// Copyright (c) Tailscale Inc & AUTHORS // SPDX-License-Identifier: BSD-3-Clause //go:build linux // The containerboot binary is a wrapper for starting tailscaled in a container. // It handles reading the desired mode of operation out of environment // variables, bringing up and authenticating Tailscale, and any other // kubernetes-specific side jobs. // // As with most container things, configuration is passed through environment // variables. All configuration is optional. // // - TS_AUTHKEY: the authkey to use for login. // - TS_HOSTNAME: the hostname to request for the node. // - TS_ROUTES: subnet routes to advertise. Explicitly setting it to an empty // value will cause containerboot to stop acting as a subnet router for any // previously advertised routes. To accept routes, use TS_EXTRA_ARGS to pass // in --accept-routes. // - TS_DEST_IP: proxy all incoming Tailscale traffic to the given // destination defined by an IP address. // - TS_EXPERIMENTAL_DEST_DNS_NAME: proxy all incoming Tailscale traffic to the given // destination defined by a DNS name. The DNS name will be periodically resolved and firewall rules updated accordingly. // This is currently intended to be used by the Kubernetes operator (ExternalName Services). // This is an experimental env var and will likely change in the future. // - TS_TAILNET_TARGET_IP: proxy all incoming non-Tailscale traffic to the given // destination defined by an IP. // - TS_TAILNET_TARGET_FQDN: proxy all incoming non-Tailscale traffic to the given // destination defined by a MagicDNS name. // - TS_TAILSCALED_EXTRA_ARGS: extra arguments to 'tailscaled'. // - TS_EXTRA_ARGS: extra arguments to 'tailscale up'. // - TS_USERSPACE: run with userspace networking (the default) // instead of kernel networking. // - TS_STATE_DIR: the directory in which to store tailscaled // state. The data should persist across container // restarts. // - TS_ACCEPT_DNS: whether to use the tailnet's DNS configuration. // - TS_KUBE_SECRET: the name of the Kubernetes secret in which to // store tailscaled state. // - TS_SOCKS5_SERVER: the address on which to listen for SOCKS5 // proxying into the tailnet. // - TS_OUTBOUND_HTTP_PROXY_LISTEN: the address on which to listen // for HTTP proxying into the tailnet. // - TS_SOCKET: the path where the tailscaled LocalAPI socket should // be created. // - TS_AUTH_ONCE: if true, only attempt to log in if not already // logged in. If false (the default, for backwards // compatibility), forcibly log in every time the // container starts. // - TS_SERVE_CONFIG: if specified, is the file path where the ipn.ServeConfig is located. // It will be applied once tailscaled is up and running. If the file contains // ${TS_CERT_DOMAIN}, it will be replaced with the value of the available FQDN. // It cannot be used in conjunction with TS_DEST_IP. The file is watched for changes, // and will be re-applied when it changes. // - TS_HEALTHCHECK_ADDR_PORT: deprecated, use TS_ENABLE_HEALTH_CHECK instead and optionally // set TS_LOCAL_ADDR_PORT. Will be removed in 1.82.0. // - TS_LOCAL_ADDR_PORT: the address and port to serve local metrics and health // check endpoints if enabled via TS_ENABLE_METRICS and/or TS_ENABLE_HEALTH_CHECK. // Defaults to [::]:9002, serving on all available interfaces. // - TS_ENABLE_METRICS: if true, a metrics endpoint will be served at /metrics on // the address specified by TS_LOCAL_ADDR_PORT. See https://tailscale.com/kb/1482/client-metrics // for more information on the metrics exposed. // - TS_ENABLE_HEALTH_CHECK: if true, a health check endpoint will be served at /healthz on // the address specified by TS_LOCAL_ADDR_PORT. The health endpoint will return 200 // OK if this node has at least one tailnet IP address, otherwise returns 503. // NB: the health criteria might change in the future. // - TS_EXPERIMENTAL_VERSIONED_CONFIG_DIR: if specified, a path to a // directory that containers tailscaled config in file. The config file needs to be // named cap-.hujson. If this is set, TS_HOSTNAME, // TS_EXTRA_ARGS, TS_AUTHKEY, // TS_ROUTES, TS_ACCEPT_DNS env vars must not be set. If this is set, // containerboot only runs `tailscaled --config ` // and not `tailscale up` or `tailscale set`. // The config file contents are currently read once on container start. // NB: This env var is currently experimental and the logic will likely change! // TS_EXPERIMENTAL_ENABLE_FORWARDING_OPTIMIZATIONS: set to true to // autoconfigure the default network interface for optimal performance for // Tailscale subnet router/exit node. // https://tailscale.com/kb/1320/performance-best-practices#linux-optimizations-for-subnet-routers-and-exit-nodes // NB: This env var is currently experimental and the logic will likely change! // - EXPERIMENTAL_ALLOW_PROXYING_CLUSTER_TRAFFIC_VIA_INGRESS: if set to true // and if this containerboot instance is an L7 ingress proxy (created by // the Kubernetes operator), set up rules to allow proxying cluster traffic, // received on the Pod IP of this node, to the ingress target in the cluster. // This, in conjunction with MagicDNS name resolution in cluster, can be // useful for cases where a cluster workload needs to access a target in // cluster using the same hostname (in this case, the MagicDNS name of the ingress proxy) // as a non-cluster workload on tailnet. // This is only meant to be configured by the Kubernetes operator. // // When running on Kubernetes, containerboot defaults to storing state in the // "tailscale" kube secret. To store state on local disk instead, set // TS_KUBE_SECRET="" and TS_STATE_DIR=/path/to/storage/dir. The state dir should // be persistent storage. // // Additionally, if TS_AUTHKEY is not set and the TS_KUBE_SECRET contains an // "authkey" field, that key is used as the tailscale authkey. package main import ( "context" "errors" "fmt" "io/fs" "log" "math" "net" "net/http" "net/netip" "os" "os/signal" "path/filepath" "slices" "strings" "sync" "sync/atomic" "syscall" "time" "golang.org/x/sys/unix" "tailscale.com/client/tailscale" "tailscale.com/ipn" kubeutils "tailscale.com/k8s-operator" "tailscale.com/tailcfg" "tailscale.com/types/logger" "tailscale.com/types/ptr" "tailscale.com/util/deephash" "tailscale.com/util/linuxfw" ) func newNetfilterRunner(logf logger.Logf) (linuxfw.NetfilterRunner, error) { if defaultBool("TS_TEST_FAKE_NETFILTER", false) { return linuxfw.NewFakeIPTablesRunner(), nil } return linuxfw.New(logf, "") } func main() { log.SetPrefix("boot: ") tailscale.I_Acknowledge_This_API_Is_Unstable = true cfg, err := configFromEnv() if err != nil { log.Fatalf("invalid configuration: %v", err) } if !cfg.UserspaceMode { if err := ensureTunFile(cfg.Root); err != nil { log.Fatalf("Unable to create tuntap device file: %v", err) } if cfg.ProxyTargetIP != "" || cfg.ProxyTargetDNSName != "" || cfg.Routes != nil || cfg.TailnetTargetIP != "" || cfg.TailnetTargetFQDN != "" { if err := ensureIPForwarding(cfg.Root, cfg.ProxyTargetIP, cfg.TailnetTargetIP, cfg.TailnetTargetFQDN, cfg.Routes); err != nil { log.Printf("Failed to enable IP forwarding: %v", err) log.Printf("To run tailscale as a proxy or router container, IP forwarding must be enabled.") if cfg.InKubernetes { log.Fatalf("You can either set the sysctls as a privileged initContainer, or run the tailscale container with privileged=true.") } else { log.Fatalf("You can fix this by running the container with privileged=true, or the equivalent in your container runtime that permits access to sysctls.") } } } } // Context is used for all setup stuff until we're in steady // state, so that if something is hanging we eventually time out // and crashloop the container. bootCtx, cancel := context.WithTimeout(context.Background(), 60*time.Second) defer cancel() if cfg.InKubernetes { initKubeClient(cfg.Root) if err := cfg.setupKube(bootCtx); err != nil { log.Fatalf("error setting up for running on Kubernetes: %v", err) } } client, daemonProcess, err := startTailscaled(bootCtx, cfg) if err != nil { log.Fatalf("failed to bring up tailscale: %v", err) } killTailscaled := func() { if err := daemonProcess.Signal(unix.SIGTERM); err != nil { log.Fatalf("error shutting tailscaled down: %v", err) } } defer killTailscaled() var healthCheck *healthz if cfg.HealthCheckAddrPort != "" { mux := http.NewServeMux() log.Printf("Running healthcheck endpoint at %s/healthz", cfg.HealthCheckAddrPort) healthCheck = healthHandlers(mux) close := runHTTPServer(mux, cfg.HealthCheckAddrPort) defer close() } if cfg.localMetricsEnabled() || cfg.localHealthEnabled() { mux := http.NewServeMux() if cfg.localMetricsEnabled() { log.Printf("Running metrics endpoint at %s/metrics", cfg.LocalAddrPort) metricsHandlers(mux, client, cfg.DebugAddrPort) } if cfg.localHealthEnabled() { log.Printf("Running healthcheck endpoint at %s/healthz", cfg.LocalAddrPort) healthCheck = healthHandlers(mux) } close := runHTTPServer(mux, cfg.LocalAddrPort) defer close() } if cfg.EnableForwardingOptimizations { if err := client.SetUDPGROForwarding(bootCtx); err != nil { log.Printf("[unexpected] error enabling UDP GRO forwarding: %v", err) } } w, err := client.WatchIPNBus(bootCtx, ipn.NotifyInitialNetMap|ipn.NotifyInitialPrefs|ipn.NotifyInitialState) if err != nil { log.Fatalf("failed to watch tailscaled for updates: %v", err) } // Now that we've started tailscaled, we can symlink the socket to the // default location if needed. const defaultTailscaledSocketPath = "/var/run/tailscale/tailscaled.sock" if cfg.Socket != "" && cfg.Socket != defaultTailscaledSocketPath { // If we were given a socket path, symlink it to the default location so // that the CLI can find it without any extra flags. // See #6849. dir := filepath.Dir(defaultTailscaledSocketPath) err := os.MkdirAll(dir, 0700) if err == nil { err = syscall.Symlink(cfg.Socket, defaultTailscaledSocketPath) } if err != nil { log.Printf("[warning] failed to symlink socket: %v\n\tTo interact with the Tailscale CLI please use `tailscale --socket=%q`", err, cfg.Socket) } } // Because we're still shelling out to `tailscale up` to get access to its // flag parser, we have to stop watching the IPN bus so that we can block on // the subcommand without stalling anything. Then once it's done, we resume // watching the bus. // // Depending on the requested mode of operation, this auth step happens at // different points in containerboot's lifecycle, hence the helper function. didLogin := false authTailscale := func() error { if didLogin { return nil } didLogin = true w.Close() if err := tailscaleUp(bootCtx, cfg); err != nil { return fmt.Errorf("failed to auth tailscale: %v", err) } w, err = client.WatchIPNBus(bootCtx, ipn.NotifyInitialNetMap|ipn.NotifyInitialState) if err != nil { return fmt.Errorf("rewatching tailscaled for updates after auth: %v", err) } return nil } if isTwoStepConfigAlwaysAuth(cfg) { if err := authTailscale(); err != nil { log.Fatalf("failed to auth tailscale: %v", err) } } authLoop: for { n, err := w.Next() if err != nil { log.Fatalf("failed to read from tailscaled: %v", err) } if n.State != nil { switch *n.State { case ipn.NeedsLogin: if isOneStepConfig(cfg) { // This could happen if this is the first time tailscaled was run for this // device and the auth key was not passed via the configfile. log.Fatalf("invalid state: tailscaled daemon started with a config file, but tailscale is not logged in: ensure you pass a valid auth key in the config file.") } if err := authTailscale(); err != nil { log.Fatalf("failed to auth tailscale: %v", err) } case ipn.NeedsMachineAuth: log.Printf("machine authorization required, please visit the admin panel") case ipn.Running: // Technically, all we want is to keep monitoring the bus for // netmap updates. However, in order to make the container crash // if tailscale doesn't initially come up, the watch has a // startup deadline on it. So, we have to break out of this // watch loop, cancel the watch, and watch again with no // deadline to continue monitoring for changes. break authLoop default: log.Printf("tailscaled in state %q, waiting", *n.State) } } } w.Close() ctx, cancel := contextWithExitSignalWatch() defer cancel() if isTwoStepConfigAuthOnce(cfg) { // Now that we are authenticated, we can set/reset any of the // settings that we need to. if err := tailscaleSet(ctx, cfg); err != nil { log.Fatalf("failed to auth tailscale: %v", err) } } if cfg.ServeConfigPath != "" { // Remove any serve config that may have been set by a previous run of // containerboot, but only if we're providing a new one. if err := client.SetServeConfig(ctx, new(ipn.ServeConfig)); err != nil { log.Fatalf("failed to unset serve config: %v", err) } } if hasKubeStateStore(cfg) && isTwoStepConfigAuthOnce(cfg) { // We were told to only auth once, so any secret-bound // authkey is no longer needed. We don't strictly need to // wipe it, but it's good hygiene. log.Printf("Deleting authkey from kube secret") if err := deleteAuthKey(ctx, cfg.KubeSecret); err != nil { log.Fatalf("deleting authkey from kube secret: %v", err) } } w, err = client.WatchIPNBus(ctx, ipn.NotifyInitialNetMap|ipn.NotifyInitialState) if err != nil { log.Fatalf("rewatching tailscaled for updates after auth: %v", err) } var ( startupTasksDone = false currentIPs deephash.Sum // tailscale IPs assigned to device currentDeviceID deephash.Sum // device ID currentDeviceEndpoints deephash.Sum // device FQDN and IPs currentEgressIPs deephash.Sum addrs []netip.Prefix backendAddrs []net.IP certDomain = new(atomic.Pointer[string]) certDomainChanged = make(chan bool, 1) ) if cfg.ServeConfigPath != "" { go watchServeConfigChanges(ctx, cfg.ServeConfigPath, certDomainChanged, certDomain, client) } var nfr linuxfw.NetfilterRunner if isL3Proxy(cfg) { nfr, err = newNetfilterRunner(log.Printf) if err != nil { log.Fatalf("error creating new netfilter runner: %v", err) } } // Setup for proxies that are configured to proxy to a target specified // by a DNS name (TS_EXPERIMENTAL_DEST_DNS_NAME). const defaultCheckPeriod = time.Minute * 10 // how often to check what IPs the DNS name resolves to var ( tc = make(chan string, 1) failedResolveAttempts int t *time.Timer = time.AfterFunc(defaultCheckPeriod, func() { if cfg.ProxyTargetDNSName != "" { tc <- "recheck" } }) ) // egressSvcsErrorChan will get an error sent to it if this containerboot instance is configured to expose 1+ // egress services in HA mode and errored. var egressSvcsErrorChan = make(chan error) defer t.Stop() // resetTimer resets timer for when to next attempt to resolve the DNS // name for the proxy configured with TS_EXPERIMENTAL_DEST_DNS_NAME. The // timer gets reset to 10 minutes from now unless the last resolution // attempt failed. If one or more consecutive previous resolution // attempts failed, the next resolution attempt will happen after the smallest // of (10 minutes, 2 ^ number-of-consecutive-failed-resolution-attempts // seconds) i.e 2s, 4s, 8s ... 10 minutes. resetTimer := func(lastResolveFailed bool) { if !lastResolveFailed { log.Printf("reconfigureTimer: next DNS resolution attempt in %s", defaultCheckPeriod) t.Reset(defaultCheckPeriod) failedResolveAttempts = 0 return } minDelay := 2 // 2 seconds nextTick := time.Second * time.Duration(math.Pow(float64(minDelay), float64(failedResolveAttempts))) if nextTick > defaultCheckPeriod { nextTick = defaultCheckPeriod // cap at 10 minutes } log.Printf("reconfigureTimer: last DNS resolution attempt failed, next DNS resolution attempt in %v", nextTick) t.Reset(nextTick) failedResolveAttempts++ } var egressSvcsNotify chan ipn.Notify notifyChan := make(chan ipn.Notify) errChan := make(chan error) go func() { for { n, err := w.Next() if err != nil { errChan <- err break } else { notifyChan <- n } } }() var wg sync.WaitGroup runLoop: for { select { case <-ctx.Done(): // Although killTailscaled() is deferred earlier, if we // have started the reaper defined below, we need to // kill tailscaled and let reaper clean up child // processes. killTailscaled() break runLoop case err := <-errChan: log.Fatalf("failed to read from tailscaled: %v", err) case n := <-notifyChan: if n.State != nil && *n.State != ipn.Running { // Something's gone wrong and we've left the authenticated state. // Our container image never recovered gracefully from this, and the // control flow required to make it work now is hard. So, just crash // the container and rely on the container runtime to restart us, // whereupon we'll go through initial auth again. log.Fatalf("tailscaled left running state (now in state %q), exiting", *n.State) } if n.NetMap != nil { addrs = n.NetMap.SelfNode.Addresses().AsSlice() newCurrentIPs := deephash.Hash(&addrs) ipsHaveChanged := newCurrentIPs != currentIPs // Store device ID in a Kubernetes Secret before // setting up any routing rules. This ensures // that, for containerboot instances that are // Kubernetes operator proxies, the operator is // able to retrieve the device ID from the // Kubernetes Secret to clean up tailnet nodes // for proxies whose route setup continuously // fails. deviceID := n.NetMap.SelfNode.StableID() if hasKubeStateStore(cfg) && deephash.Update(¤tDeviceID, &deviceID) { if err := storeDeviceID(ctx, cfg.KubeSecret, n.NetMap.SelfNode.StableID()); err != nil { log.Fatalf("storing device ID in Kubernetes Secret: %v", err) } } if cfg.TailnetTargetFQDN != "" { var ( egressAddrs []netip.Prefix newCurentEgressIPs deephash.Sum egressIPsHaveChanged bool node tailcfg.NodeView nodeFound bool ) for _, n := range n.NetMap.Peers { if strings.EqualFold(n.Name(), cfg.TailnetTargetFQDN) { node = n nodeFound = true break } } if !nodeFound { log.Printf("Tailscale node %q not found; it either does not exist, or not reachable because of ACLs", cfg.TailnetTargetFQDN) break } egressAddrs = node.Addresses().AsSlice() newCurentEgressIPs = deephash.Hash(&egressAddrs) egressIPsHaveChanged = newCurentEgressIPs != currentEgressIPs // The firewall rules get (re-)installed: // - on startup // - when the tailnet IPs of the tailnet target have changed // - when the tailnet IPs of this node have changed if (egressIPsHaveChanged || ipsHaveChanged) && len(egressAddrs) != 0 { var rulesInstalled bool for _, egressAddr := range egressAddrs { ea := egressAddr.Addr() if ea.Is4() || (ea.Is6() && nfr.HasIPV6NAT()) { rulesInstalled = true log.Printf("Installing forwarding rules for destination %v", ea.String()) if err := installEgressForwardingRule(ctx, ea.String(), addrs, nfr); err != nil { log.Fatalf("installing egress proxy rules for destination %s: %v", ea.String(), err) } } } if !rulesInstalled { log.Fatalf("no forwarding rules for egress addresses %v, host supports IPv6: %v", egressAddrs, nfr.HasIPV6NAT()) } } currentEgressIPs = newCurentEgressIPs } if cfg.ProxyTargetIP != "" && len(addrs) != 0 && ipsHaveChanged { log.Printf("Installing proxy rules") if err := installIngressForwardingRule(ctx, cfg.ProxyTargetIP, addrs, nfr); err != nil { log.Fatalf("installing ingress proxy rules: %v", err) } } if cfg.ProxyTargetDNSName != "" && len(addrs) != 0 && ipsHaveChanged { newBackendAddrs, err := resolveDNS(ctx, cfg.ProxyTargetDNSName) if err != nil { log.Printf("[unexpected] error resolving DNS name %s: %v", cfg.ProxyTargetDNSName, err) resetTimer(true) continue } backendsHaveChanged := !(slices.EqualFunc(backendAddrs, newBackendAddrs, func(ip1 net.IP, ip2 net.IP) bool { return slices.ContainsFunc(newBackendAddrs, func(ip net.IP) bool { return ip.Equal(ip1) }) })) if backendsHaveChanged { log.Printf("installing ingress proxy rules for backends %v", newBackendAddrs) if err := installIngressForwardingRuleForDNSTarget(ctx, newBackendAddrs, addrs, nfr); err != nil { log.Fatalf("error installing ingress proxy rules: %v", err) } } resetTimer(false) backendAddrs = newBackendAddrs } if cfg.ServeConfigPath != "" && len(n.NetMap.DNS.CertDomains) != 0 { cd := n.NetMap.DNS.CertDomains[0] prev := certDomain.Swap(ptr.To(cd)) if prev == nil || *prev != cd { select { case certDomainChanged <- true: default: } } } if cfg.TailnetTargetIP != "" && ipsHaveChanged && len(addrs) != 0 { log.Printf("Installing forwarding rules for destination %v", cfg.TailnetTargetIP) if err := installEgressForwardingRule(ctx, cfg.TailnetTargetIP, addrs, nfr); err != nil { log.Fatalf("installing egress proxy rules: %v", err) } } // If this is a L7 cluster ingress proxy (set up // by Kubernetes operator) and proxying of // cluster traffic to the ingress target is // enabled, set up proxy rule each time the // tailnet IPs of this node change (including // the first time they become available). if cfg.AllowProxyingClusterTrafficViaIngress && cfg.ServeConfigPath != "" && ipsHaveChanged && len(addrs) != 0 { log.Printf("installing rules to forward traffic for %s to node's tailnet IP", cfg.PodIP) if err := installTSForwardingRuleForDestination(ctx, cfg.PodIP, addrs, nfr); err != nil { log.Fatalf("installing rules to forward traffic to node's tailnet IP: %v", err) } } currentIPs = newCurrentIPs // Only store device FQDN and IP addresses to // Kubernetes Secret when any required proxy // route setup has succeeded. IPs and FQDN are // read from the Secret by the Tailscale // Kubernetes operator and, for some proxy // types, such as Tailscale Ingress, advertized // on the Ingress status. Writing them to the // Secret only after the proxy routing has been // set up ensures that the operator does not // advertize endpoints of broken proxies. // TODO (irbekrm): instead of using the IP and FQDN, have some other mechanism for the proxy signal that it is 'Ready'. deviceEndpoints := []any{n.NetMap.SelfNode.Name(), n.NetMap.SelfNode.Addresses()} if hasKubeStateStore(cfg) && deephash.Update(¤tDeviceEndpoints, &deviceEndpoints) { if err := storeDeviceEndpoints(ctx, cfg.KubeSecret, n.NetMap.SelfNode.Name(), n.NetMap.SelfNode.Addresses().AsSlice()); err != nil { log.Fatalf("storing device IPs and FQDN in Kubernetes Secret: %v", err) } } if healthCheck != nil { healthCheck.update(len(addrs) != 0) } if egressSvcsNotify != nil { egressSvcsNotify <- n } } if !startupTasksDone { // For containerboot instances that act as TCP proxies (proxying traffic to an endpoint // passed via one of the env vars that containerboot reads) and store state in a // Kubernetes Secret, we consider startup tasks done at the point when device info has // been successfully stored to state Secret. For all other containerboot instances, if // we just get to this point the startup tasks can be considered done. if !isL3Proxy(cfg) || !hasKubeStateStore(cfg) || (currentDeviceEndpoints != deephash.Sum{} && currentDeviceID != deephash.Sum{}) { // This log message is used in tests to detect when all // post-auth configuration is done. log.Println("Startup complete, waiting for shutdown signal") startupTasksDone = true // Configure egress proxy. Egress proxy will set up firewall rules to proxy // traffic to tailnet targets configured in the provided configuration file. It // will then continuously monitor the config file and netmap updates and // reconfigure the firewall rules as needed. If any of its operations fail, it // will crash this node. if cfg.EgressSvcsCfgPath != "" { log.Printf("configuring egress proxy using configuration file at %s", cfg.EgressSvcsCfgPath) egressSvcsNotify = make(chan ipn.Notify) ep := egressProxy{ cfgPath: cfg.EgressSvcsCfgPath, nfr: nfr, kc: kc, stateSecret: cfg.KubeSecret, netmapChan: egressSvcsNotify, podIPv4: cfg.PodIPv4, tailnetAddrs: addrs, } go func() { if err := ep.run(ctx, n); err != nil { egressSvcsErrorChan <- err } }() } // Wait on tailscaled process. It won't be cleaned up by default when the // container exits as it is not PID1. TODO (irbekrm): perhaps we can replace the // reaper by a running cmd.Wait in a goroutine immediately after starting // tailscaled? reaper := func() { defer wg.Done() for { var status unix.WaitStatus _, err := unix.Wait4(daemonProcess.Pid, &status, 0, nil) if errors.Is(err, unix.EINTR) { continue } if err != nil { log.Fatalf("Waiting for tailscaled to exit: %v", err) } log.Print("tailscaled exited") os.Exit(0) } } wg.Add(1) go reaper() } } case <-tc: newBackendAddrs, err := resolveDNS(ctx, cfg.ProxyTargetDNSName) if err != nil { log.Printf("[unexpected] error resolving DNS name %s: %v", cfg.ProxyTargetDNSName, err) resetTimer(true) continue } backendsHaveChanged := !(slices.EqualFunc(backendAddrs, newBackendAddrs, func(ip1 net.IP, ip2 net.IP) bool { return slices.ContainsFunc(newBackendAddrs, func(ip net.IP) bool { return ip.Equal(ip1) }) })) if backendsHaveChanged && len(addrs) != 0 { log.Printf("Backend address change detected, installing proxy rules for backends %v", newBackendAddrs) if err := installIngressForwardingRuleForDNSTarget(ctx, newBackendAddrs, addrs, nfr); err != nil { log.Fatalf("installing ingress proxy rules for DNS target %s: %v", cfg.ProxyTargetDNSName, err) } } backendAddrs = newBackendAddrs resetTimer(false) case e := <-egressSvcsErrorChan: log.Fatalf("egress proxy failed: %v", e) } } wg.Wait() } // ensureTunFile checks that /dev/net/tun exists, creating it if // missing. func ensureTunFile(root string) error { // Verify that /dev/net/tun exists, in some container envs it // needs to be mknod-ed. if _, err := os.Stat(filepath.Join(root, "dev/net")); errors.Is(err, fs.ErrNotExist) { if err := os.MkdirAll(filepath.Join(root, "dev/net"), 0755); err != nil { return err } } if _, err := os.Stat(filepath.Join(root, "dev/net/tun")); errors.Is(err, fs.ErrNotExist) { dev := unix.Mkdev(10, 200) // tuntap major and minor if err := unix.Mknod(filepath.Join(root, "dev/net/tun"), 0600|unix.S_IFCHR, int(dev)); err != nil { return err } } return nil } func resolveDNS(ctx context.Context, name string) ([]net.IP, error) { // TODO (irbekrm): look at using recursive.Resolver instead to resolve // the DNS names as well as retrieve TTLs. It looks though that this // seems to return very short TTLs (shorter than on the actual records). ip4s, err := net.DefaultResolver.LookupIP(ctx, "ip4", name) if err != nil { if e, ok := err.(*net.DNSError); !(ok && e.IsNotFound) { return nil, fmt.Errorf("error looking up IPv4 addresses: %v", err) } } ip6s, err := net.DefaultResolver.LookupIP(ctx, "ip6", name) if err != nil { if e, ok := err.(*net.DNSError); !(ok && e.IsNotFound) { return nil, fmt.Errorf("error looking up IPv6 addresses: %v", err) } } if len(ip4s) == 0 && len(ip6s) == 0 { return nil, fmt.Errorf("no IPv4 or IPv6 addresses found for host: %s", name) } return append(ip4s, ip6s...), nil } // contextWithExitSignalWatch watches for SIGTERM/SIGINT signals. It returns a // context that gets cancelled when a signal is received and a cancel function // that can be called to free the resources when the watch should be stopped. func contextWithExitSignalWatch() (context.Context, func()) { closeChan := make(chan string) ctx, cancel := context.WithCancel(context.Background()) signalChan := make(chan os.Signal, 1) signal.Notify(signalChan, syscall.SIGINT, syscall.SIGTERM) go func() { select { case <-signalChan: cancel() case <-closeChan: return } }() f := func() { closeChan <- "goodbye" } return ctx, f } // tailscaledConfigFilePath returns the path to the tailscaled config file that // should be used for the current capability version. It is determined by the // TS_EXPERIMENTAL_VERSIONED_CONFIG_DIR environment variable and looks for a // file named cap-.hujson in the directory. It searches for // the highest capability version that is less than or equal to the current // capability version. func tailscaledConfigFilePath() string { dir := os.Getenv("TS_EXPERIMENTAL_VERSIONED_CONFIG_DIR") if dir == "" { return "" } fe, err := os.ReadDir(dir) if err != nil { log.Fatalf("error reading tailscaled config directory %q: %v", dir, err) } maxCompatVer := tailcfg.CapabilityVersion(-1) for _, e := range fe { // We don't check if type if file as in most cases this will // come from a mounted kube Secret, where the directory contents // will be various symlinks. if e.Type().IsDir() { continue } cv, err := kubeutils.CapVerFromFileName(e.Name()) if err != nil { continue } if cv > maxCompatVer && cv <= tailcfg.CurrentCapabilityVersion { maxCompatVer = cv } } if maxCompatVer == -1 { log.Fatalf("no tailscaled config file found in %q for current capability version %d", dir, tailcfg.CurrentCapabilityVersion) } filePath := filepath.Join(dir, kubeutils.TailscaledConfigFileName(maxCompatVer)) log.Printf("Using tailscaled config file %q to match current capability version %d", filePath, tailcfg.CurrentCapabilityVersion) return filePath } func runHTTPServer(mux *http.ServeMux, addr string) (close func() error) { ln, err := net.Listen("tcp", addr) if err != nil { log.Fatalf("failed to listen on addr %q: %v", addr, err) } srv := &http.Server{Handler: mux} go func() { if err := srv.Serve(ln); err != nil { log.Fatalf("failed running server: %v", err) } }() return func() error { err := srv.Shutdown(context.Background()) return errors.Join(err, ln.Close()) } }