mirror of
https://github.com/tailscale/tailscale.git
synced 2025-01-10 18:13:41 +00:00
ff5b4bae99
MutexValue is simply a value guarded by a mutex. For any type that is not pointer-sized, MutexValue will perform much better than AtomicValue since it will not incur an allocation boxing the value into an interface value (which is how Go's atomic.Value is implemented under-the-hood). Updates #cleanup Signed-off-by: Joe Tsai <joetsai@digital-static.net>
415 lines
11 KiB
Go
415 lines
11 KiB
Go
// Copyright (c) Tailscale Inc & AUTHORS
|
|
// SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
// Package syncs contains additional sync types and functionality.
|
|
package syncs
|
|
|
|
import (
|
|
"context"
|
|
"iter"
|
|
"sync"
|
|
"sync/atomic"
|
|
|
|
"tailscale.com/util/mak"
|
|
)
|
|
|
|
// ClosedChan returns a channel that's already closed.
|
|
func ClosedChan() <-chan struct{} { return closedChan }
|
|
|
|
var closedChan = initClosedChan()
|
|
|
|
func initClosedChan() <-chan struct{} {
|
|
ch := make(chan struct{})
|
|
close(ch)
|
|
return ch
|
|
}
|
|
|
|
// AtomicValue is the generic version of [atomic.Value].
|
|
// See [MutexValue] for guidance on whether to use this type.
|
|
type AtomicValue[T any] struct {
|
|
v atomic.Value
|
|
}
|
|
|
|
// wrappedValue is used to wrap a value T in a concrete type,
|
|
// otherwise atomic.Value.Store may panic due to mismatching types in interfaces.
|
|
// This wrapping is not necessary for non-interface kinds of T,
|
|
// but there is no harm in wrapping anyways.
|
|
// See https://cs.opensource.google/go/go/+/refs/tags/go1.22.2:src/sync/atomic/value.go;l=78
|
|
type wrappedValue[T any] struct{ v T }
|
|
|
|
// Load returns the value set by the most recent Store.
|
|
// It returns the zero value for T if the value is empty.
|
|
func (v *AtomicValue[T]) Load() T {
|
|
x, _ := v.LoadOk()
|
|
return x
|
|
}
|
|
|
|
// LoadOk is like Load but returns a boolean indicating whether the value was
|
|
// loaded.
|
|
func (v *AtomicValue[T]) LoadOk() (_ T, ok bool) {
|
|
x := v.v.Load()
|
|
if x != nil {
|
|
return x.(wrappedValue[T]).v, true
|
|
}
|
|
var zero T
|
|
return zero, false
|
|
}
|
|
|
|
// Store sets the value of the Value to x.
|
|
func (v *AtomicValue[T]) Store(x T) {
|
|
v.v.Store(wrappedValue[T]{x})
|
|
}
|
|
|
|
// Swap stores new into Value and returns the previous value.
|
|
// It returns the zero value for T if the value is empty.
|
|
func (v *AtomicValue[T]) Swap(x T) (old T) {
|
|
oldV := v.v.Swap(wrappedValue[T]{x})
|
|
if oldV != nil {
|
|
return oldV.(wrappedValue[T]).v
|
|
}
|
|
return old
|
|
}
|
|
|
|
// CompareAndSwap executes the compare-and-swap operation for the Value.
|
|
func (v *AtomicValue[T]) CompareAndSwap(oldV, newV T) (swapped bool) {
|
|
return v.v.CompareAndSwap(wrappedValue[T]{oldV}, wrappedValue[T]{newV})
|
|
}
|
|
|
|
// MutexValue is a value protected by a mutex.
|
|
//
|
|
// AtomicValue, [MutexValue], [atomic.Pointer] are similar and
|
|
// overlap in their use cases.
|
|
//
|
|
// - Use [atomic.Pointer] if the value being stored is a pointer and
|
|
// you only ever need load and store operations.
|
|
// An atomic pointer only occupies 1 word of memory.
|
|
//
|
|
// - Use [MutexValue] if the value being stored is not a pointer or
|
|
// you need the ability for a mutex to protect a set of operations
|
|
// performed on the value.
|
|
// A mutex-guarded value occupies 1 word of memory plus
|
|
// the memory representation of T.
|
|
//
|
|
// - AtomicValue is useful for non-pointer types that happen to
|
|
// have the memory layout of a single pointer.
|
|
// Examples include a map, channel, func, or a single field struct
|
|
// that contains any prior types.
|
|
// An atomic value occupies 2 words of memory.
|
|
// Consequently, Storing of non-pointer types always allocates.
|
|
//
|
|
// Note that [AtomicValue] has the ability to report whether it was set
|
|
// while [MutexValue] lacks the ability to detect if the value was set
|
|
// and it happens to be the zero value of T. If such a use case is
|
|
// necessary, then you could consider wrapping T in [opt.Value].
|
|
type MutexValue[T any] struct {
|
|
mu sync.Mutex
|
|
v T
|
|
}
|
|
|
|
// WithLock calls f with a pointer to the value while holding the lock.
|
|
// The provided pointer must not leak beyond the scope of the call.
|
|
func (m *MutexValue[T]) WithLock(f func(p *T)) {
|
|
m.mu.Lock()
|
|
defer m.mu.Unlock()
|
|
f(&m.v)
|
|
}
|
|
|
|
// Load returns a shallow copy of the underlying value.
|
|
func (m *MutexValue[T]) Load() T {
|
|
m.mu.Lock()
|
|
defer m.mu.Unlock()
|
|
return m.v
|
|
}
|
|
|
|
// Store stores a shallow copy of the provided value.
|
|
func (m *MutexValue[T]) Store(v T) {
|
|
m.mu.Lock()
|
|
defer m.mu.Unlock()
|
|
m.v = v
|
|
}
|
|
|
|
// Swap stores new into m and returns the previous value.
|
|
func (m *MutexValue[T]) Swap(new T) (old T) {
|
|
m.mu.Lock()
|
|
defer m.mu.Unlock()
|
|
old, m.v = m.v, new
|
|
return old
|
|
}
|
|
|
|
// WaitGroupChan is like a sync.WaitGroup, but has a chan that closes
|
|
// on completion that you can wait on. (This, you can only use the
|
|
// value once)
|
|
// Also, its zero value is not usable. Use the constructor.
|
|
type WaitGroupChan struct {
|
|
n int64 // atomic
|
|
done chan struct{} // closed on transition to zero
|
|
}
|
|
|
|
// NewWaitGroupChan returns a new single-use WaitGroupChan.
|
|
func NewWaitGroupChan() *WaitGroupChan {
|
|
return &WaitGroupChan{done: make(chan struct{})}
|
|
}
|
|
|
|
// DoneChan returns a channel that's closed on completion.
|
|
func (wg *WaitGroupChan) DoneChan() <-chan struct{} { return wg.done }
|
|
|
|
// Add adds delta, which may be negative, to the WaitGroupChan
|
|
// counter. If the counter becomes zero, all goroutines blocked on
|
|
// Wait or the Done chan are released. If the counter goes negative,
|
|
// Add panics.
|
|
//
|
|
// Note that calls with a positive delta that occur when the counter
|
|
// is zero must happen before a Wait. Calls with a negative delta, or
|
|
// calls with a positive delta that start when the counter is greater
|
|
// than zero, may happen at any time. Typically this means the calls
|
|
// to Add should execute before the statement creating the goroutine
|
|
// or other event to be waited for.
|
|
func (wg *WaitGroupChan) Add(delta int) {
|
|
n := atomic.AddInt64(&wg.n, int64(delta))
|
|
if n == 0 {
|
|
close(wg.done)
|
|
}
|
|
}
|
|
|
|
// Decr decrements the WaitGroup counter by one.
|
|
//
|
|
// (It is like sync.WaitGroup's Done method, but we don't use Done in
|
|
// this type, because it's ambiguous between Context.Done and
|
|
// WaitGroup.Done. So we use DoneChan and Decr instead.)
|
|
func (wg *WaitGroupChan) Decr() {
|
|
wg.Add(-1)
|
|
}
|
|
|
|
// Wait blocks until the WaitGroupChan counter is zero.
|
|
func (wg *WaitGroupChan) Wait() { <-wg.done }
|
|
|
|
// Semaphore is a counting semaphore.
|
|
//
|
|
// Use NewSemaphore to create one.
|
|
type Semaphore struct {
|
|
c chan struct{}
|
|
}
|
|
|
|
// NewSemaphore returns a semaphore with resource count n.
|
|
func NewSemaphore(n int) Semaphore {
|
|
return Semaphore{c: make(chan struct{}, n)}
|
|
}
|
|
|
|
// Acquire blocks until a resource is acquired.
|
|
func (s Semaphore) Acquire() {
|
|
s.c <- struct{}{}
|
|
}
|
|
|
|
// AcquireContext reports whether the resource was acquired before the ctx was done.
|
|
func (s Semaphore) AcquireContext(ctx context.Context) bool {
|
|
select {
|
|
case s.c <- struct{}{}:
|
|
return true
|
|
case <-ctx.Done():
|
|
return false
|
|
}
|
|
}
|
|
|
|
// TryAcquire reports, without blocking, whether the resource was acquired.
|
|
func (s Semaphore) TryAcquire() bool {
|
|
select {
|
|
case s.c <- struct{}{}:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Release releases a resource.
|
|
func (s Semaphore) Release() {
|
|
<-s.c
|
|
}
|
|
|
|
// Map is a Go map protected by a [sync.RWMutex].
|
|
// It is preferred over [sync.Map] for maps with entries that change
|
|
// at a relatively high frequency.
|
|
// This must not be shallow copied.
|
|
type Map[K comparable, V any] struct {
|
|
mu sync.RWMutex
|
|
m map[K]V
|
|
}
|
|
|
|
// Load loads the value for the provided key and whether it was found.
|
|
func (m *Map[K, V]) Load(key K) (value V, loaded bool) {
|
|
m.mu.RLock()
|
|
defer m.mu.RUnlock()
|
|
value, loaded = m.m[key]
|
|
return value, loaded
|
|
}
|
|
|
|
// LoadFunc calls f with the value for the provided key
|
|
// regardless of whether the entry exists or not.
|
|
// The lock is held for the duration of the call to f.
|
|
func (m *Map[K, V]) LoadFunc(key K, f func(value V, loaded bool)) {
|
|
m.mu.RLock()
|
|
defer m.mu.RUnlock()
|
|
value, loaded := m.m[key]
|
|
f(value, loaded)
|
|
}
|
|
|
|
// Store stores the value for the provided key.
|
|
func (m *Map[K, V]) Store(key K, value V) {
|
|
m.mu.Lock()
|
|
defer m.mu.Unlock()
|
|
mak.Set(&m.m, key, value)
|
|
}
|
|
|
|
// LoadOrStore returns the value for the given key if it exists
|
|
// otherwise it stores value.
|
|
func (m *Map[K, V]) LoadOrStore(key K, value V) (actual V, loaded bool) {
|
|
if actual, loaded = m.Load(key); loaded {
|
|
return actual, loaded
|
|
}
|
|
|
|
m.mu.Lock()
|
|
defer m.mu.Unlock()
|
|
actual, loaded = m.m[key]
|
|
if !loaded {
|
|
actual = value
|
|
mak.Set(&m.m, key, value)
|
|
}
|
|
return actual, loaded
|
|
}
|
|
|
|
// LoadOrInit returns the value for the given key if it exists
|
|
// otherwise f is called to construct the value to be set.
|
|
// The lock is held for the duration to prevent duplicate initialization.
|
|
func (m *Map[K, V]) LoadOrInit(key K, f func() V) (actual V, loaded bool) {
|
|
if actual, loaded := m.Load(key); loaded {
|
|
return actual, loaded
|
|
}
|
|
|
|
m.mu.Lock()
|
|
defer m.mu.Unlock()
|
|
if actual, loaded = m.m[key]; loaded {
|
|
return actual, loaded
|
|
}
|
|
|
|
loaded = false
|
|
actual = f()
|
|
mak.Set(&m.m, key, actual)
|
|
return actual, loaded
|
|
}
|
|
|
|
// LoadAndDelete returns the value for the given key if it exists.
|
|
// It ensures that the map is cleared of any entry for the key.
|
|
func (m *Map[K, V]) LoadAndDelete(key K) (value V, loaded bool) {
|
|
m.mu.Lock()
|
|
defer m.mu.Unlock()
|
|
value, loaded = m.m[key]
|
|
if loaded {
|
|
delete(m.m, key)
|
|
}
|
|
return value, loaded
|
|
}
|
|
|
|
// Delete deletes the entry identified by key.
|
|
func (m *Map[K, V]) Delete(key K) {
|
|
m.mu.Lock()
|
|
defer m.mu.Unlock()
|
|
delete(m.m, key)
|
|
}
|
|
|
|
// Keys iterates over all keys in the map in an undefined order.
|
|
// A read lock is held for the entire duration of the iteration.
|
|
// Use the [WithLock] method instead to mutate the map during iteration.
|
|
func (m *Map[K, V]) Keys() iter.Seq[K] {
|
|
return func(yield func(K) bool) {
|
|
m.mu.RLock()
|
|
defer m.mu.RUnlock()
|
|
for k := range m.m {
|
|
if !yield(k) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Values iterates over all values in the map in an undefined order.
|
|
// A read lock is held for the entire duration of the iteration.
|
|
// Use the [WithLock] method instead to mutate the map during iteration.
|
|
func (m *Map[K, V]) Values() iter.Seq[V] {
|
|
return func(yield func(V) bool) {
|
|
m.mu.RLock()
|
|
defer m.mu.RUnlock()
|
|
for _, v := range m.m {
|
|
if !yield(v) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// All iterates over all entries in the map in an undefined order.
|
|
// A read lock is held for the entire duration of the iteration.
|
|
// Use the [WithLock] method instead to mutate the map during iteration.
|
|
func (m *Map[K, V]) All() iter.Seq2[K, V] {
|
|
return func(yield func(K, V) bool) {
|
|
m.mu.RLock()
|
|
defer m.mu.RUnlock()
|
|
for k, v := range m.m {
|
|
if !yield(k, v) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// WithLock calls f with the underlying map.
|
|
// Use of m2 must not escape the duration of this call.
|
|
// The write-lock is held for the entire duration of this call.
|
|
func (m *Map[K, V]) WithLock(f func(m2 map[K]V)) {
|
|
m.mu.Lock()
|
|
defer m.mu.Unlock()
|
|
if m.m == nil {
|
|
m.m = make(map[K]V)
|
|
}
|
|
f(m.m)
|
|
}
|
|
|
|
// Len returns the length of the map.
|
|
func (m *Map[K, V]) Len() int {
|
|
m.mu.RLock()
|
|
defer m.mu.RUnlock()
|
|
return len(m.m)
|
|
}
|
|
|
|
// Clear removes all entries from the map.
|
|
func (m *Map[K, V]) Clear() {
|
|
m.mu.Lock()
|
|
defer m.mu.Unlock()
|
|
clear(m.m)
|
|
}
|
|
|
|
// Swap stores the value for the provided key, and returns the previous value
|
|
// (if any). If there was no previous value set, a zero value will be returned.
|
|
func (m *Map[K, V]) Swap(key K, value V) (oldValue V) {
|
|
m.mu.Lock()
|
|
defer m.mu.Unlock()
|
|
|
|
oldValue = m.m[key]
|
|
mak.Set(&m.m, key, value)
|
|
return oldValue
|
|
}
|
|
|
|
// WaitGroup is identical to [sync.WaitGroup],
|
|
// but provides a Go method to start a goroutine.
|
|
type WaitGroup struct{ sync.WaitGroup }
|
|
|
|
// Go calls the given function in a new goroutine.
|
|
// It automatically increments the counter before execution and
|
|
// automatically decrements the counter after execution.
|
|
// It must not be called concurrently with Wait.
|
|
func (wg *WaitGroup) Go(f func()) {
|
|
wg.Add(1)
|
|
go func() {
|
|
defer wg.Done()
|
|
f()
|
|
}()
|
|
}
|