// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This is a copy of Go's src/internal/fmtsort/sort.go package deepprint import ( "reflect" "sort" ) // Note: Throughout this package we avoid calling reflect.Value.Interface as // it is not always legal to do so and it's easier to avoid the issue than to face it. // sortedMap represents a map's keys and values. The keys and values are // aligned in index order: Value[i] is the value in the map corresponding to Key[i]. type sortedMap struct { Key []reflect.Value Value []reflect.Value } func (o *sortedMap) Len() int { return len(o.Key) } func (o *sortedMap) Less(i, j int) bool { return compare(o.Key[i], o.Key[j]) < 0 } func (o *sortedMap) Swap(i, j int) { o.Key[i], o.Key[j] = o.Key[j], o.Key[i] o.Value[i], o.Value[j] = o.Value[j], o.Value[i] } // Sort accepts a map and returns a sortedMap that has the same keys and // values but in a stable sorted order according to the keys, modulo issues // raised by unorderable key values such as NaNs. // // The ordering rules are more general than with Go's < operator: // // - when applicable, nil compares low // - ints, floats, and strings order by < // - NaN compares less than non-NaN floats // - bool compares false before true // - complex compares real, then imag // - pointers compare by machine address // - channel values compare by machine address // - structs compare each field in turn // - arrays compare each element in turn. // Otherwise identical arrays compare by length. // - interface values compare first by reflect.Type describing the concrete type // and then by concrete value as described in the previous rules. // func newSortedMap(mapValue reflect.Value) *sortedMap { if mapValue.Type().Kind() != reflect.Map { return nil } // Note: this code is arranged to not panic even in the presence // of a concurrent map update. The runtime is responsible for // yelling loudly if that happens. See issue 33275. n := mapValue.Len() key := make([]reflect.Value, 0, n) value := make([]reflect.Value, 0, n) iter := mapValue.MapRange() for iter.Next() { key = append(key, iter.Key()) value = append(value, iter.Value()) } sorted := &sortedMap{ Key: key, Value: value, } sort.Stable(sorted) return sorted } // compare compares two values of the same type. It returns -1, 0, 1 // according to whether a > b (1), a == b (0), or a < b (-1). // If the types differ, it returns -1. // See the comment on Sort for the comparison rules. func compare(aVal, bVal reflect.Value) int { aType, bType := aVal.Type(), bVal.Type() if aType != bType { return -1 // No good answer possible, but don't return 0: they're not equal. } switch aVal.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: a, b := aVal.Int(), bVal.Int() switch { case a < b: return -1 case a > b: return 1 default: return 0 } case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: a, b := aVal.Uint(), bVal.Uint() switch { case a < b: return -1 case a > b: return 1 default: return 0 } case reflect.String: a, b := aVal.String(), bVal.String() switch { case a < b: return -1 case a > b: return 1 default: return 0 } case reflect.Float32, reflect.Float64: return floatCompare(aVal.Float(), bVal.Float()) case reflect.Complex64, reflect.Complex128: a, b := aVal.Complex(), bVal.Complex() if c := floatCompare(real(a), real(b)); c != 0 { return c } return floatCompare(imag(a), imag(b)) case reflect.Bool: a, b := aVal.Bool(), bVal.Bool() switch { case a == b: return 0 case a: return 1 default: return -1 } case reflect.Ptr: a, b := aVal.Pointer(), bVal.Pointer() switch { case a < b: return -1 case a > b: return 1 default: return 0 } case reflect.Chan: if c, ok := nilCompare(aVal, bVal); ok { return c } ap, bp := aVal.Pointer(), bVal.Pointer() switch { case ap < bp: return -1 case ap > bp: return 1 default: return 0 } case reflect.Struct: for i := 0; i < aVal.NumField(); i++ { if c := compare(aVal.Field(i), bVal.Field(i)); c != 0 { return c } } return 0 case reflect.Array: for i := 0; i < aVal.Len(); i++ { if c := compare(aVal.Index(i), bVal.Index(i)); c != 0 { return c } } return 0 case reflect.Interface: if c, ok := nilCompare(aVal, bVal); ok { return c } c := compare(reflect.ValueOf(aVal.Elem().Type()), reflect.ValueOf(bVal.Elem().Type())) if c != 0 { return c } return compare(aVal.Elem(), bVal.Elem()) default: // Certain types cannot appear as keys (maps, funcs, slices), but be explicit. panic("bad type in compare: " + aType.String()) } } // nilCompare checks whether either value is nil. If not, the boolean is false. // If either value is nil, the boolean is true and the integer is the comparison // value. The comparison is defined to be 0 if both are nil, otherwise the one // nil value compares low. Both arguments must represent a chan, func, // interface, map, pointer, or slice. func nilCompare(aVal, bVal reflect.Value) (int, bool) { if aVal.IsNil() { if bVal.IsNil() { return 0, true } return -1, true } if bVal.IsNil() { return 1, true } return 0, false } // floatCompare compares two floating-point values. NaNs compare low. func floatCompare(a, b float64) int { switch { case isNaN(a): return -1 // No good answer if b is a NaN so don't bother checking. case isNaN(b): return 1 case a < b: return -1 case a > b: return 1 } return 0 } func isNaN(a float64) bool { return a != a }