tailscale/net/ping/ping.go
James Tucker 8ab46952d4 net/ping: fix ICMP echo code field to 0
The code was trying to pass the ICMP protocol number here (1), which is
not a valid code. Many servers will not respond to echo messages with
codes other than 0.

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-codes-8

Updates #9299
Signed-off-by: James Tucker <james@tailscale.com>
2023-09-15 17:08:39 -07:00

344 lines
7.3 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package ping allows sending ICMP echo requests to a host in order to
// determine network latency.
package ping
import (
"bytes"
"context"
"crypto/rand"
"encoding/binary"
"fmt"
"io"
"log"
"net"
"net/netip"
"sync"
"sync/atomic"
"time"
"golang.org/x/net/icmp"
"golang.org/x/net/ipv4"
"golang.org/x/net/ipv6"
"tailscale.com/types/logger"
"tailscale.com/util/mak"
"tailscale.com/util/multierr"
)
const (
v4Type = "ip4:icmp"
v6Type = "ip6:icmp"
)
type response struct {
t time.Time
err error
}
type outstanding struct {
ch chan response
data []byte
}
// PacketListener defines the interface required to listen to packages
// on an address.
type ListenPacketer interface {
ListenPacket(ctx context.Context, typ string, addr string) (net.PacketConn, error)
}
// Pinger represents a set of ICMP echo requests to be sent at a single time.
//
// A new instance should be created for each concurrent set of ping requests;
// this type should not be reused.
type Pinger struct {
lp ListenPacketer
// closed guards against send incrementing the waitgroup concurrently with close.
closed atomic.Bool
Logf logger.Logf
Verbose bool
timeNow func() time.Time
id uint16 // uint16 per RFC 792
wg sync.WaitGroup
// Following fields protected by mu
mu sync.Mutex
// conns is a map of "type" to net.PacketConn, type is either
// "ip4:icmp" or "ip6:icmp"
conns map[string]net.PacketConn
seq uint16 // uint16 per RFC 792
pings map[uint16]outstanding
}
// New creates a new Pinger. The Context provided will be used to create
// network listeners, and to set an absolute deadline (if any) on the net.Conn
func New(ctx context.Context, logf logger.Logf, lp ListenPacketer) *Pinger {
var id [2]byte
if _, err := io.ReadFull(rand.Reader, id[:]); err != nil {
panic("net/ping: New:" + err.Error())
}
return &Pinger{
lp: lp,
Logf: logf,
timeNow: time.Now,
id: binary.LittleEndian.Uint16(id[:]),
pings: make(map[uint16]outstanding),
}
}
func (p *Pinger) mkconn(ctx context.Context, typ, addr string) (net.PacketConn, error) {
if p.closed.Load() {
return nil, net.ErrClosed
}
c, err := p.lp.ListenPacket(ctx, typ, addr)
if err != nil {
return nil, err
}
// Start by setting the deadline from the context; note that this
// applies to all future I/O, so we only need to do it once.
deadline, ok := ctx.Deadline()
if ok {
if err := c.SetReadDeadline(deadline); err != nil {
return nil, err
}
}
p.wg.Add(1)
go p.run(ctx, c, typ)
return c, err
}
// getConn creates or returns a conn matching typ which is ip4:icmp
// or ip6:icmp.
func (p *Pinger) getConn(ctx context.Context, typ string) (net.PacketConn, error) {
p.mu.Lock()
defer p.mu.Unlock()
if c, ok := p.conns[typ]; ok {
return c, nil
}
var addr = "0.0.0.0"
if typ == v6Type {
addr = "::"
}
c, err := p.mkconn(ctx, typ, addr)
if err != nil {
return nil, err
}
mak.Set(&p.conns, typ, c)
return c, nil
}
func (p *Pinger) logf(format string, a ...any) {
if p.Logf != nil {
p.Logf(format, a...)
} else {
log.Printf(format, a...)
}
}
func (p *Pinger) vlogf(format string, a ...any) {
if p.Verbose {
p.logf(format, a...)
}
}
func (p *Pinger) Close() error {
p.closed.Store(true)
p.mu.Lock()
conns := p.conns
p.conns = nil
p.mu.Unlock()
var errors []error
for _, c := range conns {
if err := c.Close(); err != nil {
errors = append(errors, err)
}
}
p.wg.Wait()
p.cleanupOutstanding()
return multierr.New(errors...)
}
func (p *Pinger) run(ctx context.Context, conn net.PacketConn, typ string) {
defer p.wg.Done()
defer func() {
conn.Close()
p.mu.Lock()
delete(p.conns, typ)
p.mu.Unlock()
}()
buf := make([]byte, 1500)
loop:
for {
select {
case <-ctx.Done():
break loop
default:
}
n, _, err := conn.ReadFrom(buf)
if err != nil {
// Ignore temporary errors; everything else is fatal
if netErr, ok := err.(net.Error); !ok || !netErr.Temporary() {
break
}
continue
}
p.handleResponse(buf[:n], p.timeNow(), typ)
}
}
func (p *Pinger) cleanupOutstanding() {
// Complete outstanding requests
p.mu.Lock()
defer p.mu.Unlock()
for _, o := range p.pings {
o.ch <- response{err: net.ErrClosed}
}
}
func (p *Pinger) handleResponse(buf []byte, now time.Time, typ string) {
// We need to handle responding to both IPv4
// and IPv6.
var icmpType icmp.Type
switch typ {
case v4Type:
icmpType = ipv4.ICMPTypeEchoReply
case v6Type:
icmpType = ipv6.ICMPTypeEchoReply
default:
p.vlogf("handleResponse: unknown icmp.Type")
return
}
m, err := icmp.ParseMessage(icmpType.Protocol(), buf)
if err != nil {
p.vlogf("handleResponse: invalid packet: %v", err)
return
}
if m.Type != icmpType {
p.vlogf("handleResponse: wanted m.Type=%d; got %d", icmpType, m.Type)
return
}
resp, ok := m.Body.(*icmp.Echo)
if !ok || resp == nil {
p.vlogf("handleResponse: wanted body=*icmp.Echo; got %v", m.Body)
return
}
// We assume we sent this if the ID in the response is ours.
if uint16(resp.ID) != p.id {
p.vlogf("handleResponse: wanted ID=%d; got %d", p.id, resp.ID)
return
}
// Search for existing running echo request
var o outstanding
p.mu.Lock()
if o, ok = p.pings[uint16(resp.Seq)]; ok {
// Ensure that the data matches before we delete from our map,
// so a future correct packet will be handled correctly.
if bytes.Equal(resp.Data, o.data) {
delete(p.pings, uint16(resp.Seq))
} else {
p.vlogf("handleResponse: got response for Seq %d with mismatched data", resp.Seq)
ok = false
}
} else {
p.vlogf("handleResponse: got response for unknown Seq %d", resp.Seq)
}
p.mu.Unlock()
if ok {
o.ch <- response{t: now}
}
}
// Send sends an ICMP Echo Request packet to the destination, waits for a
// response, and returns the duration between when the request was sent and
// when the reply was received.
//
// If provided, "data" is sent with the packet and is compared upon receiving a
// reply.
func (p *Pinger) Send(ctx context.Context, dest net.Addr, data []byte) (time.Duration, error) {
// Use sequential sequence numbers on the assumption that we will not
// wrap around when using a single Pinger instance
p.mu.Lock()
p.seq++
seq := p.seq
p.mu.Unlock()
// Check whether the address is IPv4 or IPv6 to
// determine the icmp.Type and conn to use.
var conn net.PacketConn
var icmpType icmp.Type = ipv4.ICMPTypeEcho
ap, err := netip.ParseAddr(dest.String())
if err != nil {
return 0, err
}
if ap.Is6() {
icmpType = ipv6.ICMPTypeEchoRequest
conn, err = p.getConn(ctx, v6Type)
} else {
conn, err = p.getConn(ctx, v4Type)
}
if err != nil {
return 0, err
}
m := icmp.Message{
Type: icmpType,
Code: 0,
Body: &icmp.Echo{
ID: int(p.id),
Seq: int(seq),
Data: data,
},
}
b, err := m.Marshal(nil)
if err != nil {
return 0, err
}
// Register our response before sending since we could otherwise race a
// quick reply.
ch := make(chan response, 1)
p.mu.Lock()
p.pings[seq] = outstanding{ch: ch, data: data}
p.mu.Unlock()
start := p.timeNow()
n, err := conn.WriteTo(b, dest)
if err != nil {
return 0, err
} else if n != len(b) {
return 0, fmt.Errorf("conn.WriteTo: got %v; want %v", n, len(b))
}
select {
case resp := <-ch:
if resp.err != nil {
return 0, resp.err
}
return resp.t.Sub(start), nil
case <-ctx.Done():
return 0, ctx.Err()
}
}