mirror of
https://github.com/tailscale/tailscale.git
synced 2025-04-05 15:55:49 +00:00

This fork golang.org/x/crypto/ssh (at upstream x/crypto git rev e47973b1c1) into tailscale.com/tempfork/sshtest/ssh so we can hack up the client in weird ways to simulate other SSH clients seen in the wild. Two changes were made to the files when they were copied from x/crypto: * internal/poly1305 imports were replaced by the non-internal version; no code changes otherwise. It didn't need the internal one. * all decode-with-passphrase funcs were deleted, to avoid using the internal package x/crypto/ssh/internal/bcrypt_pbkdf Then the tests passed. Updates #14969 Change-Id: Ibf1abebfe608c75fef4da0255314f65e54ce5077 Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
612 lines
18 KiB
Go
612 lines
18 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ssh
|
|
|
|
import (
|
|
"bytes"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"net"
|
|
"sort"
|
|
"time"
|
|
)
|
|
|
|
// Certificate algorithm names from [PROTOCOL.certkeys]. These values can appear
|
|
// in Certificate.Type, PublicKey.Type, and ClientConfig.HostKeyAlgorithms.
|
|
// Unlike key algorithm names, these are not passed to AlgorithmSigner nor
|
|
// returned by MultiAlgorithmSigner and don't appear in the Signature.Format
|
|
// field.
|
|
const (
|
|
CertAlgoRSAv01 = "ssh-rsa-cert-v01@openssh.com"
|
|
CertAlgoDSAv01 = "ssh-dss-cert-v01@openssh.com"
|
|
CertAlgoECDSA256v01 = "ecdsa-sha2-nistp256-cert-v01@openssh.com"
|
|
CertAlgoECDSA384v01 = "ecdsa-sha2-nistp384-cert-v01@openssh.com"
|
|
CertAlgoECDSA521v01 = "ecdsa-sha2-nistp521-cert-v01@openssh.com"
|
|
CertAlgoSKECDSA256v01 = "sk-ecdsa-sha2-nistp256-cert-v01@openssh.com"
|
|
CertAlgoED25519v01 = "ssh-ed25519-cert-v01@openssh.com"
|
|
CertAlgoSKED25519v01 = "sk-ssh-ed25519-cert-v01@openssh.com"
|
|
|
|
// CertAlgoRSASHA256v01 and CertAlgoRSASHA512v01 can't appear as a
|
|
// Certificate.Type (or PublicKey.Type), but only in
|
|
// ClientConfig.HostKeyAlgorithms.
|
|
CertAlgoRSASHA256v01 = "rsa-sha2-256-cert-v01@openssh.com"
|
|
CertAlgoRSASHA512v01 = "rsa-sha2-512-cert-v01@openssh.com"
|
|
)
|
|
|
|
const (
|
|
// Deprecated: use CertAlgoRSAv01.
|
|
CertSigAlgoRSAv01 = CertAlgoRSAv01
|
|
// Deprecated: use CertAlgoRSASHA256v01.
|
|
CertSigAlgoRSASHA2256v01 = CertAlgoRSASHA256v01
|
|
// Deprecated: use CertAlgoRSASHA512v01.
|
|
CertSigAlgoRSASHA2512v01 = CertAlgoRSASHA512v01
|
|
)
|
|
|
|
// Certificate types distinguish between host and user
|
|
// certificates. The values can be set in the CertType field of
|
|
// Certificate.
|
|
const (
|
|
UserCert = 1
|
|
HostCert = 2
|
|
)
|
|
|
|
// Signature represents a cryptographic signature.
|
|
type Signature struct {
|
|
Format string
|
|
Blob []byte
|
|
Rest []byte `ssh:"rest"`
|
|
}
|
|
|
|
// CertTimeInfinity can be used for OpenSSHCertV01.ValidBefore to indicate that
|
|
// a certificate does not expire.
|
|
const CertTimeInfinity = 1<<64 - 1
|
|
|
|
// An Certificate represents an OpenSSH certificate as defined in
|
|
// [PROTOCOL.certkeys]?rev=1.8. The Certificate type implements the
|
|
// PublicKey interface, so it can be unmarshaled using
|
|
// ParsePublicKey.
|
|
type Certificate struct {
|
|
Nonce []byte
|
|
Key PublicKey
|
|
Serial uint64
|
|
CertType uint32
|
|
KeyId string
|
|
ValidPrincipals []string
|
|
ValidAfter uint64
|
|
ValidBefore uint64
|
|
Permissions
|
|
Reserved []byte
|
|
SignatureKey PublicKey
|
|
Signature *Signature
|
|
}
|
|
|
|
// genericCertData holds the key-independent part of the certificate data.
|
|
// Overall, certificates contain an nonce, public key fields and
|
|
// key-independent fields.
|
|
type genericCertData struct {
|
|
Serial uint64
|
|
CertType uint32
|
|
KeyId string
|
|
ValidPrincipals []byte
|
|
ValidAfter uint64
|
|
ValidBefore uint64
|
|
CriticalOptions []byte
|
|
Extensions []byte
|
|
Reserved []byte
|
|
SignatureKey []byte
|
|
Signature []byte
|
|
}
|
|
|
|
func marshalStringList(namelist []string) []byte {
|
|
var to []byte
|
|
for _, name := range namelist {
|
|
s := struct{ N string }{name}
|
|
to = append(to, Marshal(&s)...)
|
|
}
|
|
return to
|
|
}
|
|
|
|
type optionsTuple struct {
|
|
Key string
|
|
Value []byte
|
|
}
|
|
|
|
type optionsTupleValue struct {
|
|
Value string
|
|
}
|
|
|
|
// serialize a map of critical options or extensions
|
|
// issue #10569 - per [PROTOCOL.certkeys] and SSH implementation,
|
|
// we need two length prefixes for a non-empty string value
|
|
func marshalTuples(tups map[string]string) []byte {
|
|
keys := make([]string, 0, len(tups))
|
|
for key := range tups {
|
|
keys = append(keys, key)
|
|
}
|
|
sort.Strings(keys)
|
|
|
|
var ret []byte
|
|
for _, key := range keys {
|
|
s := optionsTuple{Key: key}
|
|
if value := tups[key]; len(value) > 0 {
|
|
s.Value = Marshal(&optionsTupleValue{value})
|
|
}
|
|
ret = append(ret, Marshal(&s)...)
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// issue #10569 - per [PROTOCOL.certkeys] and SSH implementation,
|
|
// we need two length prefixes for a non-empty option value
|
|
func parseTuples(in []byte) (map[string]string, error) {
|
|
tups := map[string]string{}
|
|
var lastKey string
|
|
var haveLastKey bool
|
|
|
|
for len(in) > 0 {
|
|
var key, val, extra []byte
|
|
var ok bool
|
|
|
|
if key, in, ok = parseString(in); !ok {
|
|
return nil, errShortRead
|
|
}
|
|
keyStr := string(key)
|
|
// according to [PROTOCOL.certkeys], the names must be in
|
|
// lexical order.
|
|
if haveLastKey && keyStr <= lastKey {
|
|
return nil, fmt.Errorf("ssh: certificate options are not in lexical order")
|
|
}
|
|
lastKey, haveLastKey = keyStr, true
|
|
// the next field is a data field, which if non-empty has a string embedded
|
|
if val, in, ok = parseString(in); !ok {
|
|
return nil, errShortRead
|
|
}
|
|
if len(val) > 0 {
|
|
val, extra, ok = parseString(val)
|
|
if !ok {
|
|
return nil, errShortRead
|
|
}
|
|
if len(extra) > 0 {
|
|
return nil, fmt.Errorf("ssh: unexpected trailing data after certificate option value")
|
|
}
|
|
tups[keyStr] = string(val)
|
|
} else {
|
|
tups[keyStr] = ""
|
|
}
|
|
}
|
|
return tups, nil
|
|
}
|
|
|
|
func parseCert(in []byte, privAlgo string) (*Certificate, error) {
|
|
nonce, rest, ok := parseString(in)
|
|
if !ok {
|
|
return nil, errShortRead
|
|
}
|
|
|
|
key, rest, err := parsePubKey(rest, privAlgo)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var g genericCertData
|
|
if err := Unmarshal(rest, &g); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
c := &Certificate{
|
|
Nonce: nonce,
|
|
Key: key,
|
|
Serial: g.Serial,
|
|
CertType: g.CertType,
|
|
KeyId: g.KeyId,
|
|
ValidAfter: g.ValidAfter,
|
|
ValidBefore: g.ValidBefore,
|
|
}
|
|
|
|
for principals := g.ValidPrincipals; len(principals) > 0; {
|
|
principal, rest, ok := parseString(principals)
|
|
if !ok {
|
|
return nil, errShortRead
|
|
}
|
|
c.ValidPrincipals = append(c.ValidPrincipals, string(principal))
|
|
principals = rest
|
|
}
|
|
|
|
c.CriticalOptions, err = parseTuples(g.CriticalOptions)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
c.Extensions, err = parseTuples(g.Extensions)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
c.Reserved = g.Reserved
|
|
k, err := ParsePublicKey(g.SignatureKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
c.SignatureKey = k
|
|
c.Signature, rest, ok = parseSignatureBody(g.Signature)
|
|
if !ok || len(rest) > 0 {
|
|
return nil, errors.New("ssh: signature parse error")
|
|
}
|
|
|
|
return c, nil
|
|
}
|
|
|
|
type openSSHCertSigner struct {
|
|
pub *Certificate
|
|
signer Signer
|
|
}
|
|
|
|
type algorithmOpenSSHCertSigner struct {
|
|
*openSSHCertSigner
|
|
algorithmSigner AlgorithmSigner
|
|
}
|
|
|
|
// NewCertSigner returns a Signer that signs with the given Certificate, whose
|
|
// private key is held by signer. It returns an error if the public key in cert
|
|
// doesn't match the key used by signer.
|
|
func NewCertSigner(cert *Certificate, signer Signer) (Signer, error) {
|
|
if !bytes.Equal(cert.Key.Marshal(), signer.PublicKey().Marshal()) {
|
|
return nil, errors.New("ssh: signer and cert have different public key")
|
|
}
|
|
|
|
switch s := signer.(type) {
|
|
case MultiAlgorithmSigner:
|
|
return &multiAlgorithmSigner{
|
|
AlgorithmSigner: &algorithmOpenSSHCertSigner{
|
|
&openSSHCertSigner{cert, signer}, s},
|
|
supportedAlgorithms: s.Algorithms(),
|
|
}, nil
|
|
case AlgorithmSigner:
|
|
return &algorithmOpenSSHCertSigner{
|
|
&openSSHCertSigner{cert, signer}, s}, nil
|
|
default:
|
|
return &openSSHCertSigner{cert, signer}, nil
|
|
}
|
|
}
|
|
|
|
func (s *openSSHCertSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
|
|
return s.signer.Sign(rand, data)
|
|
}
|
|
|
|
func (s *openSSHCertSigner) PublicKey() PublicKey {
|
|
return s.pub
|
|
}
|
|
|
|
func (s *algorithmOpenSSHCertSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
|
|
return s.algorithmSigner.SignWithAlgorithm(rand, data, algorithm)
|
|
}
|
|
|
|
const sourceAddressCriticalOption = "source-address"
|
|
|
|
// CertChecker does the work of verifying a certificate. Its methods
|
|
// can be plugged into ClientConfig.HostKeyCallback and
|
|
// ServerConfig.PublicKeyCallback. For the CertChecker to work,
|
|
// minimally, the IsAuthority callback should be set.
|
|
type CertChecker struct {
|
|
// SupportedCriticalOptions lists the CriticalOptions that the
|
|
// server application layer understands. These are only used
|
|
// for user certificates.
|
|
SupportedCriticalOptions []string
|
|
|
|
// IsUserAuthority should return true if the key is recognized as an
|
|
// authority for the given user certificate. This allows for
|
|
// certificates to be signed by other certificates. This must be set
|
|
// if this CertChecker will be checking user certificates.
|
|
IsUserAuthority func(auth PublicKey) bool
|
|
|
|
// IsHostAuthority should report whether the key is recognized as
|
|
// an authority for this host. This allows for certificates to be
|
|
// signed by other keys, and for those other keys to only be valid
|
|
// signers for particular hostnames. This must be set if this
|
|
// CertChecker will be checking host certificates.
|
|
IsHostAuthority func(auth PublicKey, address string) bool
|
|
|
|
// Clock is used for verifying time stamps. If nil, time.Now
|
|
// is used.
|
|
Clock func() time.Time
|
|
|
|
// UserKeyFallback is called when CertChecker.Authenticate encounters a
|
|
// public key that is not a certificate. It must implement validation
|
|
// of user keys or else, if nil, all such keys are rejected.
|
|
UserKeyFallback func(conn ConnMetadata, key PublicKey) (*Permissions, error)
|
|
|
|
// HostKeyFallback is called when CertChecker.CheckHostKey encounters a
|
|
// public key that is not a certificate. It must implement host key
|
|
// validation or else, if nil, all such keys are rejected.
|
|
HostKeyFallback HostKeyCallback
|
|
|
|
// IsRevoked is called for each certificate so that revocation checking
|
|
// can be implemented. It should return true if the given certificate
|
|
// is revoked and false otherwise. If nil, no certificates are
|
|
// considered to have been revoked.
|
|
IsRevoked func(cert *Certificate) bool
|
|
}
|
|
|
|
// CheckHostKey checks a host key certificate. This method can be
|
|
// plugged into ClientConfig.HostKeyCallback.
|
|
func (c *CertChecker) CheckHostKey(addr string, remote net.Addr, key PublicKey) error {
|
|
cert, ok := key.(*Certificate)
|
|
if !ok {
|
|
if c.HostKeyFallback != nil {
|
|
return c.HostKeyFallback(addr, remote, key)
|
|
}
|
|
return errors.New("ssh: non-certificate host key")
|
|
}
|
|
if cert.CertType != HostCert {
|
|
return fmt.Errorf("ssh: certificate presented as a host key has type %d", cert.CertType)
|
|
}
|
|
if !c.IsHostAuthority(cert.SignatureKey, addr) {
|
|
return fmt.Errorf("ssh: no authorities for hostname: %v", addr)
|
|
}
|
|
|
|
hostname, _, err := net.SplitHostPort(addr)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Pass hostname only as principal for host certificates (consistent with OpenSSH)
|
|
return c.CheckCert(hostname, cert)
|
|
}
|
|
|
|
// Authenticate checks a user certificate. Authenticate can be used as
|
|
// a value for ServerConfig.PublicKeyCallback.
|
|
func (c *CertChecker) Authenticate(conn ConnMetadata, pubKey PublicKey) (*Permissions, error) {
|
|
cert, ok := pubKey.(*Certificate)
|
|
if !ok {
|
|
if c.UserKeyFallback != nil {
|
|
return c.UserKeyFallback(conn, pubKey)
|
|
}
|
|
return nil, errors.New("ssh: normal key pairs not accepted")
|
|
}
|
|
|
|
if cert.CertType != UserCert {
|
|
return nil, fmt.Errorf("ssh: cert has type %d", cert.CertType)
|
|
}
|
|
if !c.IsUserAuthority(cert.SignatureKey) {
|
|
return nil, fmt.Errorf("ssh: certificate signed by unrecognized authority")
|
|
}
|
|
|
|
if err := c.CheckCert(conn.User(), cert); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &cert.Permissions, nil
|
|
}
|
|
|
|
// CheckCert checks CriticalOptions, ValidPrincipals, revocation, timestamp and
|
|
// the signature of the certificate.
|
|
func (c *CertChecker) CheckCert(principal string, cert *Certificate) error {
|
|
if c.IsRevoked != nil && c.IsRevoked(cert) {
|
|
return fmt.Errorf("ssh: certificate serial %d revoked", cert.Serial)
|
|
}
|
|
|
|
for opt := range cert.CriticalOptions {
|
|
// sourceAddressCriticalOption will be enforced by
|
|
// serverAuthenticate
|
|
if opt == sourceAddressCriticalOption {
|
|
continue
|
|
}
|
|
|
|
found := false
|
|
for _, supp := range c.SupportedCriticalOptions {
|
|
if supp == opt {
|
|
found = true
|
|
break
|
|
}
|
|
}
|
|
if !found {
|
|
return fmt.Errorf("ssh: unsupported critical option %q in certificate", opt)
|
|
}
|
|
}
|
|
|
|
if len(cert.ValidPrincipals) > 0 {
|
|
// By default, certs are valid for all users/hosts.
|
|
found := false
|
|
for _, p := range cert.ValidPrincipals {
|
|
if p == principal {
|
|
found = true
|
|
break
|
|
}
|
|
}
|
|
if !found {
|
|
return fmt.Errorf("ssh: principal %q not in the set of valid principals for given certificate: %q", principal, cert.ValidPrincipals)
|
|
}
|
|
}
|
|
|
|
clock := c.Clock
|
|
if clock == nil {
|
|
clock = time.Now
|
|
}
|
|
|
|
unixNow := clock().Unix()
|
|
if after := int64(cert.ValidAfter); after < 0 || unixNow < int64(cert.ValidAfter) {
|
|
return fmt.Errorf("ssh: cert is not yet valid")
|
|
}
|
|
if before := int64(cert.ValidBefore); cert.ValidBefore != uint64(CertTimeInfinity) && (unixNow >= before || before < 0) {
|
|
return fmt.Errorf("ssh: cert has expired")
|
|
}
|
|
if err := cert.SignatureKey.Verify(cert.bytesForSigning(), cert.Signature); err != nil {
|
|
return fmt.Errorf("ssh: certificate signature does not verify")
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// SignCert signs the certificate with an authority, setting the Nonce,
|
|
// SignatureKey, and Signature fields. If the authority implements the
|
|
// MultiAlgorithmSigner interface the first algorithm in the list is used. This
|
|
// is useful if you want to sign with a specific algorithm.
|
|
func (c *Certificate) SignCert(rand io.Reader, authority Signer) error {
|
|
c.Nonce = make([]byte, 32)
|
|
if _, err := io.ReadFull(rand, c.Nonce); err != nil {
|
|
return err
|
|
}
|
|
c.SignatureKey = authority.PublicKey()
|
|
|
|
if v, ok := authority.(MultiAlgorithmSigner); ok {
|
|
if len(v.Algorithms()) == 0 {
|
|
return errors.New("the provided authority has no signature algorithm")
|
|
}
|
|
// Use the first algorithm in the list.
|
|
sig, err := v.SignWithAlgorithm(rand, c.bytesForSigning(), v.Algorithms()[0])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
c.Signature = sig
|
|
return nil
|
|
} else if v, ok := authority.(AlgorithmSigner); ok && v.PublicKey().Type() == KeyAlgoRSA {
|
|
// Default to KeyAlgoRSASHA512 for ssh-rsa signers.
|
|
// TODO: consider using KeyAlgoRSASHA256 as default.
|
|
sig, err := v.SignWithAlgorithm(rand, c.bytesForSigning(), KeyAlgoRSASHA512)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
c.Signature = sig
|
|
return nil
|
|
}
|
|
|
|
sig, err := authority.Sign(rand, c.bytesForSigning())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
c.Signature = sig
|
|
return nil
|
|
}
|
|
|
|
// certKeyAlgoNames is a mapping from known certificate algorithm names to the
|
|
// corresponding public key signature algorithm.
|
|
//
|
|
// This map must be kept in sync with the one in agent/client.go.
|
|
var certKeyAlgoNames = map[string]string{
|
|
CertAlgoRSAv01: KeyAlgoRSA,
|
|
CertAlgoRSASHA256v01: KeyAlgoRSASHA256,
|
|
CertAlgoRSASHA512v01: KeyAlgoRSASHA512,
|
|
CertAlgoDSAv01: KeyAlgoDSA,
|
|
CertAlgoECDSA256v01: KeyAlgoECDSA256,
|
|
CertAlgoECDSA384v01: KeyAlgoECDSA384,
|
|
CertAlgoECDSA521v01: KeyAlgoECDSA521,
|
|
CertAlgoSKECDSA256v01: KeyAlgoSKECDSA256,
|
|
CertAlgoED25519v01: KeyAlgoED25519,
|
|
CertAlgoSKED25519v01: KeyAlgoSKED25519,
|
|
}
|
|
|
|
// underlyingAlgo returns the signature algorithm associated with algo (which is
|
|
// an advertised or negotiated public key or host key algorithm). These are
|
|
// usually the same, except for certificate algorithms.
|
|
func underlyingAlgo(algo string) string {
|
|
if a, ok := certKeyAlgoNames[algo]; ok {
|
|
return a
|
|
}
|
|
return algo
|
|
}
|
|
|
|
// certificateAlgo returns the certificate algorithms that uses the provided
|
|
// underlying signature algorithm.
|
|
func certificateAlgo(algo string) (certAlgo string, ok bool) {
|
|
for certName, algoName := range certKeyAlgoNames {
|
|
if algoName == algo {
|
|
return certName, true
|
|
}
|
|
}
|
|
return "", false
|
|
}
|
|
|
|
func (cert *Certificate) bytesForSigning() []byte {
|
|
c2 := *cert
|
|
c2.Signature = nil
|
|
out := c2.Marshal()
|
|
// Drop trailing signature length.
|
|
return out[:len(out)-4]
|
|
}
|
|
|
|
// Marshal serializes c into OpenSSH's wire format. It is part of the
|
|
// PublicKey interface.
|
|
func (c *Certificate) Marshal() []byte {
|
|
generic := genericCertData{
|
|
Serial: c.Serial,
|
|
CertType: c.CertType,
|
|
KeyId: c.KeyId,
|
|
ValidPrincipals: marshalStringList(c.ValidPrincipals),
|
|
ValidAfter: uint64(c.ValidAfter),
|
|
ValidBefore: uint64(c.ValidBefore),
|
|
CriticalOptions: marshalTuples(c.CriticalOptions),
|
|
Extensions: marshalTuples(c.Extensions),
|
|
Reserved: c.Reserved,
|
|
SignatureKey: c.SignatureKey.Marshal(),
|
|
}
|
|
if c.Signature != nil {
|
|
generic.Signature = Marshal(c.Signature)
|
|
}
|
|
genericBytes := Marshal(&generic)
|
|
keyBytes := c.Key.Marshal()
|
|
_, keyBytes, _ = parseString(keyBytes)
|
|
prefix := Marshal(&struct {
|
|
Name string
|
|
Nonce []byte
|
|
Key []byte `ssh:"rest"`
|
|
}{c.Type(), c.Nonce, keyBytes})
|
|
|
|
result := make([]byte, 0, len(prefix)+len(genericBytes))
|
|
result = append(result, prefix...)
|
|
result = append(result, genericBytes...)
|
|
return result
|
|
}
|
|
|
|
// Type returns the certificate algorithm name. It is part of the PublicKey interface.
|
|
func (c *Certificate) Type() string {
|
|
certName, ok := certificateAlgo(c.Key.Type())
|
|
if !ok {
|
|
panic("unknown certificate type for key type " + c.Key.Type())
|
|
}
|
|
return certName
|
|
}
|
|
|
|
// Verify verifies a signature against the certificate's public
|
|
// key. It is part of the PublicKey interface.
|
|
func (c *Certificate) Verify(data []byte, sig *Signature) error {
|
|
return c.Key.Verify(data, sig)
|
|
}
|
|
|
|
func parseSignatureBody(in []byte) (out *Signature, rest []byte, ok bool) {
|
|
format, in, ok := parseString(in)
|
|
if !ok {
|
|
return
|
|
}
|
|
|
|
out = &Signature{
|
|
Format: string(format),
|
|
}
|
|
|
|
if out.Blob, in, ok = parseString(in); !ok {
|
|
return
|
|
}
|
|
|
|
switch out.Format {
|
|
case KeyAlgoSKECDSA256, CertAlgoSKECDSA256v01, KeyAlgoSKED25519, CertAlgoSKED25519v01:
|
|
out.Rest = in
|
|
return out, nil, ok
|
|
}
|
|
|
|
return out, in, ok
|
|
}
|
|
|
|
func parseSignature(in []byte) (out *Signature, rest []byte, ok bool) {
|
|
sigBytes, rest, ok := parseString(in)
|
|
if !ok {
|
|
return
|
|
}
|
|
|
|
out, trailing, ok := parseSignatureBody(sigBytes)
|
|
if !ok || len(trailing) > 0 {
|
|
return nil, nil, false
|
|
}
|
|
return
|
|
}
|