// Copyright (c) Tailscale Inc & AUTHORS // SPDX-License-Identifier: BSD-3-Clause // Package netstack wires up gVisor's netstack into Tailscale. package netstack import ( "bytes" "context" "errors" "expvar" "fmt" "io" "log" "math" "net" "net/netip" "runtime" "strconv" "sync" "sync/atomic" "time" "gvisor.dev/gvisor/pkg/buffer" "gvisor.dev/gvisor/pkg/refs" "gvisor.dev/gvisor/pkg/tcpip" "gvisor.dev/gvisor/pkg/tcpip/adapters/gonet" "gvisor.dev/gvisor/pkg/tcpip/header" "gvisor.dev/gvisor/pkg/tcpip/network/ipv4" "gvisor.dev/gvisor/pkg/tcpip/network/ipv6" "gvisor.dev/gvisor/pkg/tcpip/stack" "gvisor.dev/gvisor/pkg/tcpip/transport/icmp" "gvisor.dev/gvisor/pkg/tcpip/transport/tcp" "gvisor.dev/gvisor/pkg/tcpip/transport/udp" "gvisor.dev/gvisor/pkg/waiter" "tailscale.com/drive" "tailscale.com/envknob" "tailscale.com/ipn/ipnlocal" "tailscale.com/metrics" "tailscale.com/net/dns" "tailscale.com/net/ipset" "tailscale.com/net/netaddr" "tailscale.com/net/packet" "tailscale.com/net/tsaddr" "tailscale.com/net/tsdial" "tailscale.com/net/tstun" "tailscale.com/proxymap" "tailscale.com/syncs" "tailscale.com/tailcfg" "tailscale.com/types/ipproto" "tailscale.com/types/logger" "tailscale.com/types/netmap" "tailscale.com/types/nettype" "tailscale.com/util/clientmetric" "tailscale.com/version" "tailscale.com/wgengine" "tailscale.com/wgengine/filter" "tailscale.com/wgengine/magicsock" ) const debugPackets = false // If non-zero, these override the values returned from the corresponding // functions, below. var ( maxInFlightConnectionAttemptsForTest int maxInFlightConnectionAttemptsPerClientForTest int ) // maxInFlightConnectionAttempts returns the global number of in-flight // connection attempts that we allow for a single netstack Impl. Any new // forwarded TCP connections that are opened after the limit has been hit are // rejected until the number of in-flight connections drops below the limit // again. // // Each in-flight connection attempt is a new goroutine and an open TCP // connection, so we want to ensure that we don't allow an unbounded number of // connections. func maxInFlightConnectionAttempts() int { if n := maxInFlightConnectionAttemptsForTest; n > 0 { return n } if version.IsMobile() { return 1024 // previous global value } switch version.OS() { case "linux": // On the assumption that most subnet routers deployed in // production are running on Linux, we return a higher value. // // TODO(andrew-d): tune this based on the amount of system // memory instead of a fixed limit. return 8192 default: // On all other platforms, return a reasonably high value that // most users won't hit. return 2048 } } // maxInFlightConnectionAttemptsPerClient is the same as // maxInFlightConnectionAttempts, but applies on a per-client basis // (i.e. keyed by the remote Tailscale IP). func maxInFlightConnectionAttemptsPerClient() int { if n := maxInFlightConnectionAttemptsPerClientForTest; n > 0 { return n } // For now, allow each individual client at most 2/3rds of the global // limit. On all platforms except mobile, this won't be a visible // change for users since this limit was added at the same time as we // bumped the global limit, above. return maxInFlightConnectionAttempts() * 2 / 3 } var debugNetstack = envknob.RegisterBool("TS_DEBUG_NETSTACK") var ( serviceIP = tsaddr.TailscaleServiceIP() serviceIPv6 = tsaddr.TailscaleServiceIPv6() ) func init() { mode := envknob.String("TS_DEBUG_NETSTACK_LEAK_MODE") if mode == "" { return } var lm refs.LeakMode if err := lm.Set(mode); err != nil { panic(err) } refs.SetLeakMode(lm) } // Impl contains the state for the netstack implementation, // and implements wgengine.FakeImpl to act as a userspace network // stack when Tailscale is running in fake mode. type Impl struct { // GetTCPHandlerForFlow conditionally handles an incoming TCP flow for the // provided (src/port, dst/port) 4-tuple. // // A nil value is equivalent to a func returning (nil, false). // // If func returns intercept=false, the default forwarding behavior (if // ProcessLocalIPs and/or ProcesssSubnetIPs) takes place. // // When intercept=true, the behavior depends on whether the returned handler // is non-nil: if nil, the connection is rejected. If non-nil, handler takes // over the TCP conn. GetTCPHandlerForFlow func(src, dst netip.AddrPort) (handler func(net.Conn), intercept bool) // GetUDPHandlerForFlow conditionally handles an incoming UDP flow for the // provided (src/port, dst/port) 4-tuple. // // A nil value is equivalent to a func returning (nil, false). // // If func returns intercept=false, the default forwarding behavior (if // ProcessLocalIPs and/or ProcesssSubnetIPs) takes place. // // When intercept=true, the behavior depends on whether the returned handler // is non-nil: if nil, the connection is rejected. If non-nil, handler takes // over the UDP flow. GetUDPHandlerForFlow func(src, dst netip.AddrPort) (handler func(nettype.ConnPacketConn), intercept bool) // ProcessLocalIPs is whether netstack should handle incoming // traffic directed at the Node.Addresses (local IPs). // It can only be set before calling Start. ProcessLocalIPs bool // ProcessSubnets is whether netstack should handle incoming // traffic destined to non-local IPs (i.e. whether it should // be a subnet router). // It can only be set before calling Start. ProcessSubnets bool ipstack *stack.Stack linkEP *linkEndpoint tundev *tstun.Wrapper e wgengine.Engine pm *proxymap.Mapper mc *magicsock.Conn logf logger.Logf dialer *tsdial.Dialer ctx context.Context // alive until Close ctxCancel context.CancelFunc // called on Close lb *ipnlocal.LocalBackend // or nil dns *dns.Manager driveForLocal drive.FileSystemForLocal // or nil peerapiPort4Atomic atomic.Uint32 // uint16 port number for IPv4 peerapi peerapiPort6Atomic atomic.Uint32 // uint16 port number for IPv6 peerapi // atomicIsLocalIPFunc holds a func that reports whether an IP // is a local (non-subnet) Tailscale IP address of this // machine. It's always a non-nil func. It's changed on netmap // updates. atomicIsLocalIPFunc syncs.AtomicValue[func(netip.Addr) bool] // forwardDialFunc, if non-nil, is the net.Dialer.DialContext-style // function that is used to make outgoing connections when forwarding a // TCP connection to another host (e.g. in subnet router mode). // // This is currently only used in tests. forwardDialFunc func(context.Context, string, string) (net.Conn, error) // forwardInFlightPerClientDropped is a metric that tracks how many // in-flight TCP forward requests were dropped due to the per-client // limit. forwardInFlightPerClientDropped expvar.Int mu sync.Mutex // connsOpenBySubnetIP keeps track of number of connections open // for each subnet IP temporarily registered on netstack for active // TCP connections, so they can be unregistered when connections are // closed. connsOpenBySubnetIP map[netip.Addr]int // connsInFlightByClient keeps track of the number of in-flight // connections by the client ("Tailscale") IP. This is used to apply a // per-client limit on in-flight connections that's smaller than the // global limit, preventing a misbehaving client from starving the // global limit. connsInFlightByClient map[netip.Addr]int // packetsInFlight tracks whether we're already handling a packet by // the given endpoint ID; clients can send repeated SYN packets while // trying to establish a connection (and while we're dialing the // upstream address). If we don't deduplicate based on the endpoint, // each SYN retransmit results in us incrementing // connsInFlightByClient, and not decrementing them because the // underlying TCP forwarder returns 'true' to indicate that the packet // is handled but never actually launches our acceptTCP function. // // This mimics the 'inFlight' map in the TCP forwarder; it's // unfortunate that we have to track this all twice, but thankfully the // map only holds pending (in-flight) packets, and it's reasonably cheap. packetsInFlight map[stack.TransportEndpointID]struct{} } const nicID = 1 // maxUDPPacketSize is the maximum size of a UDP packet we copy in // startPacketCopy when relaying UDP packets. The user can configure // the tailscale MTU to anything up to this size so we can potentially // have a UDP packet as big as the MTU. const maxUDPPacketSize = tstun.MaxPacketSize // Create creates and populates a new Impl. func Create(logf logger.Logf, tundev *tstun.Wrapper, e wgengine.Engine, mc *magicsock.Conn, dialer *tsdial.Dialer, dns *dns.Manager, pm *proxymap.Mapper, driveForLocal drive.FileSystemForLocal) (*Impl, error) { if mc == nil { return nil, errors.New("nil magicsock.Conn") } if tundev == nil { return nil, errors.New("nil tundev") } if logf == nil { return nil, errors.New("nil logger") } if e == nil { return nil, errors.New("nil Engine") } if pm == nil { return nil, errors.New("nil proxymap.Mapper") } if dialer == nil { return nil, errors.New("nil Dialer") } ipstack := stack.New(stack.Options{ NetworkProtocols: []stack.NetworkProtocolFactory{ipv4.NewProtocol, ipv6.NewProtocol}, TransportProtocols: []stack.TransportProtocolFactory{tcp.NewProtocol, udp.NewProtocol, icmp.NewProtocol4, icmp.NewProtocol6}, }) sackEnabledOpt := tcpip.TCPSACKEnabled(true) // TCP SACK is disabled by default tcpipErr := ipstack.SetTransportProtocolOption(tcp.ProtocolNumber, &sackEnabledOpt) if tcpipErr != nil { return nil, fmt.Errorf("could not enable TCP SACK: %v", tcpipErr) } if runtime.GOOS == "windows" { // See https://github.com/tailscale/tailscale/issues/9707 // Windows w/RACK performs poorly. ACKs do not appear to be handled in a // timely manner, leading to spurious retransmissions and a reduced // congestion window. tcpRecoveryOpt := tcpip.TCPRecovery(0) tcpipErr = ipstack.SetTransportProtocolOption(tcp.ProtocolNumber, &tcpRecoveryOpt) if tcpipErr != nil { return nil, fmt.Errorf("could not disable TCP RACK: %v", tcpipErr) } } linkEP := newLinkEndpoint(512, uint32(tstun.DefaultTUNMTU()), "") if runtime.GOOS == "linux" { // TODO(jwhited): add Windows support https://github.com/tailscale/corp/issues/21874 linkEP.SupportedGSOKind = stack.HostGSOSupported } if tcpipProblem := ipstack.CreateNIC(nicID, linkEP); tcpipProblem != nil { return nil, fmt.Errorf("could not create netstack NIC: %v", tcpipProblem) } // By default the netstack NIC will only accept packets for the IPs // registered to it. Since in some cases we dynamically register IPs // based on the packets that arrive, the NIC needs to accept all // incoming packets. The NIC won't receive anything it isn't meant to // since WireGuard will only send us packets that are meant for us. ipstack.SetPromiscuousMode(nicID, true) // Add IPv4 and IPv6 default routes, so all incoming packets from the Tailscale side // are handled by the one fake NIC we use. ipv4Subnet, err := tcpip.NewSubnet(tcpip.AddrFromSlice(make([]byte, 4)), tcpip.MaskFromBytes(make([]byte, 4))) if err != nil { return nil, fmt.Errorf("could not create IPv4 subnet: %v", err) } ipv6Subnet, err := tcpip.NewSubnet(tcpip.AddrFromSlice(make([]byte, 16)), tcpip.MaskFromBytes(make([]byte, 16))) if err != nil { return nil, fmt.Errorf("could not create IPv6 subnet: %v", err) } ipstack.SetRouteTable([]tcpip.Route{ { Destination: ipv4Subnet, NIC: nicID, }, { Destination: ipv6Subnet, NIC: nicID, }, }) ns := &Impl{ logf: logf, ipstack: ipstack, linkEP: linkEP, tundev: tundev, e: e, pm: pm, mc: mc, dialer: dialer, connsOpenBySubnetIP: make(map[netip.Addr]int), connsInFlightByClient: make(map[netip.Addr]int), packetsInFlight: make(map[stack.TransportEndpointID]struct{}), dns: dns, driveForLocal: driveForLocal, } ns.ctx, ns.ctxCancel = context.WithCancel(context.Background()) ns.atomicIsLocalIPFunc.Store(ipset.FalseContainsIPFunc()) ns.tundev.PostFilterPacketInboundFromWireGuard = ns.injectInbound ns.tundev.PreFilterPacketOutboundToWireGuardNetstackIntercept = ns.handleLocalPackets stacksForMetrics.Store(ns, struct{}{}) return ns, nil } func (ns *Impl) Close() error { stacksForMetrics.Delete(ns) ns.ctxCancel() ns.ipstack.Close() ns.ipstack.Wait() return nil } // A single process might have several netstacks running at the same time. // Exported clientmetric counters will have a sum of counters of all of them. var stacksForMetrics syncs.Map[*Impl, struct{}] func init() { // Please take care to avoid exporting clientmetrics with the same metric // names as the ones used by Impl.ExpVar. Both get exposed via the same HTTP // endpoint, and name collisions will result in Prometheus scraping errors. clientmetric.NewCounterFunc("netstack_tcp_forward_dropped_attempts", func() int64 { var total uint64 stacksForMetrics.Range(func(ns *Impl, _ struct{}) bool { delta := ns.ipstack.Stats().TCP.ForwardMaxInFlightDrop.Value() if total+delta > math.MaxInt64 { total = math.MaxInt64 return false } total += delta return true }) return int64(total) }) } type protocolHandlerFunc func(stack.TransportEndpointID, *stack.PacketBuffer) bool // wrapUDPProtocolHandler wraps the protocol handler we pass to netstack for UDP. func (ns *Impl) wrapUDPProtocolHandler(h protocolHandlerFunc) protocolHandlerFunc { return func(tei stack.TransportEndpointID, pb *stack.PacketBuffer) bool { addr := tei.LocalAddress ip, ok := netip.AddrFromSlice(addr.AsSlice()) if !ok { ns.logf("netstack: could not parse local address for incoming connection") return false } // Dynamically reconfigure ns's subnet addresses as needed for // outbound traffic. ip = ip.Unmap() if !ns.isLocalIP(ip) { ns.addSubnetAddress(ip) } return h(tei, pb) } } var ( metricPerClientForwardLimit = clientmetric.NewCounter("netstack_tcp_forward_dropped_attempts_per_client") ) // wrapTCPProtocolHandler wraps the protocol handler we pass to netstack for TCP. func (ns *Impl) wrapTCPProtocolHandler(h protocolHandlerFunc) protocolHandlerFunc { // 'handled' is whether the packet should be accepted by netstack; if // true, then the TCP connection is accepted by the transport layer and // passes through our acceptTCP handler/etc. If false, then the packet // is dropped and the TCP connection is rejected (typically with an // ICMP Port Unreachable or ICMP Protocol Unreachable message). return func(tei stack.TransportEndpointID, pb *stack.PacketBuffer) (handled bool) { localIP, ok := netip.AddrFromSlice(tei.LocalAddress.AsSlice()) if !ok { ns.logf("netstack: could not parse local address for incoming connection") return false } localIP = localIP.Unmap() remoteIP, ok := netip.AddrFromSlice(tei.RemoteAddress.AsSlice()) if !ok { ns.logf("netstack: could not parse remote address for incoming connection") return false } // If we have too many in-flight connections for this client, abort // early and don't open a new one. // // NOTE: the counter is decremented in // decrementInFlightTCPForward, called from the acceptTCP // function, below. ns.mu.Lock() if _, ok := ns.packetsInFlight[tei]; ok { // We're already handling this packet; just bail early // (this is also what would happen in the TCP // forwarder). ns.mu.Unlock() return true } // Check the per-client limit. inFlight := ns.connsInFlightByClient[remoteIP] tooManyInFlight := inFlight >= maxInFlightConnectionAttemptsPerClient() if !tooManyInFlight { ns.connsInFlightByClient[remoteIP]++ } // We're handling this packet now; see the comment on the // packetsInFlight field for more details. ns.packetsInFlight[tei] = struct{}{} ns.mu.Unlock() if debugNetstack() { ns.logf("[v2] netstack: in-flight connections for client %v: %d", remoteIP, inFlight) } if tooManyInFlight { ns.logf("netstack: ignoring a new TCP connection from %v to %v because the client already has %d in-flight connections", localIP, remoteIP, inFlight) metricPerClientForwardLimit.Add(1) ns.forwardInFlightPerClientDropped.Add(1) return false // unhandled } // On return, if this packet isn't handled by the inner handler // we're wrapping (`h`), we need to decrement the per-client // in-flight count and remove the ID from our tracking map. // This can happen if the underlying forwarder's limit has been // reached, at which point it will return false to indicate // that it's not handling the packet, and it will not run // acceptTCP. If we don't decrement here, then we would // eventually increment the per-client counter up to the limit // and never decrement because we'd never hit the codepath in // acceptTCP, below, or just drop all packets from the same // endpoint due to the packetsInFlight check. defer func() { if !handled { ns.mu.Lock() delete(ns.packetsInFlight, tei) ns.connsInFlightByClient[remoteIP]-- new := ns.connsInFlightByClient[remoteIP] ns.mu.Unlock() ns.logf("netstack: decrementing connsInFlightByClient[%v] because the packet was not handled; new value is %d", remoteIP, new) } }() // Dynamically reconfigure ns's subnet addresses as needed for // outbound traffic. if !ns.isLocalIP(localIP) { ns.addSubnetAddress(localIP) } return h(tei, pb) } } func (ns *Impl) decrementInFlightTCPForward(tei stack.TransportEndpointID, remoteAddr netip.Addr) { ns.mu.Lock() defer ns.mu.Unlock() // Remove this packet so future SYNs from this address will be handled. delete(ns.packetsInFlight, tei) was := ns.connsInFlightByClient[remoteAddr] newVal := was - 1 if newVal == 0 { delete(ns.connsInFlightByClient, remoteAddr) // free up space in the map } else { ns.connsInFlightByClient[remoteAddr] = newVal } } // Start sets up all the handlers so netstack can start working. Implements // wgengine.FakeImpl. func (ns *Impl) Start(lb *ipnlocal.LocalBackend) error { if lb == nil { panic("nil LocalBackend") } ns.lb = lb // size = 0 means use default buffer size const tcpReceiveBufferSize = 0 tcpFwd := tcp.NewForwarder(ns.ipstack, tcpReceiveBufferSize, maxInFlightConnectionAttempts(), ns.acceptTCP) udpFwd := udp.NewForwarder(ns.ipstack, ns.acceptUDP) ns.ipstack.SetTransportProtocolHandler(tcp.ProtocolNumber, ns.wrapTCPProtocolHandler(tcpFwd.HandlePacket)) ns.ipstack.SetTransportProtocolHandler(udp.ProtocolNumber, ns.wrapUDPProtocolHandler(udpFwd.HandlePacket)) go ns.inject() return nil } func (ns *Impl) addSubnetAddress(ip netip.Addr) { ns.mu.Lock() ns.connsOpenBySubnetIP[ip]++ needAdd := ns.connsOpenBySubnetIP[ip] == 1 ns.mu.Unlock() // Only register address into netstack for first concurrent connection. if needAdd { pa := tcpip.ProtocolAddress{ AddressWithPrefix: tcpip.AddrFromSlice(ip.AsSlice()).WithPrefix(), } if ip.Is4() { pa.Protocol = ipv4.ProtocolNumber } else if ip.Is6() { pa.Protocol = ipv6.ProtocolNumber } ns.ipstack.AddProtocolAddress(nicID, pa, stack.AddressProperties{ PEB: stack.CanBePrimaryEndpoint, // zero value default ConfigType: stack.AddressConfigStatic, // zero value default }) } } func (ns *Impl) removeSubnetAddress(ip netip.Addr) { ns.mu.Lock() defer ns.mu.Unlock() ns.connsOpenBySubnetIP[ip]-- // Only unregister address from netstack after last concurrent connection. if ns.connsOpenBySubnetIP[ip] == 0 { ns.ipstack.RemoveAddress(nicID, tcpip.AddrFromSlice(ip.AsSlice())) delete(ns.connsOpenBySubnetIP, ip) } } func ipPrefixToAddressWithPrefix(ipp netip.Prefix) tcpip.AddressWithPrefix { return tcpip.AddressWithPrefix{ Address: tcpip.AddrFromSlice(ipp.Addr().AsSlice()), PrefixLen: int(ipp.Bits()), } } var v4broadcast = netaddr.IPv4(255, 255, 255, 255) // UpdateNetstackIPs updates the set of local IPs that netstack should handle // from nm. // // TODO(bradfitz): don't pass the whole netmap here; just pass the two // address slice views. func (ns *Impl) UpdateNetstackIPs(nm *netmap.NetworkMap) { var selfNode tailcfg.NodeView if nm != nil { ns.atomicIsLocalIPFunc.Store(ipset.NewContainsIPFunc(nm.GetAddresses())) selfNode = nm.SelfNode } else { ns.atomicIsLocalIPFunc.Store(ipset.FalseContainsIPFunc()) } oldPfx := make(map[netip.Prefix]bool) for _, protocolAddr := range ns.ipstack.AllAddresses()[nicID] { ap := protocolAddr.AddressWithPrefix ip := netaddrIPFromNetstackIP(ap.Address) if ip == v4broadcast && ap.PrefixLen == 32 { // Don't add 255.255.255.255/32 to oldIPs so we don't // delete it later. We didn't install it, so it's not // ours to delete. continue } p := netip.PrefixFrom(ip, ap.PrefixLen) oldPfx[p] = true } newPfx := make(map[netip.Prefix]bool) if selfNode.Valid() { for i := range selfNode.Addresses().Len() { p := selfNode.Addresses().At(i) newPfx[p] = true } if ns.ProcessSubnets { for i := range selfNode.AllowedIPs().Len() { p := selfNode.AllowedIPs().At(i) newPfx[p] = true } } } pfxToAdd := make(map[netip.Prefix]bool) for p := range newPfx { if !oldPfx[p] { pfxToAdd[p] = true } } pfxToRemove := make(map[netip.Prefix]bool) for p := range oldPfx { if !newPfx[p] { pfxToRemove[p] = true } } ns.mu.Lock() for ip := range ns.connsOpenBySubnetIP { // TODO(maisem): this looks like a bug, remove or document. It seems as // though we might end up either leaking the address on the netstack // NIC, or where we do accounting for connsOpenBySubnetIP from 1 to 0, // we might end up removing the address from the netstack NIC that was // still being advertised. delete(pfxToRemove, netip.PrefixFrom(ip, ip.BitLen())) } ns.mu.Unlock() for p := range pfxToRemove { err := ns.ipstack.RemoveAddress(nicID, tcpip.AddrFromSlice(p.Addr().AsSlice())) if err != nil { ns.logf("netstack: could not deregister IP %s: %v", p, err) } else { ns.logf("[v2] netstack: deregistered IP %s", p) } } for p := range pfxToAdd { if !p.IsValid() { ns.logf("netstack: [unexpected] skipping invalid IP (%v/%v)", p.Addr(), p.Bits()) continue } tcpAddr := tcpip.ProtocolAddress{ AddressWithPrefix: ipPrefixToAddressWithPrefix(p), } if p.Addr().Is6() { tcpAddr.Protocol = ipv6.ProtocolNumber } else { tcpAddr.Protocol = ipv4.ProtocolNumber } var tcpErr tcpip.Error // not error tcpErr = ns.ipstack.AddProtocolAddress(nicID, tcpAddr, stack.AddressProperties{ PEB: stack.CanBePrimaryEndpoint, // zero value default ConfigType: stack.AddressConfigStatic, // zero value default }) if tcpErr != nil { ns.logf("netstack: could not register IP %s: %v", p, tcpErr) } else { ns.logf("[v2] netstack: registered IP %s", p) } } } // handleLocalPackets is hooked into the tun datapath for packets leaving // the host and arriving at tailscaled. This method returns filter.DropSilently // to intercept a packet for handling, for instance traffic to quad-100. func (ns *Impl) handleLocalPackets(p *packet.Parsed, t *tstun.Wrapper) filter.Response { if ns.ctx.Err() != nil { return filter.DropSilently } // Determine if we care about this local packet. dst := p.Dst.Addr() switch { case dst == serviceIP || dst == serviceIPv6: // We want to intercept some traffic to the "service IP" (e.g. // 100.100.100.100 for IPv4). However, of traffic to the // service IP, we only care about UDP 53, and TCP on port 53, // 80, and 8080. switch p.IPProto { case ipproto.TCP: if port := p.Dst.Port(); port != 53 && port != 80 && port != 8080 { return filter.Accept } case ipproto.UDP: if port := p.Dst.Port(); port != 53 { return filter.Accept } } case viaRange.Contains(dst): // We need to handle 4via6 packets leaving the host if the via // route is for this host; otherwise the packet will be dropped // because nothing will translate it. var shouldHandle bool if p.IPVersion == 6 && !ns.isLocalIP(dst) { shouldHandle = ns.lb != nil && ns.lb.ShouldHandleViaIP(dst) } if !shouldHandle { // Unhandled means that we let the regular processing // occur without doing anything ourselves. return filter.Accept } if debugNetstack() { ns.logf("netstack: handling local 4via6 packet: version=%d proto=%v dst=%v src=%v", p.IPVersion, p.IPProto, p.Dst, p.Src) } // If this is a ping message, handle it and don't pass to // netstack. pingIP, handlePing := ns.shouldHandlePing(p) if handlePing { ns.logf("netstack: handling local 4via6 ping: dst=%v pingIP=%v", dst, pingIP) var pong []byte // the reply to the ping, if our relayed ping works if dst.Is4() { h := p.ICMP4Header() h.ToResponse() pong = packet.Generate(&h, p.Payload()) } else if dst.Is6() { h := p.ICMP6Header() h.ToResponse() pong = packet.Generate(&h, p.Payload()) } go ns.userPing(pingIP, pong, userPingDirectionInbound) return filter.DropSilently } // Fall through to writing inbound so netstack handles the // 4via6 via connection. default: // Not traffic to the service IP or a 4via6 IP, so we don't // care about the packet; resume processing. return filter.Accept } var pn tcpip.NetworkProtocolNumber switch p.IPVersion { case 4: pn = header.IPv4ProtocolNumber case 6: pn = header.IPv6ProtocolNumber } if debugPackets { ns.logf("[v2] service packet in (from %v): % x", p.Src, p.Buffer()) } packetBuf := stack.NewPacketBuffer(stack.PacketBufferOptions{ Payload: buffer.MakeWithData(bytes.Clone(p.Buffer())), }) ns.linkEP.InjectInbound(pn, packetBuf) packetBuf.DecRef() return filter.DropSilently } func (ns *Impl) DialContextTCP(ctx context.Context, ipp netip.AddrPort) (*gonet.TCPConn, error) { remoteAddress := tcpip.FullAddress{ NIC: nicID, Addr: tcpip.AddrFromSlice(ipp.Addr().AsSlice()), Port: ipp.Port(), } var ipType tcpip.NetworkProtocolNumber if ipp.Addr().Is4() { ipType = ipv4.ProtocolNumber } else { ipType = ipv6.ProtocolNumber } return gonet.DialContextTCP(ctx, ns.ipstack, remoteAddress, ipType) } func (ns *Impl) DialContextUDP(ctx context.Context, ipp netip.AddrPort) (*gonet.UDPConn, error) { remoteAddress := &tcpip.FullAddress{ NIC: nicID, Addr: tcpip.AddrFromSlice(ipp.Addr().AsSlice()), Port: ipp.Port(), } var ipType tcpip.NetworkProtocolNumber if ipp.Addr().Is4() { ipType = ipv4.ProtocolNumber } else { ipType = ipv6.ProtocolNumber } return gonet.DialUDP(ns.ipstack, nil, remoteAddress, ipType) } // The inject goroutine reads in packets that netstack generated, and delivers // them to the correct path. func (ns *Impl) inject() { for { pkt := ns.linkEP.ReadContext(ns.ctx) if pkt.IsNil() { if ns.ctx.Err() != nil { // Return without logging. return } ns.logf("[v2] ReadContext-for-write = ok=false") continue } if debugPackets { ns.logf("[v2] packet Write out: % x", stack.PayloadSince(pkt.NetworkHeader()).AsSlice()) } // In the normal case, netstack synthesizes the bytes for // traffic which should transit back into WG and go to peers. // However, some uses of netstack (presently, magic DNS) // send traffic destined for the local device, hence must // be injected 'inbound'. sendToHost := ns.shouldSendToHost(pkt) // pkt has a non-zero refcount, so injection methods takes // ownership of one count and will decrement on completion. if sendToHost { if err := ns.tundev.InjectInboundPacketBuffer(pkt); err != nil { log.Printf("netstack inject inbound: %v", err) return } } else { if err := ns.tundev.InjectOutboundPacketBuffer(pkt); err != nil { log.Printf("netstack inject outbound: %v", err) return } } } } // shouldSendToHost determines if the provided packet should be sent to the // host (i.e the current machine running Tailscale), in which case it will // return true. It will return false if the packet should be sent outbound, for // transit via WireGuard to another Tailscale node. func (ns *Impl) shouldSendToHost(pkt *stack.PacketBuffer) bool { // Determine if the packet is from a service IP (100.100.100.100 or the // IPv6 variant), in which case it needs to go back into the machine's // network (inbound) instead of out. hdr := pkt.Network() switch v := hdr.(type) { case header.IPv4: srcIP := netip.AddrFrom4(v.SourceAddress().As4()) if serviceIP == srcIP { return true } case header.IPv6: srcIP := netip.AddrFrom16(v.SourceAddress().As16()) if srcIP == serviceIPv6 { return true } if viaRange.Contains(srcIP) { // Only send to the host if this 4via6 route is // something this node handles. if ns.lb != nil && ns.lb.ShouldHandleViaIP(srcIP) { dstIP := netip.AddrFrom16(v.DestinationAddress().As16()) // Also, only forward to the host if the packet // is destined for a local IP; otherwise, we'd // send traffic that's intended for another // peer from the local 4via6 address to the // host instead of outbound to WireGuard. See: // https://github.com/tailscale/tailscale/issues/12448 if ns.isLocalIP(dstIP) { return true } if debugNetstack() { ns.logf("netstack: sending 4via6 packet to host: src=%v dst=%v", srcIP, dstIP) } } } default: // unknown; don't forward to host if debugNetstack() { ns.logf("netstack: unexpected packet in shouldSendToHost: %T", v) } } return false } // isLocalIP reports whether ip is a Tailscale IP assigned to this // node directly (but not a subnet-routed IP). func (ns *Impl) isLocalIP(ip netip.Addr) bool { return ns.atomicIsLocalIPFunc.Load()(ip) } func (ns *Impl) peerAPIPortAtomic(ip netip.Addr) *atomic.Uint32 { if ip.Is4() { return &ns.peerapiPort4Atomic } else { return &ns.peerapiPort6Atomic } } var viaRange = tsaddr.TailscaleViaRange() // shouldProcessInbound reports whether an inbound packet (a packet from a // WireGuard peer) should be handled by netstack. func (ns *Impl) shouldProcessInbound(p *packet.Parsed, t *tstun.Wrapper) bool { // Handle incoming peerapi connections in netstack. dstIP := p.Dst.Addr() isLocal := ns.isLocalIP(dstIP) // Handle TCP connection to the Tailscale IP(s) in some cases: if ns.lb != nil && p.IPProto == ipproto.TCP && isLocal { var peerAPIPort uint16 if p.TCPFlags&packet.TCPSynAck == packet.TCPSyn { if port, ok := ns.lb.GetPeerAPIPort(dstIP); ok { peerAPIPort = port ns.peerAPIPortAtomic(dstIP).Store(uint32(port)) } } else { peerAPIPort = uint16(ns.peerAPIPortAtomic(dstIP).Load()) } dport := p.Dst.Port() if dport == peerAPIPort { return true } // Also handle SSH connections, webserver, etc, if enabled: if ns.lb.ShouldInterceptTCPPort(dport) { return true } } if p.IPVersion == 6 && !isLocal && viaRange.Contains(dstIP) { return ns.lb != nil && ns.lb.ShouldHandleViaIP(dstIP) } if ns.ProcessLocalIPs && isLocal { return true } if ns.ProcessSubnets && !isLocal { return true } return false } var userPingSem = syncs.NewSemaphore(20) // 20 child ping processes at once type userPingDirection int const ( // userPingDirectionOutbound is used when the pong packet is to be sent // "outbound"–i.e. from this node to a peer via WireGuard. userPingDirectionOutbound userPingDirection = iota // userPingDirectionInbound is used when the pong packet is to be sent // "inbound"–i.e. from Tailscale to another process on this host. userPingDirectionInbound ) // userPing tried to ping dstIP and if it succeeds, injects pingResPkt // into the tundev. // // It's used in userspace/netstack mode when we don't have kernel // support or raw socket access. As such, this does the dumbest thing // that can work: runs the ping command. It's not super efficient, so // it bounds the number of pings going on at once. The idea is that // people only use ping occasionally to see if their internet's working // so this doesn't need to be great. // On Apple platforms, this function doesn't run the ping command. Instead, // it sends a non-privileged ping. // // The 'direction' parameter is used to determine where the response "pong" // packet should be written, if the ping succeeds. See the documentation on the // constants for more details. // // TODO(bradfitz): when we're running on Windows as the system user, use // raw socket APIs instead of ping child processes. func (ns *Impl) userPing(dstIP netip.Addr, pingResPkt []byte, direction userPingDirection) { if !userPingSem.TryAcquire() { return } defer userPingSem.Release() t0 := time.Now() err := ns.sendOutboundUserPing(dstIP, 3*time.Second) d := time.Since(t0) if err != nil { if d < time.Second/2 { // If it failed quicker than the 3 second // timeout we gave above (500 ms is a // reasonable threshold), then assume the ping // failed for problems finding/running // ping. We don't want to log if the host is // just down. ns.logf("exec ping of %v failed in %v: %v", dstIP, d, err) } return } if debugNetstack() { ns.logf("exec pinged %v in %v", dstIP, time.Since(t0)) } if direction == userPingDirectionOutbound { if err := ns.tundev.InjectOutbound(pingResPkt); err != nil { ns.logf("InjectOutbound ping response: %v", err) } } else if direction == userPingDirectionInbound { if err := ns.tundev.InjectInboundCopy(pingResPkt); err != nil { ns.logf("InjectInboundCopy ping response: %v", err) } } } // injectInbound is installed as a packet hook on the 'inbound' (from a // WireGuard peer) path. Returning filter.Accept releases the packet to // continue normally (typically being delivered to the host networking stack), // whereas returning filter.DropSilently is done when netstack intercepts the // packet and no further processing towards to host should be done. func (ns *Impl) injectInbound(p *packet.Parsed, t *tstun.Wrapper) filter.Response { if ns.ctx.Err() != nil { return filter.DropSilently } if !ns.shouldProcessInbound(p, t) { // Let the host network stack (if any) deal with it. return filter.Accept } destIP := p.Dst.Addr() // If this is an echo request and we're a subnet router, handle pings // ourselves instead of forwarding the packet on. pingIP, handlePing := ns.shouldHandlePing(p) if handlePing { var pong []byte // the reply to the ping, if our relayed ping works if destIP.Is4() { h := p.ICMP4Header() h.ToResponse() pong = packet.Generate(&h, p.Payload()) } else if destIP.Is6() { h := p.ICMP6Header() h.ToResponse() pong = packet.Generate(&h, p.Payload()) } go ns.userPing(pingIP, pong, userPingDirectionOutbound) return filter.DropSilently } var pn tcpip.NetworkProtocolNumber switch p.IPVersion { case 4: pn = header.IPv4ProtocolNumber case 6: pn = header.IPv6ProtocolNumber } if debugPackets { ns.logf("[v2] packet in (from %v): % x", p.Src, p.Buffer()) } packetBuf := stack.NewPacketBuffer(stack.PacketBufferOptions{ Payload: buffer.MakeWithData(bytes.Clone(p.Buffer())), }) ns.linkEP.InjectInbound(pn, packetBuf) packetBuf.DecRef() // We've now delivered this to netstack, so we're done. // Instead of returning a filter.Accept here (which would also // potentially deliver it to the host OS), and instead of // filter.Drop (which would log about rejected traffic), // instead return filter.DropSilently which just quietly stops // processing it in the tstun TUN wrapper. return filter.DropSilently } // shouldHandlePing returns whether or not netstack should handle an incoming // ICMP echo request packet, and the IP address that should be pinged from this // process. The IP address can be different from the destination in the packet // if the destination is a 4via6 address. func (ns *Impl) shouldHandlePing(p *packet.Parsed) (_ netip.Addr, ok bool) { if !p.IsEchoRequest() { return netip.Addr{}, false } destIP := p.Dst.Addr() // We need to handle pings for all 4via6 addresses, even if this // netstack instance normally isn't responsible for processing subnets. // // For example, on Linux, subnet router traffic could be handled via // tun+iptables rules for most packets, but we still need to handle // ICMP echo requests over 4via6 since the host networking stack // doesn't know what to do with a 4via6 address. // // shouldProcessInbound returns 'true' to say that we should process // all IPv6 packets with a destination address in the 'via' range, so // check before we check the "ProcessSubnets" boolean below. if viaRange.Contains(destIP) { // The input echo request was to a 4via6 address, which we cannot // simply ping as-is from this process. Translate the destination to an // IPv4 address, so that our relayed ping (in userPing) is pinging the // underlying destination IP. // // ICMPv4 and ICMPv6 are different protocols with different on-the-wire // representations, so normally you can't send an ICMPv6 message over // IPv4 and expect to get a useful result. However, in this specific // case things are safe because the 'userPing' function doesn't make // use of the input packet. return tsaddr.UnmapVia(destIP), true } // If we get here, we don't do anything unless this netstack instance // is responsible for processing subnet traffic. if !ns.ProcessSubnets { return netip.Addr{}, false } // For non-4via6 addresses, we don't handle pings if they're destined // for a Tailscale IP. if tsaddr.IsTailscaleIP(destIP) { return netip.Addr{}, false } // This netstack instance is processing subnet traffic, so handle the // ping ourselves. return destIP, true } func netaddrIPFromNetstackIP(s tcpip.Address) netip.Addr { switch s.Len() { case 4: return netip.AddrFrom4(s.As4()) case 16: return netip.AddrFrom16(s.As16()).Unmap() } return netip.Addr{} } func (ns *Impl) acceptTCP(r *tcp.ForwarderRequest) { reqDetails := r.ID() if debugNetstack() { ns.logf("[v2] TCP ForwarderRequest: %s", stringifyTEI(reqDetails)) } clientRemoteIP := netaddrIPFromNetstackIP(reqDetails.RemoteAddress) if !clientRemoteIP.IsValid() { ns.logf("invalid RemoteAddress in TCP ForwarderRequest: %s", stringifyTEI(reqDetails)) r.Complete(true) // sends a RST return } // After we've returned from this function or have otherwise reached a // non-pending state, decrement the per-client in-flight count and // remove this endpoint from our packet tracking map so future TCP // connections aren't dropped. inFlightCompleted := false tei := r.ID() defer func() { if !inFlightCompleted { ns.decrementInFlightTCPForward(tei, clientRemoteIP) } }() clientRemotePort := reqDetails.RemotePort clientRemoteAddrPort := netip.AddrPortFrom(clientRemoteIP, clientRemotePort) dialIP := netaddrIPFromNetstackIP(reqDetails.LocalAddress) isTailscaleIP := tsaddr.IsTailscaleIP(dialIP) dstAddrPort := netip.AddrPortFrom(dialIP, reqDetails.LocalPort) if viaRange.Contains(dialIP) { isTailscaleIP = false dialIP = tsaddr.UnmapVia(dialIP) } defer func() { if !isTailscaleIP { // if this is a subnet IP, we added this in before the TCP handshake // so netstack is happy TCP-handshaking as a subnet IP ns.removeSubnetAddress(dialIP) } }() var wq waiter.Queue // We can't actually create the endpoint or complete the inbound // request until we're sure that the connection can be handled by this // endpoint. This function sets up the TCP connection and should be // called immediately before a connection is handled. getConnOrReset := func(opts ...tcpip.SettableSocketOption) *gonet.TCPConn { ep, err := r.CreateEndpoint(&wq) if err != nil { ns.logf("CreateEndpoint error for %s: %v", stringifyTEI(reqDetails), err) r.Complete(true) // sends a RST return nil } r.Complete(false) for _, opt := range opts { ep.SetSockOpt(opt) } // SetKeepAlive so that idle connections to peers that have forgotten about // the connection or gone completely offline eventually time out. // Applications might be setting this on a forwarded connection, but from // userspace we can not see those, so the best we can do is to always // perform them with conservative timing. // TODO(tailscale/tailscale#4522): Netstack defaults match the Linux // defaults, and results in a little over two hours before the socket would // be closed due to keepalive. A shorter default might be better, or seeking // a default from the host IP stack. This also might be a useful // user-tunable, as in userspace mode this can have broad implications such // as lingering connections to fork style daemons. On the other side of the // fence, the long duration timers are low impact values for battery powered // peers. ep.SocketOptions().SetKeepAlive(true) // This function is called when we're ready to use the // underlying connection, and thus it's no longer in a // "in-flight" state; decrement our per-client limit right now, // and tell the defer in acceptTCP that it doesn't need to do // so upon return. ns.decrementInFlightTCPForward(tei, clientRemoteIP) inFlightCompleted = true // The ForwarderRequest.CreateEndpoint above asynchronously // starts the TCP handshake. Note that the gonet.TCPConn // methods c.RemoteAddr() and c.LocalAddr() will return nil // until the handshake actually completes. But we have the // remote address in reqDetails instead, so we don't use // gonet.TCPConn.RemoteAddr. The byte copies in both // directions to/from the gonet.TCPConn in forwardTCP will // block until the TCP handshake is complete. return gonet.NewTCPConn(&wq, ep) } // Local Services (DNS and WebDAV) hittingServiceIP := dialIP == serviceIP || dialIP == serviceIPv6 hittingDNS := hittingServiceIP && reqDetails.LocalPort == 53 if hittingDNS { c := getConnOrReset() if c == nil { return } addrPort := netip.AddrPortFrom(clientRemoteIP, reqDetails.RemotePort) go ns.dns.HandleTCPConn(c, addrPort) return } if ns.lb != nil { handler, opts := ns.lb.TCPHandlerForDst(clientRemoteAddrPort, dstAddrPort) if handler != nil { c := getConnOrReset(opts...) // will send a RST if it fails if c == nil { return } handler(c) return } } if ns.GetTCPHandlerForFlow != nil { handler, ok := ns.GetTCPHandlerForFlow(clientRemoteAddrPort, dstAddrPort) if ok { if handler == nil { r.Complete(true) return } c := getConnOrReset() // will send a RST if it fails if c == nil { return } handler(c) return } } if isTailscaleIP { dialIP = netaddr.IPv4(127, 0, 0, 1) } dialAddr := netip.AddrPortFrom(dialIP, uint16(reqDetails.LocalPort)) if !ns.forwardTCP(getConnOrReset, clientRemoteIP, &wq, dialAddr) { r.Complete(true) // sends a RST } } func (ns *Impl) forwardTCP(getClient func(...tcpip.SettableSocketOption) *gonet.TCPConn, clientRemoteIP netip.Addr, wq *waiter.Queue, dialAddr netip.AddrPort) (handled bool) { dialAddrStr := dialAddr.String() if debugNetstack() { ns.logf("[v2] netstack: forwarding incoming connection to %s", dialAddrStr) } ctx, cancel := context.WithCancel(context.Background()) defer cancel() waitEntry, notifyCh := waiter.NewChannelEntry(waiter.EventHUp) // TODO(bradfitz): right EventMask? wq.EventRegister(&waitEntry) defer wq.EventUnregister(&waitEntry) done := make(chan bool) // netstack doesn't close the notification channel automatically if there was no // hup signal, so we close done after we're done to not leak the goroutine below. defer close(done) go func() { select { case <-notifyCh: if debugNetstack() { ns.logf("[v2] netstack: forwardTCP notifyCh fired; canceling context for %s", dialAddrStr) } case <-done: } cancel() }() // Attempt to dial the outbound connection before we accept the inbound one. var dialFunc func(context.Context, string, string) (net.Conn, error) if ns.forwardDialFunc != nil { dialFunc = ns.forwardDialFunc } else { var stdDialer net.Dialer dialFunc = stdDialer.DialContext } server, err := dialFunc(ctx, "tcp", dialAddrStr) if err != nil { ns.logf("netstack: could not connect to local server at %s: %v", dialAddr.String(), err) return } defer server.Close() // If we get here, either the getClient call below will succeed and // return something we can Close, or it will fail and will properly // respond to the client with a RST. Either way, the caller no longer // needs to clean up the client connection. handled = true // We dialed the connection; we can complete the client's TCP handshake. client := getClient() if client == nil { return } defer client.Close() backendLocalAddr := server.LocalAddr().(*net.TCPAddr) backendLocalIPPort := netaddr.Unmap(backendLocalAddr.AddrPort()) ns.pm.RegisterIPPortIdentity("tcp", backendLocalIPPort, clientRemoteIP) defer ns.pm.UnregisterIPPortIdentity("tcp", backendLocalIPPort) connClosed := make(chan error, 2) go func() { _, err := io.Copy(server, client) connClosed <- err }() go func() { _, err := io.Copy(client, server) connClosed <- err }() err = <-connClosed if err != nil { ns.logf("proxy connection closed with error: %v", err) } ns.logf("[v2] netstack: forwarder connection to %s closed", dialAddrStr) return } // ListenPacket listens for incoming packets for the given network and address. // Address must be of the form "ip:port" or "[ip]:port". // // As of 2024-05-18, only udp4 and udp6 are supported. func (ns *Impl) ListenPacket(network, address string) (net.PacketConn, error) { ap, err := netip.ParseAddrPort(address) if err != nil { return nil, fmt.Errorf("netstack: ParseAddrPort(%q): %v", address, err) } var networkProto tcpip.NetworkProtocolNumber switch network { case "udp": return nil, fmt.Errorf("netstack: udp not supported; use udp4 or udp6") case "udp4": networkProto = ipv4.ProtocolNumber if !ap.Addr().Is4() { return nil, fmt.Errorf("netstack: udp4 requires an IPv4 address") } case "udp6": networkProto = ipv6.ProtocolNumber if !ap.Addr().Is6() { return nil, fmt.Errorf("netstack: udp6 requires an IPv6 address") } default: return nil, fmt.Errorf("netstack: unsupported network %q", network) } var wq waiter.Queue ep, nserr := ns.ipstack.NewEndpoint(udp.ProtocolNumber, networkProto, &wq) if nserr != nil { return nil, fmt.Errorf("netstack: NewEndpoint: %v", nserr) } localAddress := tcpip.FullAddress{ NIC: nicID, Addr: tcpip.AddrFromSlice(ap.Addr().AsSlice()), Port: ap.Port(), } if err := ep.Bind(localAddress); err != nil { ep.Close() return nil, fmt.Errorf("netstack: Bind(%v): %v", localAddress, err) } return gonet.NewUDPConn(&wq, ep), nil } func (ns *Impl) acceptUDP(r *udp.ForwarderRequest) { sess := r.ID() if debugNetstack() { ns.logf("[v2] UDP ForwarderRequest: %v", stringifyTEI(sess)) } var wq waiter.Queue ep, err := r.CreateEndpoint(&wq) if err != nil { ns.logf("acceptUDP: could not create endpoint: %v", err) return } dstAddr, ok := ipPortOfNetstackAddr(sess.LocalAddress, sess.LocalPort) if !ok { ep.Close() return } srcAddr, ok := ipPortOfNetstackAddr(sess.RemoteAddress, sess.RemotePort) if !ok { ep.Close() return } // Handle magicDNS traffic (via UDP) here. if dst := dstAddr.Addr(); dst == serviceIP || dst == serviceIPv6 { if dstAddr.Port() != 53 { ep.Close() return // Only MagicDNS traffic runs on the service IPs for now. } c := gonet.NewUDPConn(&wq, ep) go ns.handleMagicDNSUDP(srcAddr, c) return } if get := ns.GetUDPHandlerForFlow; get != nil { h, intercept := get(srcAddr, dstAddr) if intercept { if h == nil { ep.Close() return } go h(gonet.NewUDPConn(&wq, ep)) return } } c := gonet.NewUDPConn(&wq, ep) go ns.forwardUDP(c, srcAddr, dstAddr) } // Buffer pool for forwarding UDP packets. Implementations are advised not to // exceed 512 bytes per DNS request due to fragmenting but in reality can and do // send much larger packets, so use the maximum possible UDP packet size. var udpBufPool = &sync.Pool{ New: func() any { b := make([]byte, maxUDPPacketSize) return &b }, } func (ns *Impl) handleMagicDNSUDP(srcAddr netip.AddrPort, c *gonet.UDPConn) { // Packets are being generated by the local host, so there should be // very, very little latency. 150ms was chosen as something of an upper // bound on resource usage, while hopefully still being long enough for // a heavily loaded system. const readDeadline = 150 * time.Millisecond defer c.Close() bufp := udpBufPool.Get().(*[]byte) defer udpBufPool.Put(bufp) q := *bufp // libresolv from glibc is quite adamant that transmitting multiple DNS // requests down the same UDP socket is valid. To support this, we read // in a loop (with a tight deadline so we don't chew too many resources). // // See: https://github.com/bminor/glibc/blob/f7fbb99652eceb1b6b55e4be931649df5946497c/resolv/res_send.c#L995 for { c.SetReadDeadline(time.Now().Add(readDeadline)) n, _, err := c.ReadFrom(q) if err != nil { if oe, ok := err.(*net.OpError); !(ok && oe.Timeout()) { ns.logf("dns udp read: %v", err) // log non-timeout errors } return } resp, err := ns.dns.Query(context.Background(), q[:n], "udp", srcAddr) if err != nil { ns.logf("dns udp query: %v", err) return } c.Write(resp) } } // forwardUDP proxies between client (with addr clientAddr) and dstAddr. // // dstAddr may be either a local Tailscale IP, in which we case we proxy to // 127.0.0.1, or any other IP (from an advertised subnet), in which case we // proxy to it directly. func (ns *Impl) forwardUDP(client *gonet.UDPConn, clientAddr, dstAddr netip.AddrPort) { port, srcPort := dstAddr.Port(), clientAddr.Port() if debugNetstack() { ns.logf("[v2] netstack: forwarding incoming UDP connection on port %v", port) } var backendListenAddr *net.UDPAddr var backendRemoteAddr *net.UDPAddr isLocal := ns.isLocalIP(dstAddr.Addr()) if isLocal { backendRemoteAddr = &net.UDPAddr{IP: net.ParseIP("127.0.0.1"), Port: int(port)} backendListenAddr = &net.UDPAddr{IP: net.ParseIP("127.0.0.1"), Port: int(srcPort)} } else { if dstIP := dstAddr.Addr(); viaRange.Contains(dstIP) { dstAddr = netip.AddrPortFrom(tsaddr.UnmapVia(dstIP), dstAddr.Port()) } backendRemoteAddr = net.UDPAddrFromAddrPort(dstAddr) if dstAddr.Addr().Is4() { backendListenAddr = &net.UDPAddr{IP: net.ParseIP("0.0.0.0"), Port: int(srcPort)} } else { backendListenAddr = &net.UDPAddr{IP: net.ParseIP("::"), Port: int(srcPort)} } } backendConn, err := net.ListenUDP("udp", backendListenAddr) if err != nil { ns.logf("netstack: could not bind local port %v: %v, trying again with random port", backendListenAddr.Port, err) backendListenAddr.Port = 0 backendConn, err = net.ListenUDP("udp", backendListenAddr) if err != nil { ns.logf("netstack: could not create UDP socket, preventing forwarding to %v: %v", dstAddr, err) return } } backendLocalAddr := backendConn.LocalAddr().(*net.UDPAddr) backendLocalIPPort := netip.AddrPortFrom(backendListenAddr.AddrPort().Addr().Unmap().WithZone(backendLocalAddr.Zone), backendLocalAddr.AddrPort().Port()) if !backendLocalIPPort.IsValid() { ns.logf("could not get backend local IP:port from %v:%v", backendLocalAddr.IP, backendLocalAddr.Port) } if isLocal { ns.pm.RegisterIPPortIdentity("udp", backendLocalIPPort, clientAddr.Addr()) } ctx, cancel := context.WithCancel(context.Background()) idleTimeout := 2 * time.Minute if port == 53 { // Make DNS packet copies time out much sooner. // // TODO(bradfitz): make DNS queries over UDP forwarding even // cheaper by adding an additional idleTimeout post-DNS-reply. // For instance, after the DNS response goes back out, then only // wait a few seconds (or zero, really) idleTimeout = 30 * time.Second } timer := time.AfterFunc(idleTimeout, func() { if isLocal { ns.pm.UnregisterIPPortIdentity("udp", backendLocalIPPort) } ns.logf("netstack: UDP session between %s and %s timed out", backendListenAddr, backendRemoteAddr) cancel() client.Close() backendConn.Close() }) extend := func() { timer.Reset(idleTimeout) } startPacketCopy(ctx, cancel, client, net.UDPAddrFromAddrPort(clientAddr), backendConn, ns.logf, extend) startPacketCopy(ctx, cancel, backendConn, backendRemoteAddr, client, ns.logf, extend) if isLocal { // Wait for the copies to be done before decrementing the // subnet address count to potentially remove the route. <-ctx.Done() ns.removeSubnetAddress(dstAddr.Addr()) } } func startPacketCopy(ctx context.Context, cancel context.CancelFunc, dst net.PacketConn, dstAddr net.Addr, src net.PacketConn, logf logger.Logf, extend func()) { if debugNetstack() { logf("[v2] netstack: startPacketCopy to %v (%T) from %T", dstAddr, dst, src) } go func() { defer cancel() // tear down the other direction's copy bufp := udpBufPool.Get().(*[]byte) defer udpBufPool.Put(bufp) pkt := *bufp for { select { case <-ctx.Done(): return default: n, srcAddr, err := src.ReadFrom(pkt) if err != nil { if ctx.Err() == nil { logf("read packet from %s failed: %v", srcAddr, err) } return } _, err = dst.WriteTo(pkt[:n], dstAddr) if err != nil { if ctx.Err() == nil { logf("write packet to %s failed: %v", dstAddr, err) } return } if debugNetstack() { logf("[v2] wrote UDP packet %s -> %s", srcAddr, dstAddr) } extend() } } }() } func stringifyTEI(tei stack.TransportEndpointID) string { localHostPort := net.JoinHostPort(tei.LocalAddress.String(), strconv.Itoa(int(tei.LocalPort))) remoteHostPort := net.JoinHostPort(tei.RemoteAddress.String(), strconv.Itoa(int(tei.RemotePort))) return fmt.Sprintf("%s -> %s", remoteHostPort, localHostPort) } func ipPortOfNetstackAddr(a tcpip.Address, port uint16) (ipp netip.AddrPort, ok bool) { if addr, ok := netip.AddrFromSlice(a.AsSlice()); ok { return netip.AddrPortFrom(addr, port), true } return netip.AddrPort{}, false } func readStatCounter(sc *tcpip.StatCounter) int64 { vv := sc.Value() if vv > math.MaxInt64 { return int64(math.MaxInt64) } return int64(vv) } // ExpVar returns an expvar variable suitable for registering with expvar.Publish. func (ns *Impl) ExpVar() expvar.Var { m := new(metrics.Set) // Global metrics stats := ns.ipstack.Stats() m.Set("counter_dropped_packets", expvar.Func(func() any { return readStatCounter(stats.DroppedPackets) })) // IP statistics ipStats := ns.ipstack.Stats().IP ipMetrics := []struct { name string field *tcpip.StatCounter }{ {"packets_received", ipStats.PacketsReceived}, {"valid_packets_received", ipStats.ValidPacketsReceived}, {"disabled_packets_received", ipStats.DisabledPacketsReceived}, {"invalid_destination_addresses_received", ipStats.InvalidDestinationAddressesReceived}, {"invalid_source_addresses_received", ipStats.InvalidSourceAddressesReceived}, {"packets_delivered", ipStats.PacketsDelivered}, {"packets_sent", ipStats.PacketsSent}, {"outgoing_packet_errors", ipStats.OutgoingPacketErrors}, {"malformed_packets_received", ipStats.MalformedPacketsReceived}, {"malformed_fragments_received", ipStats.MalformedFragmentsReceived}, {"iptables_prerouting_dropped", ipStats.IPTablesPreroutingDropped}, {"iptables_input_dropped", ipStats.IPTablesInputDropped}, {"iptables_forward_dropped", ipStats.IPTablesForwardDropped}, {"iptables_output_dropped", ipStats.IPTablesOutputDropped}, {"iptables_postrouting_dropped", ipStats.IPTablesPostroutingDropped}, {"option_timestamp_received", ipStats.OptionTimestampReceived}, {"option_record_route_received", ipStats.OptionRecordRouteReceived}, {"option_router_alert_received", ipStats.OptionRouterAlertReceived}, {"option_unknown_received", ipStats.OptionUnknownReceived}, } for _, metric := range ipMetrics { metric := metric m.Set("counter_ip_"+metric.name, expvar.Func(func() any { return readStatCounter(metric.field) })) } // IP forwarding statistics fwdStats := ipStats.Forwarding fwdMetrics := []struct { name string field *tcpip.StatCounter }{ {"unrouteable", fwdStats.Unrouteable}, {"exhausted_ttl", fwdStats.ExhaustedTTL}, {"initializing_source", fwdStats.InitializingSource}, {"link_local_source", fwdStats.LinkLocalSource}, {"link_local_destination", fwdStats.LinkLocalDestination}, {"packet_too_big", fwdStats.PacketTooBig}, {"host_unreachable", fwdStats.HostUnreachable}, {"extension_header_problem", fwdStats.ExtensionHeaderProblem}, {"unexpected_multicast_input_interface", fwdStats.UnexpectedMulticastInputInterface}, {"unknown_output_endpoint", fwdStats.UnknownOutputEndpoint}, {"no_multicast_pending_queue_buffer_space", fwdStats.NoMulticastPendingQueueBufferSpace}, {"outgoing_device_no_buffer_space", fwdStats.OutgoingDeviceNoBufferSpace}, {"errors", fwdStats.Errors}, } for _, metric := range fwdMetrics { metric := metric m.Set("counter_ip_forward_"+metric.name, expvar.Func(func() any { return readStatCounter(metric.field) })) } // TCP metrics tcpStats := ns.ipstack.Stats().TCP tcpMetrics := []struct { name string field *tcpip.StatCounter }{ {"active_connection_openings", tcpStats.ActiveConnectionOpenings}, {"passive_connection_openings", tcpStats.PassiveConnectionOpenings}, {"established_resets", tcpStats.EstablishedResets}, {"established_closed", tcpStats.EstablishedClosed}, {"established_timeout", tcpStats.EstablishedTimedout}, {"listen_overflow_syn_drop", tcpStats.ListenOverflowSynDrop}, {"listen_overflow_ack_drop", tcpStats.ListenOverflowAckDrop}, {"listen_overflow_syn_cookie_sent", tcpStats.ListenOverflowSynCookieSent}, {"listen_overflow_syn_cookie_rcvd", tcpStats.ListenOverflowSynCookieRcvd}, {"listen_overflow_invalid_syn_cookie_rcvd", tcpStats.ListenOverflowInvalidSynCookieRcvd}, {"failed_connection_attempts", tcpStats.FailedConnectionAttempts}, {"valid_segments_received", tcpStats.ValidSegmentsReceived}, {"invalid_segments_received", tcpStats.InvalidSegmentsReceived}, {"segments_sent", tcpStats.SegmentsSent}, {"segment_send_errors", tcpStats.SegmentSendErrors}, {"resets_sent", tcpStats.ResetsSent}, {"resets_received", tcpStats.ResetsReceived}, {"retransmits", tcpStats.Retransmits}, {"fast_recovery", tcpStats.FastRecovery}, {"sack_recovery", tcpStats.SACKRecovery}, {"tlp_recovery", tcpStats.TLPRecovery}, {"slow_start_retransmits", tcpStats.SlowStartRetransmits}, {"fast_retransmit", tcpStats.FastRetransmit}, {"timeouts", tcpStats.Timeouts}, {"checksum_errors", tcpStats.ChecksumErrors}, {"failed_port_reservations", tcpStats.FailedPortReservations}, {"segments_acked_with_dsack", tcpStats.SegmentsAckedWithDSACK}, {"spurious_recovery", tcpStats.SpuriousRecovery}, {"spurious_rto_recovery", tcpStats.SpuriousRTORecovery}, {"forward_max_in_flight_drop", tcpStats.ForwardMaxInFlightDrop}, } for _, metric := range tcpMetrics { metric := metric m.Set("counter_tcp_"+metric.name, expvar.Func(func() any { return readStatCounter(metric.field) })) } m.Set("gauge_tcp_current_established", expvar.Func(func() any { return readStatCounter(tcpStats.CurrentEstablished) })) m.Set("gauge_tcp_current_connected", expvar.Func(func() any { return readStatCounter(tcpStats.CurrentConnected) })) // UDP metrics udpStats := ns.ipstack.Stats().UDP udpMetrics := []struct { name string field *tcpip.StatCounter }{ {"packets_received", udpStats.PacketsReceived}, {"unknown_port_errors", udpStats.UnknownPortErrors}, {"receive_buffer_errors", udpStats.ReceiveBufferErrors}, {"malformed_packets_received", udpStats.MalformedPacketsReceived}, {"packets_sent", udpStats.PacketsSent}, {"packet_send_errors", udpStats.PacketSendErrors}, {"checksum_errors", udpStats.ChecksumErrors}, } for _, metric := range udpMetrics { metric := metric m.Set("counter_udp_"+metric.name, expvar.Func(func() any { return readStatCounter(metric.field) })) } // Export gauges that show the current TCP forwarding limits. m.Set("gauge_tcp_forward_in_flight_limit", expvar.Func(func() any { return maxInFlightConnectionAttempts() })) m.Set("gauge_tcp_forward_in_flight_per_client_limit", expvar.Func(func() any { return maxInFlightConnectionAttemptsPerClient() })) // This metric tracks the number of in-flight TCP forwarding // connections that are "in-flight"–i.e. waiting to complete. m.Set("gauge_tcp_forward_in_flight", expvar.Func(func() any { ns.mu.Lock() defer ns.mu.Unlock() var sum int64 for _, n := range ns.connsInFlightByClient { sum += int64(n) } return sum })) m.Set("counter_tcp_forward_max_in_flight_per_client_drop", &ns.forwardInFlightPerClientDropped) // This metric tracks how many (if any) of the per-client limit on // in-flight TCP forwarding requests have been reached. m.Set("gauge_tcp_forward_in_flight_per_client_limit_reached", expvar.Func(func() any { ns.mu.Lock() defer ns.mu.Unlock() limit := maxInFlightConnectionAttemptsPerClient() var count int64 for _, n := range ns.connsInFlightByClient { if n == limit { count++ } } return count })) return m }