tailscale/types/geo/point.go
Simon Law 93511be044
types/geo: add geo.Point and its associated units (#16583)
Package geo provides functionality to represent and process
geographical locations on a sphere. The main type, geo.Point,
represents a pair of latitude and longitude coordinates.

Updates tailscale/corp#29968

Signed-off-by: Simon Law <sfllaw@tailscale.com>
2025-07-17 01:30:08 -07:00

280 lines
8.1 KiB
Go
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package geo
import (
"encoding/binary"
"errors"
"fmt"
"math"
"strconv"
)
// ErrBadPoint indicates that the point is malformed.
var ErrBadPoint = errors.New("not a valid point")
// Point represents a pair of latitude and longitude coordinates.
type Point struct {
lat Degrees
// lng180 is the longitude offset by +180° so the zero value is invalid
// and +0+0/ is Point{lat: +0.0, lng180: +180.0}.
lng180 Degrees
}
// MakePoint returns a Point representing a given latitude and longitude on
// a WGS 84 ellipsoid. The Coordinate Reference System is EPSG:4326.
// Latitude is wrapped to [-90°, +90°] and longitude to (-180°, +180°].
func MakePoint(latitude, longitude Degrees) Point {
lat, lng := float64(latitude), float64(longitude)
switch {
case math.IsNaN(lat) || math.IsInf(lat, 0):
// dont wrap
case lat < -90 || lat > 90:
// Latitude wraps by flipping the longitude
lat = math.Mod(lat, 360.0)
switch {
case lat == 0.0:
lat = 0.0 // -0.0 == 0.0, but -0° is not valid
case lat < -270.0:
lat = +360.0 + lat
case lat < -90.0:
lat = -180.0 - lat
lng += 180.0
case lat > +270.0:
lat = -360.0 + lat
case lat > +90.0:
lat = +180.0 - lat
lng += 180.0
}
}
switch {
case lat == -90.0 || lat == +90.0:
// By convention, the north and south poles have longitude 0°.
lng = 0
case math.IsNaN(lng) || math.IsInf(lng, 0):
// dont wrap
case lng <= -180.0 || lng > 180.0:
// Longitude wraps around normally
lng = math.Mod(lng, 360.0)
switch {
case lng == 0.0:
lng = 0.0 // -0.0 == 0.0, but -0° is not valid
case lng <= -180.0:
lng = +360.0 + lng
case lng > +180.0:
lng = -360.0 + lng
}
}
return Point{
lat: Degrees(lat),
lng180: Degrees(lng + 180.0),
}
}
// Valid reports if p is a valid point.
func (p Point) Valid() bool {
return !p.IsZero()
}
// LatLng reports the latitude and longitude.
func (p Point) LatLng() (lat, lng Degrees, err error) {
if p.IsZero() {
return 0 * Degree, 0 * Degree, ErrBadPoint
}
return p.lat, p.lng180 - 180.0*Degree, nil
}
// LatLng reports the latitude and longitude in float64. If err is nil, then lat
// and lng will never both be 0.0 to disambiguate between an empty struct and
// Null Island (0° 0°).
func (p Point) LatLngFloat64() (lat, lng float64, err error) {
dlat, dlng, err := p.LatLng()
if err != nil {
return 0.0, 0.0, err
}
if dlat == 0.0 && dlng == 0.0 {
// dlng must survive conversion to float32.
dlng = math.SmallestNonzeroFloat32
}
return float64(dlat), float64(dlng), err
}
// SphericalAngleTo returns the angular distance from p to q, calculated on a
// spherical Earth.
func (p Point) SphericalAngleTo(q Point) (Radians, error) {
pLat, pLng, pErr := p.LatLng()
qLat, qLng, qErr := q.LatLng()
switch {
case pErr != nil && qErr != nil:
return 0.0, fmt.Errorf("spherical distance from %v to %v: %w", p, q, errors.Join(pErr, qErr))
case pErr != nil:
return 0.0, fmt.Errorf("spherical distance from %v: %w", p, pErr)
case qErr != nil:
return 0.0, fmt.Errorf("spherical distance to %v: %w", q, qErr)
}
// The spherical law of cosines is accurate enough for close points when
// using float64.
//
// The haversine formula is an alternative, but it is poorly behaved
// when points are on opposite sides of the sphere.
rLat, rLng := float64(pLat.Radians()), float64(pLng.Radians())
sLat, sLng := float64(qLat.Radians()), float64(qLng.Radians())
cosA := math.Sin(rLat)*math.Sin(sLat) +
math.Cos(rLat)*math.Cos(sLat)*math.Cos(rLng-sLng)
return Radians(math.Acos(cosA)), nil
}
// DistanceTo reports the great-circle distance between p and q, in meters.
func (p Point) DistanceTo(q Point) (Distance, error) {
r, err := p.SphericalAngleTo(q)
if err != nil {
return 0, err
}
return DistanceOnEarth(r.Turns()), nil
}
// String returns a space-separated pair of latitude and longitude, in decimal
// degrees. Positive latitudes are in the northern hemisphere, and positive
// longitudes are east of the prime meridian. If p was not initialized, this
// will return "nowhere".
func (p Point) String() string {
lat, lng, err := p.LatLng()
if err != nil {
if err == ErrBadPoint {
return "nowhere"
}
panic(err)
}
return lat.String() + " " + lng.String()
}
// AppendBinary implements [encoding.BinaryAppender]. The output consists of two
// float32s in big-endian byte order: latitude and longitude offset by 180°.
// If p is not a valid, the output will be an 8-byte zero value.
func (p Point) AppendBinary(b []byte) ([]byte, error) {
end := binary.BigEndian
b = end.AppendUint32(b, math.Float32bits(float32(p.lat)))
b = end.AppendUint32(b, math.Float32bits(float32(p.lng180)))
return b, nil
}
// MarshalBinary implements [encoding.BinaryMarshaller]. The output matches that
// of calling [Point.AppendBinary].
func (p Point) MarshalBinary() ([]byte, error) {
var b [8]byte
return p.AppendBinary(b[:0])
}
// UnmarshalBinary implements [encoding.BinaryUnmarshaler]. It expects input
// that was formatted by [Point.AppendBinary]: in big-endian byte order, a
// float32 representing latitude followed by a float32 representing longitude
// offset by 180°. If latitude and longitude fall outside valid ranges, then
// an error is returned.
func (p *Point) UnmarshalBinary(data []byte) error {
if len(data) < 8 { // Two uint32s are 8 bytes long
return fmt.Errorf("%w: not enough data: %q", ErrBadPoint, data)
}
end := binary.BigEndian
lat := Degrees(math.Float32frombits(end.Uint32(data[0:])))
if lat < -90*Degree || lat > 90*Degree {
return fmt.Errorf("%w: latitude outside [-90°, +90°]: %s", ErrBadPoint, lat)
}
lng180 := Degrees(math.Float32frombits(end.Uint32(data[4:])))
if lng180 != 0 && (lng180 < 0*Degree || lng180 > 360*Degree) {
// lng180 == 0 is OK: the zero value represents invalid points.
lng := lng180 - 180*Degree
return fmt.Errorf("%w: longitude outside (-180°, +180°]: %s", ErrBadPoint, lng)
}
p.lat = lat
p.lng180 = lng180
return nil
}
// AppendText implements [encoding.TextAppender]. The output is a point
// formatted as OGC Well-Known Text, as "POINT (longitude latitude)" where
// longitude and latitude are in decimal degrees. If p is not valid, the output
// will be "POINT EMPTY".
func (p Point) AppendText(b []byte) ([]byte, error) {
if p.IsZero() {
b = append(b, []byte("POINT EMPTY")...)
return b, nil
}
lat, lng, err := p.LatLng()
if err != nil {
return b, err
}
b = append(b, []byte("POINT (")...)
b = strconv.AppendFloat(b, float64(lng), 'f', -1, 64)
b = append(b, ' ')
b = strconv.AppendFloat(b, float64(lat), 'f', -1, 64)
b = append(b, ')')
return b, nil
}
// MarshalText implements [encoding.TextMarshaller]. The output matches that
// of calling [Point.AppendText].
func (p Point) MarshalText() ([]byte, error) {
var b [8]byte
return p.AppendText(b[:0])
}
// MarshalUint64 produces the same output as MashalBinary, encoded in a uint64.
func (p Point) MarshalUint64() (uint64, error) {
b, err := p.MarshalBinary()
return binary.NativeEndian.Uint64(b), err
}
// UnmarshalUint64 expects input formatted by MarshalUint64.
func (p *Point) UnmarshalUint64(v uint64) error {
b := binary.NativeEndian.AppendUint64(nil, v)
return p.UnmarshalBinary(b)
}
// IsZero reports if p is the zero value.
func (p Point) IsZero() bool {
return p == Point{}
}
// EqualApprox reports if p and q are approximately equal: that is the absolute
// difference of both latitude and longitude are less than tol. If tol is
// negative, then tol defaults to a reasonably small number (10⁻⁵). If tol is
// zero, then p and q must be exactly equal.
func (p Point) EqualApprox(q Point, tol float64) bool {
if tol == 0 {
return p == q
}
if p.IsZero() && q.IsZero() {
return true
} else if p.IsZero() || q.IsZero() {
return false
}
plat, plng, err := p.LatLng()
if err != nil {
panic(err)
}
qlat, qlng, err := q.LatLng()
if err != nil {
panic(err)
}
if tol < 0 {
tol = 1e-5
}
dlat := float64(plat) - float64(qlat)
dlng := float64(plng) - float64(qlng)
return ((dlat < 0 && -dlat < tol) || (dlat >= 0 && dlat < tol)) &&
((dlng < 0 && -dlng < tol) || (dlng >= 0 && dlng < tol))
}