns := &Impl{ logf: logf, ipstack: ipstack, linkEP: linkEP, tundev: tundev, e: e, mc: mc, dialer: dialer, connsOpenBySubnetIP: make(map[netip.Addr]int), dns: dns, } ns.ctx, ns.ctxCancel = context.WithCancel(context.Background()) ns.atomicIsLocalIPFunc.Store(tsaddr.NewContainsIPFunc(nil)) return ns, nil } func (ns *Impl) Close() error { ns.ctxCancel() ns.ipstack.Close() return nil } // wrapProtoHandler returns protocol handler h wrapped in a version // that dynamically reconfigures ns's subnet addresses as needed for // outbound traffic. func (ns *Impl) wrapProtoHandler(h func(stack.TransportEndpointID, stack.PacketBufferPtr) bool) func(stack.TransportEndpointID, stack.PacketBufferPtr) bool { return func(tei stack.TransportEndpointID, pb stack.PacketBufferPtr) bool { addr := tei.LocalAddress ip, ok := netip.AddrFromSlice(net.IP(addr)) if !ok { ns.logf("netstack: could not parse local address for incoming connection") return false } ip = ip.Unmap() if !ns.isLocalIP(ip) { ns.addSubnetAddress(ip) } return h(tei, pb) } } // Start sets up all the handlers so netstack can start working. Implements // wgengine.FakeImpl. func (ns *Impl) Start(lb *ipnlocal.LocalBackend) error { if lb == nil { panic("nil LocalBackend") } ns.lb = lb ns.e.AddNetworkMapCallback(ns.updateIPs) // size = 0 means use default buffer size const tcpReceiveBufferSize = 0 const maxInFlightConnectionAttempts = 16 tcpFwd := tcp.NewForwarder(ns.ipstack, tcpReceiveBufferSize, maxInFlightConnectionAttempts, ns.acceptTCP) udpFwd := udp.NewForwarder(ns.ipstack, ns.acceptUDP) ns.ipstack.SetTransportProtocolHandler(tcp.ProtocolNumber, ns.wrapProtoHandler(tcpFwd.HandlePacket)) ns.ipstack.SetTransportProtocolHandler(udp.ProtocolNumber, ns.wrapProtoHandler(udpFwd.HandlePacket)) go ns.inject() ns.tundev.PostFilterIn = ns.injectInbound ns.tundev.PreFilterFromTunToNetstack = ns.handleLocalPackets return nil } func (ns *Impl) addSubnetAddress(ip netip.Addr) { ns.mu.Lock() ns.connsOpenBySubnetIP[ip]++ needAdd := ns.connsOpenBySubnetIP[ip] == 1 ns.mu.Unlock() // Only register address into netstack for first concurrent connection. if needAdd { pa := tcpip.ProtocolAddress{ AddressWithPrefix: tcpip.AddressWithPrefix{ Address: tcpip.Address(ip.AsSlice()), PrefixLen: int(ip.BitLen()), }, } if ip.Is4() { pa.Protocol = ipv4.ProtocolNumber } else if ip.Is6() { pa.Protocol = ipv6.ProtocolNumber } ns.ipstack.AddProtocolAddress(nicID, pa, stack.AddressProperties{ PEB: stack.CanBePrimaryEndpoint, // zero value default ConfigType: stack.AddressConfigStatic, // zero value default }) } } func (ns *Impl) removeSubnetAddress(ip netip.Addr) { ns.mu.Lock() defer ns.mu.Unlock() ns.connsOpenBySubnetIP[ip]-- // Only unregister address from netstack after last concurrent connection. if ns.connsOpenBySubnetIP[ip] == 0 { ns.ipstack.RemoveAddress(nicID, tcpip.Address(ip.AsSlice())) delete(ns.connsOpenBySubnetIP, ip) } } func ipPrefixToAddressWithPrefix(ipp netip.Prefix) tcpip.AddressWithPrefix { return tcpip.AddressWithPrefix{ Address: tcpip.Address(ipp.Addr().AsSlice()), PrefixLen: int(ipp.Bits()), } } var v4broadcast = netaddr.IPv4(255, 255, 255, 255) func (ns *Impl) updateIPs(nm *netmap.NetworkMap) { ns.atomicIsLocalIPFunc.Store(tsaddr.NewContainsIPFunc(nm.Addresses)) oldIPs := make(map[tcpip.AddressWithPrefix]bool) for _, protocolAddr := range ns.ipstack.AllAddresses()[nicID] { ap := protocolAddr.AddressWithPrefix ip := netaddrIPFromNetstackIP(ap.Address) if ip == v4broadcast && ap.PrefixLen == 32 { // Don't add 255.255.255.255/32 to oldIPs so we don't // delete it later. We didn't install it, so it's not // ours to delete. continue } oldIPs[ap] = true } newIPs := make(map[tcpip.AddressWithPrefix]bool) isAddr := map[netip.Prefix]bool{} if nm.SelfNode != nil { for _, ipp := range nm.SelfNode.Addresses { isAddr[ipp] = true newIPs[ipPrefixToAddressWithPrefix(ipp)] = true } for _, ipp := range nm.SelfNode.AllowedIPs { if !isAddr[ipp] && ns.ProcessSubnets { newIPs[ipPrefixToAddressWithPrefix(ipp)] = true } } } ipsToBeAdded := make(map[tcpip.AddressWithPrefix]bool) for ipp := range newIPs { if !oldIPs[ipp] { ipsToBeAdded[ipp] = true } } ipsToBeRemoved := make(map[tcpip.AddressWithPrefix]bool) for ip := range oldIPs { if !newIPs[ip] { ipsToBeRemoved[ip] = true } } ns.mu.Lock() for ip := range ns.connsOpenBySubnetIP { ipp := tcpip.Address(ip.AsSlice()).WithPrefix() delete(ipsToBeRemoved, ipp) } ns.mu.Unlock() for ipp := range ipsToBeRemoved { err := ns.ipstack.RemoveAddress(nicID, ipp.Address) if err != nil { ns.logf("netstack: could not deregister IP %s: %v", ipp, err) } else { ns.logf("[v2] netstack: deregistered IP %s", ipp) } } for ipp := range ipsToBeAdded { pa := tcpip.ProtocolAddress{ AddressWithPrefix: ipp, } if ipp.Address.To4() == "" { pa.Protocol = ipv6.ProtocolNumber } else { pa.Protocol = ipv4.ProtocolNumber } var err tcpip.Error err = ns.ipstack.AddProtocolAddress(nicID, pa, stack.AddressProperties{ PEB: stack.CanBePrimaryEndpoint, // zero value default ConfigType: stack.AddressConfigStatic, // zero value default }) if err != nil { ns.logf("netstack: could not register IP %s: %v", ipp, err) } else { ns.logf("[v2] netstack: registered IP %s", ipp) } } } // handleLocalPackets is hooked into the tun datapath for packets leaving // the host and arriving at tailscaled. This method returns filter.DropSilently // to intercept a packet for handling, for instance traffic to quad-100. func (ns *Impl) handleLocalPackets(p *packet.Parsed, t *tstun.Wrapper) filter.Response { // If it's not traffic to the service IP (i.e. magicDNS) we don't // care; resume processing. if dst := p.Dst.Addr(); dst != magicDNSIP && dst != magicDNSIPv6 { return filter.Accept } // Of traffic to the service IP, we only care about UDP 53, and TCP // on port 80 & 53. switch p.IPProto { case ipproto.TCP: if port := p.Dst.Port(); port != 53 && port != 80 { return filter.Accept } case ipproto.UDP: if port := p.Dst.Port(); port != 53 { return filter.Accept } } var pn tcpip.NetworkProtocolNumber switch p.IPVersion { case 4: pn = header.IPv4ProtocolNumber case 6: pn = header.IPv6ProtocolNumber } if debugPackets { ns.logf("[v2] service packet in (from %v): % x", p.Src, p.Buffer()) } packetBuf := stack.NewPacketBuffer(stack.PacketBufferOptions{ Payload: bufferv2.MakeWithData(bytes.Clone(p.Buffer())), }) ns.linkEP.InjectInbound(pn, packetBuf) packetBuf.DecRef() return filter.DropSilently } func (ns *Impl) DialContextTCP(ctx context.Context, ipp netip.AddrPort) (*gonet.TCPConn, error) { remoteAddress := tcpip.FullAddress{ NIC: nicID, Addr: tcpip.Address(ipp.Addr().AsSlice()), Port: ipp.Port(), } var ipType tcpip.NetworkProtocolNumber if ipp.Addr().Is4() { ipType = ipv4.ProtocolNumber } else { ipType = ipv6.ProtocolNumber } return gonet.DialContextTCP(ctx, ns.ipstack, remoteAddress, ipType) } func (ns *Impl) DialContextUDP(ctx context.Context, ipp netip.AddrPort) (*gonet.UDPConn, error) { remoteAddress := &tcpip.FullAddress{ NIC: nicID, Addr: tcpip.Address(ipp.Addr().AsSlice()), Port: ipp.Port(), } var ipType tcpip.NetworkProtocolNumber if ipp.Addr().Is4() { ipType = ipv4.ProtocolNumber } else { ipType = ipv6.ProtocolNumber } return gonet.DialUDP(ns.ipstack, nil, remoteAddress, ipType) } // The inject goroutine reads in packets that netstack generated, and delivers // them to the correct path. func (ns *Impl) inject() { for { pkt := ns.linkEP.ReadContext(ns.ctx) if pkt.IsNil() { if ns.ctx.Err() != nil { // Return without logging. return } ns.logf("[v2] ReadContext-for-write = ok=false") continue } if debugPackets { ns.logf("[v2] packet Write out: % x", stack.PayloadSince(pkt.NetworkHeader())) } // In the normal case, netstack synthesizes the bytes for // traffic which should transit back into WG and go to peers. // However, some uses of netstack (presently, magic DNS) // send traffic destined for the local device, hence must // be injected 'inbound'. sendToHost := false // Determine if the packet is from a service IP, in which case it // needs to go back into the machines network (inbound) instead of // out. // TODO(tom): Work out a way to avoid parsing packets to determine if // its from the service IP. Maybe gvisor netstack magic. I // went through the fields of PacketBuffer, and nop :/ // TODO(tom): Figure out if its safe to modify packet.Parsed to fill in // the IP src/dest even if its missing the rest of the pkt. // That way we dont have to do this twitchy-af byte-yeeting. if b := pkt.NetworkHeader().Slice(); len(b) >= 20 { // min ipv4 header switch b[0] >> 4 { // ip proto field case 4: if srcIP := netaddr.IPv4(b[12], b[13], b[14], b[15]); magicDNSIP == srcIP { sendToHost = true } case 6: if len(b) >= 40 { // min ipv6 header if srcIP, ok := netip.AddrFromSlice(net.IP(b[8:24])); ok && magicDNSIPv6 == srcIP { sendToHost = true } } } } // pkt has a non-zero refcount, so injection methods takes // ownership of one count and will decrement on completion. if sendToHost { if err := ns.tundev.InjectInboundPacketBuffer(pkt); err != nil { log.Printf("netstack inject inbound: %v", err) return } } else { if err := ns.tundev.InjectOutboundPacketBuffer(pkt); err != nil { log.Printf("netstack inject outbound: %v", err) return } } } } // isLocalIP reports whether ip is a Tailscale IP assigned to this // node directly (but not a subnet-routed IP). func (ns *Impl) isLocalIP(ip netip.Addr) bool { return ns.atomicIsLocalIPFunc.Load()(ip) } func (ns *Impl) processSSH() bool { return ns.lb != nil && ns.lb.ShouldRunSSH() } func (ns *Impl) peerAPIPortAtomic(ip netip.Addr) *atomic.Uint32 { if ip.Is4() { return &ns.peerapiPort4Atomic } else { return &ns.peerapiPort6Atomic } } var viaRange = tsaddr.TailscaleViaRange() // shouldProcessInbound reports whether an inbound packet (a packet from a // WireGuard peer) should be handled by netstack. func (ns *Impl) shouldProcessInbound(p *packet.Parsed, t *tstun.Wrapper) bool { // Handle incoming peerapi connections in netstack. dstIP := p.Dst.Addr() isLocal := ns.isLocalIP(dstIP) // Handle TCP connection to the Tailscale IP(s) in some cases: if ns.lb != nil && p.IPProto == ipproto.TCP && isLocal { var peerAPIPort uint16 if p.TCPFlags&packet.TCPSynAck == packet.TCPSyn { if port, ok := ns.lb.GetPeerAPIPort(dstIP); ok { peerAPIPort = port ns.peerAPIPortAtomic(dstIP).Store(uint32(port)) } } else { peerAPIPort = uint16(ns.peerAPIPortAtomic(dstIP).Load()) } dport := p.Dst.Port() if dport == peerAPIPort { return true } // Also handle SSH connections, webserver, etc, if enabled: if ns.lb.ShouldInterceptTCPPort(dport) { return true } } if p.IPVersion == 6 && !isLocal && viaRange.Contains(dstIP) { return ns.lb != nil && ns.lb.ShouldHandleViaIP(dstIP) } if ns.ProcessLocalIPs && isLocal { return true } if ns.ProcessSubnets && !isLocal { return true } return false } // setAmbientCapsRaw is non-nil on Linux for Synology, to run ping with // CAP_NET_RAW from tailscaled's binary. var setAmbientCapsRaw func(*exec.Cmd) var userPingSem = syncs.NewSemaphore(20) // 20 child ping processes at once var isSynology = runtime.GOOS == "linux" && distro.Get() == distro.Synology // userPing tried to ping dstIP and if it succeeds, injects pingResPkt // into the tundev. // // It's used in userspace/netstack mode when we don't have kernel // support or raw socket access. As such, this does the dumbest thing // that can work: runs the ping command. It's not super efficient, so // it bounds the number of pings going on at once. The idea is that // people only use ping occasionally to see if their internet's working // so this doesn't need to be great. // // TODO(bradfitz): when we're running on Windows as the system user, use // raw socket APIs instead of ping child processes. func (ns *Impl) userPing(dstIP netip.Addr, pingResPkt []byte) { if !userPingSem.TryAcquire() { return } defer userPingSem.Release() t0 := time.Now() var err error switch runtime.GOOS { case "windows": err = exec.Command("ping", "-n", "1", "-w", "3000", dstIP.String()).Run() case "darwin": // Note: 2000 ms is actually 1 second + 2,000 // milliseconds extra for 3 seconds total. // See https://github.com/tailscale/tailscale/pull/3753 for details. err = exec.Command("ping", "-c", "1", "-W", "2000", dstIP.String()).Run() case "android": ping := "/system/bin/ping" if dstIP.Is6() { ping = "/system/bin/ping6" } err = exec.Command(ping, "-c", "1", "-w", "3", dstIP.String()).Run() default: ping := "ping" if isSynology { ping = "/bin/ping" } cmd := exec.Command(ping, "-c", "1", "-W", "3", dstIP.String()) if isSynology && os.Getuid() != 0 { // On DSM7 we run as non-root and need to pass // CAP_NET_RAW if our binary has it. setAmbientCapsRaw(cmd) } err = cmd.Run() } d := time.Since(t0) if err != nil { if d < time.Second/2 { // If it failed quicker than the 3 second // timeout we gave above (500 ms is a // reasonable threshold), then assume the ping // failed for problems finding/running // ping. We don't want to log if the host is // just down. ns.logf("exec ping of %v failed in %v: %v", dstIP, d, err) } return } if debugNetstack() { ns.logf("exec pinged %v in %v", dstIP, time.Since(t0)) } if err := ns.tundev.InjectOutbound(pingResPkt); err != nil { ns.logf("InjectOutbound ping response: %v", err) } } // injectInbound is installed as a packet hook on the 'inbound' (from a // WireGuard peer) path. Returning filter.Accept releases the packet to // continue normally (typically being delivered to the host networking stack), // whereas returning filter.DropSilently is done when netstack intercepts the // packet and no further processing towards to host should be done. func (ns *Impl) injectInbound(p *packet.Parsed, t *tstun.Wrapper) filter.Response { if !ns.shouldProcessInbound(p, t) { // Let the host network stack (if any) deal with it. return filter.Accept } destIP := p.Dst.Addr() // If this is an echo request and we're a subnet router, handle pings // ourselves instead of forwarding the packet on. pingIP, handlePing := ns.shouldHandlePing(p) if handlePing { var pong []byte // the reply to the ping, if our relayed ping works if destIP.Is4() { h := p.ICMP4Header() h.ToResponse() pong = packet.Generate(&h, p.Payload()) } else if destIP.Is6() { h := p.ICMP6Header() h.ToResponse() pong = packet.Generate(&h, p.Payload()) } go ns.userPing(pingIP, pong) return filter.DropSilently } var pn tcpip.NetworkProtocolNumber switch p.IPVersion { case 4: pn = header.IPv4ProtocolNumber case 6: pn = header.IPv6ProtocolNumber } if debugPackets { ns.logf("[v2] packet in (from %v): % x", p.Src, p.Buffer()) } packetBuf := stack.NewPacketBuffer(stack.PacketBufferOptions{ Payload: bufferv2.MakeWithData(bytes.Clone(p.Buffer())), }) ns.linkEP.InjectInbound(pn, packetBuf) packetBuf.DecRef() // We've now delivered this to netstack, so we're done. // Instead of returning a filter.Accept here (which would also // potentially deliver it to the host OS), and instead of // filter.Drop (which would log about rejected traffic), // instead return filter.DropSilently which just quietly stops // processing it in the tstun TUN wrapper. return filter.DropSilently } // shouldHandlePing returns whether or not netstack should handle an incoming // ICMP echo request packet, and the IP address that should be pinged from this // process. The IP address can be different from the destination in the packet // if the destination is a 4via6 address. func (ns *Impl) shouldHandlePing(p *packet.Parsed) (_ netip.Addr, ok bool) { if !p.IsEchoRequest() { return netip.Addr{}, false } destIP := p.Dst.Addr() // We need to handle pings for all 4via6 addresses, even if this // netstack instance normally isn't responsible for processing subnets. // // For example, on Linux, subnet router traffic could be handled via // tun+iptables rules for most packets, but we still need to handle // ICMP echo requests over 4via6 since the host networking stack // doesn't know what to do with a 4via6 address. // // shouldProcessInbound returns 'true' to say that we should process // all IPv6 packets with a destination address in the 'via' range, so // check before we check the "ProcessSubnets" boolean below. if viaRange.Contains(destIP) { // The input echo request was to a 4via6 address, which we cannot // simply ping as-is from this process. Translate the destination to an // IPv4 address, so that our relayed ping (in userPing) is pinging the // underlying destination IP. // // ICMPv4 and ICMPv6 are different protocols with different on-the-wire // representations, so normally you can't send an ICMPv6 message over // IPv4 and expect to get a useful result. However, in this specific // case things are safe because the 'userPing' function doesn't make // use of the input packet. return tsaddr.UnmapVia(destIP), true } // If we get here, we don't do anything unless this netstack instance // is responsible for processing subnet traffic. if !ns.ProcessSubnets { return netip.Addr{}, false } // For non-4via6 addresses, we don't handle pings if they're destined // for a Tailscale IP. if tsaddr.IsTailscaleIP(destIP) { return netip.Addr{}, false } // This netstack instance is processing subnet traffic, so handle the // ping ourselves. return destIP, true } func netaddrIPFromNetstackIP(s tcpip.Address) netip.Addr { switch len(s) { case 4: return netaddr.IPv4(s[0], s[1], s[2], s[3]) case 16: var a [16]byte copy(a[:], s) return netip.AddrFrom16(a).Unmap() } return netip.Addr{} } func (ns *Impl) acceptTCP(r *tcp.ForwarderRequest) { reqDetails := r.ID() if debugNetstack() { ns.logf("[v2] TCP ForwarderRequest: %s", stringifyTEI(reqDetails)) } clientRemoteIP := netaddrIPFromNetstackIP(reqDetails.RemoteAddress) if !clientRemoteIP.IsValid() { ns.logf("invalid RemoteAddress in TCP ForwarderRequest: %s", stringifyTEI(reqDetails)) r.Complete(true) // sends a RST return } clientRemotePort := reqDetails.RemotePort clientRemoteAddrPort := netip.AddrPortFrom(clientRemoteIP, clientRemotePort) dialIP := netaddrIPFromNetstackIP(reqDetails.LocalAddress) isTailscaleIP := tsaddr.IsTailscaleIP(dialIP) if viaRange.Contains(dialIP) { isTailscaleIP = false dialIP = tsaddr.UnmapVia(dialIP) } defer func() { if !isTailscaleIP { // if this is a subnet IP, we added this in before the TCP handshake // so netstack is happy TCP-handshaking as a subnet IP ns.removeSubnetAddress(dialIP) } }() var wq waiter.Queue // We can't actually create the endpoint or complete the inbound // request until we're sure that the connection can be handled by this // endpoint. This function sets up the TCP connection and should be // called immediately before a connection is handled. createConn := func(opts ...tcpip.SettableSocketOption) *gonet.TCPConn { ep, err := r.CreateEndpoint(&wq) if err != nil { ns.logf("CreateEndpoint error for %s: %v", stringifyTEI(reqDetails), err) r.Complete(true) // sends a RST return nil } r.Complete(false) for _, opt := range opts { ep.SetSockOpt(opt) } // SetKeepAlive so that idle connections to peers that have forgotten about // the connection or gone completely offline eventually time out. // Applications might be setting this on a forwarded connection, but from // userspace we can not see those, so the best we can do is to always // perform them with conservative timing. // TODO(tailscale/tailscale#4522): Netstack defaults match the Linux // defaults, and results in a little over two hours before the socket would // be closed due to keepalive. A shorter default might be better, or seeking // a default from the host IP stack. This also might be a useful // user-tunable, as in userspace mode this can have broad implications such // as lingering connections to fork style daemons. On the other side of the // fence, the long duration timers are low impact values for battery powered // peers. ep.SocketOptions().SetKeepAlive(true) // The ForwarderRequest.CreateEndpoint above asynchronously // starts the TCP handshake. Note that the gonet.TCPConn // methods c.RemoteAddr() and c.LocalAddr() will return nil // until the handshake actually completes. But we have the // remote address in reqDetails instead, so we don't use // gonet.TCPConn.RemoteAddr. The byte copies in both // directions to/from the gonet.TCPConn in forwardTCP will // block until the TCP handshake is complete. return gonet.NewTCPConn(&wq, ep) } // DNS if reqDetails.LocalPort == 53 && (dialIP == magicDNSIP || dialIP == magicDNSIPv6) { c := createConn() if c == nil { return } go ns.dns.HandleTCPConn(c, netip.AddrPortFrom(clientRemoteIP, reqDetails.RemotePort)) return } if ns.lb != nil { if reqDetails.LocalPort == 22 && ns.processSSH() && ns.isLocalIP(dialIP) { // Use a higher keepalive idle time for SSH connections, as they are // typically long lived and idle connections are more likely to be // intentional. Ideally we would turn this off entirely, but we can't // tell the difference between a long lived connection that is idle // vs a connection that is dead because the peer has gone away. // We pick 72h as that is typically sufficient for a long weekend. idle := tcpip.KeepaliveIdleOption(72 * time.Hour) c := createConn(&idle) if c == nil { return } if err := ns.lb.HandleSSHConn(c); err != nil { ns.logf("ssh error: %v", err) } return } if port, ok := ns.lb.GetPeerAPIPort(dialIP); ok { if reqDetails.LocalPort == port && ns.isLocalIP(dialIP) { c := createConn() if c == nil { return } src := netip.AddrPortFrom(clientRemoteIP, reqDetails.RemotePort) dst := netip.AddrPortFrom(dialIP, port) ns.lb.ServePeerAPIConnection(src, dst, c) return } } if reqDetails.LocalPort == 80 && (dialIP == magicDNSIP || dialIP == magicDNSIPv6) { c := createConn() if c == nil { return } ns.lb.HandleQuad100Port80Conn(c) return } if ns.lb.ShouldInterceptTCPPort(reqDetails.LocalPort) && ns.isLocalIP(dialIP) { getTCPConn := func() (_ net.Conn, ok bool) { c := createConn() return c, c != nil } sendRST := func() { r.Complete(true) } ns.lb.HandleInterceptedTCPConn(reqDetails.LocalPort, clientRemoteAddrPort, getTCPConn, sendRST) return } } if ns.ForwardTCPIn != nil { c := createConn() if c == nil { return } ns.ForwardTCPIn(c, reqDetails.LocalPort) return } if isTailscaleIP { dialIP = netaddr.IPv4(127, 0, 0, 1) } dialAddr := netip.AddrPortFrom(dialIP, uint16(reqDetails.LocalPort)) if !ns.forwardTCP(createConn, clientRemoteIP, &wq, dialAddr) { r.Complete(true) // sends a RST } } func (ns *Impl) forwardTCP(getClient func(...tcpip.SettableSocketOption) *gonet.TCPConn, clientRemoteIP netip.Addr, wq *waiter.Queue, dialAddr netip.AddrPort) (handled bool) { dialAddrStr := dialAddr.String() if debugNetstack() { ns.logf("[v2] netstack: forwarding incoming connection to %s", dialAddrStr) } ctx, cancel := context.WithCancel(context.Background()) defer cancel() waitEntry, notifyCh := waiter.NewChannelEntry(waiter.EventHUp) // TODO(bradfitz): right EventMask? wq.EventRegister(&waitEntry) defer wq.EventUnregister(&waitEntry) done := make(chan bool) // netstack doesn't close the notification channel automatically if there was no // hup signal, so we close done after we're done to not leak the goroutine below. defer close(done) go func() { select { case <-notifyCh: if debugNetstack() { ns.logf("[v2] netstack: forwardTCP notifyCh fired; canceling context for %s", dialAddrStr) } case <-done: } cancel() }() // Attempt to dial the outbound connection before we accept the inbound one. var stdDialer net.Dialer server, err := stdDialer.DialContext(ctx, "tcp", dialAddrStr) if err != nil { ns.logf("netstack: could not connect to local server at %s: %v", dialAddr.String(), err) return } defer server.Close() // If we get here, either the getClient call below will succeed and // return something we can Close, or it will fail and will properly // respond to the client with a RST. Either way, the caller no longer // needs to clean up the client connection. handled = true // We dialed the connection; we can complete the client's TCP handshake. client := getClient() if client == nil { return } defer client.Close() backendLocalAddr := server.LocalAddr().(*net.TCPAddr) backendLocalIPPort := netaddr.Unmap(backendLocalAddr.AddrPort()) ns.e.RegisterIPPortIdentity(backendLocalIPPort, clientRemoteIP) defer ns.e.UnregisterIPPortIdentity(backendLocalIPPort) connClosed := make(chan error, 2) go func() { _, err := io.Copy(server, client) connClosed <- err }() go func() { _, err := io.Copy(client, server) connClosed <- err }() err = <-connClosed if err != nil { ns.logf("proxy connection closed with error: %v", err) } ns.logf("[v2] netstack: forwarder connection to %s closed", dialAddrStr) return } func (ns *Impl) acceptUDP(r *udp.ForwarderRequest) { sess := r.ID() if debugNetstack() { ns.logf("[v2] UDP ForwarderRequest: %v", stringifyTEI(sess)) } var wq waiter.Queue ep, err := r.CreateEndpoint(&wq) if err != nil { ns.logf("acceptUDP: could not create endpoint: %v", err) return } dstAddr, ok := ipPortOfNetstackAddr(sess.LocalAddress, sess.LocalPort) if !ok { ep.Close() return } srcAddr, ok := ipPortOfNetstackAddr(sess.RemoteAddress, sess.RemotePort) if !ok { ep.Close() return } // Handle magicDNS traffic (via UDP) here. if dst := dstAddr.Addr(); dst == magicDNSIP || dst == magicDNSIPv6 { if dstAddr.Port() != 53 { ep.Close() return // Only MagicDNS traffic runs on the service IPs for now. } c := gonet.NewUDPConn(ns.ipstack, &wq, ep) go ns.handleMagicDNSUDP(srcAddr, c) return } if get := ns.GetUDPHandlerForFlow; get != nil { h, intercept := get(srcAddr, dstAddr) if intercept { if h == nil { ep.Close() return } go h(gonet.NewUDPConn(ns.ipstack, &wq, ep)) return } } c := gonet.NewUDPConn(ns.ipstack, &wq, ep) go ns.forwardUDP(c, srcAddr, dstAddr) } func (ns *Impl) handleMagicDNSUDP(srcAddr netip.AddrPort, c *gonet.UDPConn) { // In practice, implementations are advised not to exceed 512 bytes // due to fragmenting. Just to be sure, we bump all the way to the MTU. const maxUDPReqSize = mtu // Packets are being generated by the local host, so there should be // very, very little latency. 150ms was chosen as something of an upper // bound on resource usage, while hopefully still being long enough for // a heavily loaded system. const readDeadline = 150 * time.Millisecond defer c.Close() q := make([]byte, maxUDPReqSize) // libresolv from glibc is quite adamant that transmitting multiple DNS // requests down the same UDP socket is valid. To support this, we read // in a loop (with a tight deadline so we don't chew too many resources). // // See: https://github.com/bminor/glibc/blob/f7fbb99652eceb1b6b55e4be931649df5946497c/resolv/res_send.c#L995 for { c.SetReadDeadline(time.Now().Add(readDeadline)) n, _, err := c.ReadFrom(q) if err != nil { if oe, ok := err.(*net.OpError); !(ok && oe.Timeout()) { ns.logf("dns udp read: %v", err) // log non-timeout errors } return } resp, err := ns.dns.Query(context.Background(), q[:n], srcAddr) if err != nil { ns.logf("dns udp query: %v", err) return } c.Write(resp) } } // forwardUDP proxies between client (with addr clientAddr) and dstAddr. // // dstAddr may be either a local Tailscale IP, in which we case we proxy to // 127.0.0.1, or any other IP (from an advertised subnet), in which case we // proxy to it directly. func (ns *Impl) forwardUDP(client *gonet.UDPConn, clientAddr, dstAddr netip.AddrPort) { port, srcPort := dstAddr.Port(), clientAddr.Port() if debugNetstack() { ns.logf("[v2] netstack: forwarding incoming UDP connection on port %v", port) } var backendListenAddr *net.UDPAddr var backendRemoteAddr *net.UDPAddr isLocal := ns.isLocalIP(dstAddr.Addr()) if isLocal { backendRemoteAddr = &net.UDPAddr{IP: net.ParseIP("127.0.0.1"), Port: int(port)} backendListenAddr = &net.UDPAddr{IP: net.ParseIP("127.0.0.1"), Port: int(srcPort)} } else { if dstIP := dstAddr.Addr(); viaRange.Contains(dstIP) { dstAddr = netip.AddrPortFrom(tsaddr.UnmapVia(dstIP), dstAddr.Port()) } backendRemoteAddr = net.UDPAddrFromAddrPort(dstAddr) if dstAddr.Addr().Is4() { backendListenAddr = &net.UDPAddr{IP: net.ParseIP("0.0.0.0"), Port: int(srcPort)} } else { backendListenAddr = &net.UDPAddr{IP: net.ParseIP("::"), Port: int(srcPort)} } } backendConn, err := net.ListenUDP("udp", backendListenAddr) if err != nil { ns.logf("netstack: could not bind local port %v: %v, trying again with random port", backendListenAddr.Port, err) backendListenAddr.Port = 0 backendConn, err = net.ListenUDP("udp", backendListenAddr) if err != nil { ns.logf("netstack: could not create UDP socket, preventing forwarding to %v: %v", dstAddr, err) return } } backendLocalAddr := backendConn.LocalAddr().(*net.UDPAddr) backendLocalIPPort := netip.AddrPortFrom(backendListenAddr.AddrPort().Addr().Unmap().WithZone(backendLocalAddr.Zone), backendLocalAddr.AddrPort().Port()) if !backendLocalIPPort.IsValid() { ns.logf("could not get backend local IP:port from %v:%v", backendLocalAddr.IP, backendLocalAddr.Port) } if isLocal { ns.e.RegisterIPPortIdentity(backendLocalIPPort, dstAddr.Addr()) } ctx, cancel := context.WithCancel(context.Background()) idleTimeout := 2 * time.Minute if port == 53 { // Make DNS packet copies time out much sooner. // // TODO(bradfitz): make DNS queries over UDP forwarding even // cheaper by adding an additional idleTimeout post-DNS-reply. // For instance, after the DNS response goes back out, then only // wait a few seconds (or zero, really) idleTimeout = 30 * time.Second } timer := time.AfterFunc(idleTimeout, func() { if isLocal { ns.e.UnregisterIPPortIdentity(backendLocalIPPort) } ns.logf("netstack: UDP session between %s and %s timed out", backendListenAddr, backendRemoteAddr) cancel() client.Close() backendConn.Close() }) extend := func() { timer.Reset(idleTimeout) } startPacketCopy(ctx, cancel, client, net.UDPAddrFromAddrPort(clientAddr), backendConn, ns.logf, extend) startPacketCopy(ctx, cancel, backendConn, backendRemoteAddr, client, ns.logf, extend) if isLocal { // Wait for the copies to be done before decrementing the // subnet address count to potentially remove the route. <-ctx.Done() ns.removeSubnetAddress(dstAddr.Addr()) } } func startPacketCopy(ctx context.Context, cancel context.CancelFunc, dst net.PacketConn, dstAddr net.Addr, src net.PacketConn, logf logger.Logf, extend func()) { if debugNetstack() { logf("[v2] netstack: startPacketCopy to %v (%T) from %T", dstAddr, dst, src) } go func() { defer cancel() // tear down the other direction's copy pkt := make([]byte, maxUDPPacketSize) for { select { case <-ctx.Done(): return default: n, srcAddr, err := src.ReadFrom(pkt) if err != nil { if ctx.Err() == nil { logf("read packet from %s failed: %v", srcAddr, err) } return } _, err = dst.WriteTo(pkt[:n], dstAddr) if err != nil { if ctx.Err() == nil { logf("write packet to %s failed: %v", dstAddr, err) } return } if debugNetstack() { logf("[v2] wrote UDP packet %s -> %s", srcAddr, dstAddr) } extend() } } }() } func stringifyTEI(tei stack.TransportEndpointID) string { localHostPort := net.JoinHostPort(tei.LocalAddress.String(), strconv.Itoa(int(tei.LocalPort))) remoteHostPort := net.JoinHostPort(tei.RemoteAddress.String(), strconv.Itoa(int(tei.RemotePort))) return fmt.Sprintf("%s -> %s", remoteHostPort, localHostPort) } func ipPortOfNetstackAddr(a tcpip.Address, port uint16) (ipp netip.AddrPort, ok bool) { var a16 [16]byte copy(a16[:], a) switch len(a) { case 4: return netip.AddrPortFrom( netip.AddrFrom4(*(*[4]byte)(a16[:4])).Unmap(), port, ), true case 16: return netip.AddrPortFrom(netip.AddrFrom16(a16).Unmap(), port), true default: return ipp, false } }