Mihai Parparita edb02b63f8 net/sockstats: pass in logger to sockstats.WithSockStats
Using log.Printf may end up being printed out to the console, which
is not desirable. I noticed this when I was investigating some client
logs with `sockstats: trace "NetcheckClient" was overwritten by another`.
That turns to be harmless/expected (the netcheck client will fall back
to the DERP client in some cases, which does its own sockstats trace).

However, the log output could be visible to users if running the
`tailscale netcheck` CLI command, which would be needlessly confusing.

Updates tailscale/corp#9230

Signed-off-by: Mihai Parparita <mihai@tailscale.com>
2023-04-12 18:40:03 -07:00

795 lines
20 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package controlclient
import (
"context"
"errors"
"fmt"
"net/http"
"sync"
"time"
"tailscale.com/health"
"tailscale.com/logtail/backoff"
"tailscale.com/net/sockstats"
"tailscale.com/tailcfg"
"tailscale.com/types/empty"
"tailscale.com/types/key"
"tailscale.com/types/logger"
"tailscale.com/types/netmap"
"tailscale.com/types/persist"
"tailscale.com/types/structs"
)
type LoginGoal struct {
_ structs.Incomparable
wantLoggedIn bool // true if we *want* to be logged in
token *tailcfg.Oauth2Token // oauth token to use when logging in
flags LoginFlags // flags to use when logging in
url string // auth url that needs to be visited
loggedOutResult chan<- error
}
func (g *LoginGoal) sendLogoutError(err error) {
if g.loggedOutResult == nil {
return
}
select {
case g.loggedOutResult <- err:
default:
}
}
var _ Client = (*Auto)(nil)
// Auto connects to a tailcontrol server for a node.
// It's a concrete implementation of the Client interface.
type Auto struct {
direct *Direct // our interface to the server APIs
timeNow func() time.Time
logf logger.Logf
expiry *time.Time
closed bool
newMapCh chan struct{} // readable when we must restart a map request
statusFunc func(Status) // called to update Client status; always non-nil
unregisterHealthWatch func()
mu sync.Mutex // mutex guards the following fields
paused bool // whether we should stop making HTTP requests
unpauseWaiters []chan struct{}
loggedIn bool // true if currently logged in
loginGoal *LoginGoal // non-nil if some login activity is desired
synced bool // true if our netmap is up-to-date
inPollNetMap bool // true if currently running a PollNetMap
inLiteMapUpdate bool // true if a lite (non-streaming) map request is outstanding
liteMapUpdateCancel context.CancelFunc // cancels a lite map update, may be nil
liteMapUpdateCancels int // how many times we've canceled a lite map update
inSendStatus int // number of sendStatus calls currently in progress
state State
authCtx context.Context // context used for auth requests
mapCtx context.Context // context used for netmap requests
authCancel func() // cancel the auth context
mapCancel func() // cancel the netmap context
quit chan struct{} // when closed, goroutines should all exit
authDone chan struct{} // when closed, auth goroutine is done
mapDone chan struct{} // when closed, map goroutine is done
}
// New creates and starts a new Auto.
func New(opts Options) (*Auto, error) {
c, err := NewNoStart(opts)
if c != nil {
c.Start()
}
return c, err
}
// NewNoStart creates a new Auto, but without calling Start on it.
func NewNoStart(opts Options) (_ *Auto, err error) {
direct, err := NewDirect(opts)
if err != nil {
return nil, err
}
defer func() {
if err != nil {
direct.Close()
}
}()
if opts.Status == nil {
return nil, errors.New("missing required Options.Status")
}
if opts.Logf == nil {
opts.Logf = func(fmt string, args ...any) {}
}
if opts.TimeNow == nil {
opts.TimeNow = time.Now
}
c := &Auto{
direct: direct,
timeNow: opts.TimeNow,
logf: opts.Logf,
newMapCh: make(chan struct{}, 1),
quit: make(chan struct{}),
authDone: make(chan struct{}),
mapDone: make(chan struct{}),
statusFunc: opts.Status,
}
c.authCtx, c.authCancel = context.WithCancel(context.Background())
c.authCtx = sockstats.WithSockStats(c.authCtx, sockstats.LabelControlClientAuto, opts.Logf)
c.mapCtx, c.mapCancel = context.WithCancel(context.Background())
c.mapCtx = sockstats.WithSockStats(c.mapCtx, sockstats.LabelControlClientAuto, opts.Logf)
c.unregisterHealthWatch = health.RegisterWatcher(direct.ReportHealthChange)
return c, nil
}
// SetPaused controls whether HTTP activity should be paused.
//
// The client can be paused and unpaused repeatedly, unlike Start and Shutdown, which can only be used once.
func (c *Auto) SetPaused(paused bool) {
c.mu.Lock()
defer c.mu.Unlock()
if paused == c.paused {
return
}
c.logf("setPaused(%v)", paused)
c.paused = paused
if paused {
// Only cancel the map routine. (The auth routine isn't expensive
// so it's fine to keep it running.)
c.cancelMapLocked()
} else {
for _, ch := range c.unpauseWaiters {
close(ch)
}
c.unpauseWaiters = nil
}
}
// Start starts the client's goroutines.
//
// It should only be called for clients created by NewNoStart.
func (c *Auto) Start() {
go c.authRoutine()
go c.mapRoutine()
}
// sendNewMapRequest either sends a new OmitPeers, non-streaming map request
// (to just send Hostinfo/Netinfo/Endpoints info, while keeping an existing
// streaming response open), or start a new streaming one if necessary.
//
// It should be called whenever there's something new to tell the server.
func (c *Auto) sendNewMapRequest() {
c.mu.Lock()
// If we're not already streaming a netmap, then tear down everything
// and start a new stream (which starts by sending a new map request)
if !c.inPollNetMap || !c.loggedIn {
c.mu.Unlock()
c.cancelMapSafely()
return
}
// If we are already in process of doing a LiteMapUpdate, cancel it and
// try a new one. If this is the 10th time we have done this
// cancelation, tear down everything and start again.
const maxLiteMapUpdateAttempts = 10
if c.inLiteMapUpdate {
// Always cancel the in-flight lite map update, regardless of
// whether we cancel the streaming map request or not.
c.liteMapUpdateCancel()
c.inLiteMapUpdate = false
if c.liteMapUpdateCancels >= maxLiteMapUpdateAttempts {
// Not making progress
c.mu.Unlock()
c.cancelMapSafely()
return
}
// Increment our cancel counter and continue below to start a
// new lite update.
c.liteMapUpdateCancels++
}
// Otherwise, send a lite update that doesn't keep a
// long-running stream response.
defer c.mu.Unlock()
c.inLiteMapUpdate = true
ctx, cancel := context.WithTimeout(c.mapCtx, 10*time.Second)
c.liteMapUpdateCancel = cancel
go func() {
defer cancel()
t0 := time.Now()
err := c.direct.SendLiteMapUpdate(ctx)
d := time.Since(t0).Round(time.Millisecond)
c.mu.Lock()
c.inLiteMapUpdate = false
c.liteMapUpdateCancel = nil
if err == nil {
c.liteMapUpdateCancels = 0
}
c.mu.Unlock()
if err == nil {
c.logf("[v1] successful lite map update in %v", d)
return
}
if ctx.Err() == nil {
c.logf("lite map update after %v: %v", d, err)
}
if !errors.Is(ctx.Err(), context.Canceled) {
// Fall back to restarting the long-polling map
// request (the old heavy way) if the lite update
// failed for reasons other than the context being
// canceled.
c.cancelMapSafely()
}
}()
}
func (c *Auto) cancelAuth() {
c.mu.Lock()
if c.authCancel != nil {
c.authCancel()
}
if !c.closed {
c.authCtx, c.authCancel = context.WithCancel(context.Background())
c.authCtx = sockstats.WithSockStats(c.authCtx, sockstats.LabelControlClientAuto, c.logf)
}
c.mu.Unlock()
}
func (c *Auto) cancelMapLocked() {
if c.mapCancel != nil {
c.mapCancel()
}
if !c.closed {
c.mapCtx, c.mapCancel = context.WithCancel(context.Background())
c.mapCtx = sockstats.WithSockStats(c.mapCtx, sockstats.LabelControlClientAuto, c.logf)
}
}
func (c *Auto) cancelMapUnsafely() {
c.mu.Lock()
c.cancelMapLocked()
c.mu.Unlock()
}
func (c *Auto) cancelMapSafely() {
c.mu.Lock()
defer c.mu.Unlock()
// Always reset our lite map cancels counter if we're canceling
// everything, since we're about to restart with a new map update; this
// allows future calls to sendNewMapRequest to retry sending lite
// updates.
c.liteMapUpdateCancels = 0
c.logf("[v1] cancelMapSafely: synced=%v", c.synced)
if c.inPollNetMap {
// received at least one netmap since the last
// interruption. That means the server has already
// fully processed our last request, which might
// include UpdateEndpoints(). Interrupt it and try
// again.
c.cancelMapLocked()
} else {
// !synced means we either haven't done a netmap
// request yet, or it hasn't answered yet. So the
// server is in an undefined state. If we send
// another netmap request too soon, it might race
// with the last one, and if we're very unlucky,
// the new request will be applied before the old one,
// and the wrong endpoints will get registered. We
// have to tell the client to abort politely, only
// after it receives a response to its existing netmap
// request.
select {
case c.newMapCh <- struct{}{}:
c.logf("[v1] cancelMapSafely: wrote to channel")
default:
// if channel write failed, then there was already
// an outstanding newMapCh request. One is enough,
// since it'll always use the latest endpoints.
c.logf("[v1] cancelMapSafely: channel was full")
}
}
}
func (c *Auto) authRoutine() {
defer close(c.authDone)
bo := backoff.NewBackoff("authRoutine", c.logf, 30*time.Second)
for {
c.mu.Lock()
goal := c.loginGoal
ctx := c.authCtx
if goal != nil {
c.logf("[v1] authRoutine: %s; wantLoggedIn=%v", c.state, goal.wantLoggedIn)
} else {
c.logf("[v1] authRoutine: %s; goal=nil paused=%v", c.state, c.paused)
}
c.mu.Unlock()
select {
case <-c.quit:
c.logf("[v1] authRoutine: quit")
return
default:
}
report := func(err error, msg string) {
c.logf("[v1] %s: %v", msg, err)
// don't send status updates for context errors,
// since context cancelation is always on purpose.
if ctx.Err() == nil {
c.sendStatus("authRoutine-report", err, "", nil)
}
}
if goal == nil {
health.SetAuthRoutineInError(nil)
// Wait for user to Login or Logout.
<-ctx.Done()
c.logf("[v1] authRoutine: context done.")
continue
}
if !goal.wantLoggedIn {
health.SetAuthRoutineInError(nil)
err := c.direct.TryLogout(ctx)
goal.sendLogoutError(err)
if err != nil {
report(err, "TryLogout")
bo.BackOff(ctx, err)
continue
}
// success
c.mu.Lock()
c.loggedIn = false
c.loginGoal = nil
c.state = StateNotAuthenticated
c.synced = false
c.mu.Unlock()
c.sendStatus("authRoutine-wantout", nil, "", nil)
bo.BackOff(ctx, nil)
} else { // ie. goal.wantLoggedIn
c.mu.Lock()
if goal.url != "" {
c.state = StateURLVisitRequired
} else {
c.state = StateAuthenticating
}
c.mu.Unlock()
var url string
var err error
var f string
if goal.url != "" {
url, err = c.direct.WaitLoginURL(ctx, goal.url)
f = "WaitLoginURL"
} else {
url, err = c.direct.TryLogin(ctx, goal.token, goal.flags)
f = "TryLogin"
}
if err != nil {
health.SetAuthRoutineInError(err)
report(err, f)
bo.BackOff(ctx, err)
continue
}
if url != "" {
// goal.url ought to be empty here.
// However, not all control servers get this right,
// and logging about it here just generates noise.
c.mu.Lock()
c.loginGoal = &LoginGoal{
wantLoggedIn: true,
flags: LoginDefault,
url: url,
}
c.state = StateURLVisitRequired
c.synced = false
c.mu.Unlock()
c.sendStatus("authRoutine-url", err, url, nil)
if goal.url == url {
// The server sent us the same URL we already tried,
// backoff to avoid a busy loop.
bo.BackOff(ctx, errors.New("login URL not changing"))
} else {
bo.BackOff(ctx, nil)
}
continue
}
// success
health.SetAuthRoutineInError(nil)
c.mu.Lock()
c.loggedIn = true
c.loginGoal = nil
c.state = StateAuthenticated
c.mu.Unlock()
c.sendStatus("authRoutine-success", nil, "", nil)
c.cancelMapSafely()
bo.BackOff(ctx, nil)
}
}
}
// Expiry returns the credential expiration time, or the zero time if
// the expiration time isn't known. Used in tests only.
func (c *Auto) Expiry() *time.Time {
c.mu.Lock()
defer c.mu.Unlock()
return c.expiry
}
// Direct returns the underlying direct client object. Used in tests
// only.
func (c *Auto) Direct() *Direct {
return c.direct
}
// unpausedChanLocked returns a new channel that is closed when the
// current Auto pause is unpaused.
//
// c.mu must be held
func (c *Auto) unpausedChanLocked() <-chan struct{} {
unpaused := make(chan struct{})
c.unpauseWaiters = append(c.unpauseWaiters, unpaused)
return unpaused
}
func (c *Auto) mapRoutine() {
defer close(c.mapDone)
bo := backoff.NewBackoff("mapRoutine", c.logf, 30*time.Second)
for {
c.mu.Lock()
if c.paused {
unpaused := c.unpausedChanLocked()
c.mu.Unlock()
c.logf("mapRoutine: awaiting unpause")
select {
case <-unpaused:
c.logf("mapRoutine: unpaused")
case <-c.quit:
c.logf("mapRoutine: quit")
return
}
continue
}
c.logf("[v1] mapRoutine: %s", c.state)
loggedIn := c.loggedIn
ctx := c.mapCtx
c.mu.Unlock()
select {
case <-c.quit:
c.logf("mapRoutine: quit")
return
default:
}
report := func(err error, msg string) {
c.logf("[v1] %s: %v", msg, err)
err = fmt.Errorf("%s: %w", msg, err)
// don't send status updates for context errors,
// since context cancelation is always on purpose.
if ctx.Err() == nil {
c.sendStatus("mapRoutine1", err, "", nil)
}
}
if !loggedIn {
// Wait for something interesting to happen
c.mu.Lock()
c.synced = false
// c.state is set by authRoutine()
c.mu.Unlock()
select {
case <-ctx.Done():
c.logf("[v1] mapRoutine: context done.")
case <-c.newMapCh:
c.logf("[v1] mapRoutine: new map needed while idle.")
}
} else {
// Be sure this is false when we're not inside
// PollNetMap, so that cancelMapSafely() can notify
// us correctly.
c.mu.Lock()
c.inPollNetMap = false
c.mu.Unlock()
health.SetInPollNetMap(false)
err := c.direct.PollNetMap(ctx, func(nm *netmap.NetworkMap) {
health.SetInPollNetMap(true)
c.mu.Lock()
select {
case <-c.newMapCh:
c.logf("[v1] mapRoutine: new map request during PollNetMap. canceling.")
c.cancelMapLocked()
// Don't emit this netmap; we're
// about to request a fresh one.
c.mu.Unlock()
return
default:
}
c.synced = true
c.inPollNetMap = true
if c.loggedIn {
c.state = StateSynchronized
}
exp := nm.Expiry
c.expiry = &exp
stillAuthed := c.loggedIn
state := c.state
c.mu.Unlock()
c.logf("[v1] mapRoutine: netmap received: %s", state)
if stillAuthed {
c.sendStatus("mapRoutine-got-netmap", nil, "", nm)
}
})
health.SetInPollNetMap(false)
c.mu.Lock()
c.synced = false
c.inPollNetMap = false
if c.state == StateSynchronized {
c.state = StateAuthenticated
}
paused := c.paused
c.mu.Unlock()
if paused {
c.logf("mapRoutine: paused")
continue
}
if err != nil {
report(err, "PollNetMap")
bo.BackOff(ctx, err)
continue
}
bo.BackOff(ctx, nil)
}
}
}
func (c *Auto) AuthCantContinue() bool {
if c == nil {
return true
}
c.mu.Lock()
defer c.mu.Unlock()
return !c.loggedIn && (c.loginGoal == nil || c.loginGoal.url != "")
}
func (c *Auto) SetHostinfo(hi *tailcfg.Hostinfo) {
if hi == nil {
panic("nil Hostinfo")
}
if !c.direct.SetHostinfo(hi) {
// No changes. Don't log.
return
}
// Send new Hostinfo to server
c.sendNewMapRequest()
}
func (c *Auto) SetNetInfo(ni *tailcfg.NetInfo) {
if ni == nil {
panic("nil NetInfo")
}
if !c.direct.SetNetInfo(ni) {
return
}
// Send new NetInfo to server
c.sendNewMapRequest()
}
// SetTKAHead updates the TKA head hash that map-request infrastructure sends.
func (c *Auto) SetTKAHead(headHash string) {
c.direct.SetTKAHead(headHash)
}
func (c *Auto) sendStatus(who string, err error, url string, nm *netmap.NetworkMap) {
c.mu.Lock()
if c.closed {
c.mu.Unlock()
return
}
state := c.state
loggedIn := c.loggedIn
synced := c.synced
c.inSendStatus++
c.mu.Unlock()
c.logf("[v1] sendStatus: %s: %v", who, state)
var p *persist.PersistView
var loginFin, logoutFin *empty.Message
if state == StateAuthenticated {
loginFin = new(empty.Message)
}
if state == StateNotAuthenticated {
logoutFin = new(empty.Message)
}
if nm != nil && loggedIn && synced {
pp := c.direct.GetPersist()
p = &pp
} else {
// don't send netmap status, as it's misleading when we're
// not logged in.
nm = nil
}
new := Status{
LoginFinished: loginFin,
LogoutFinished: logoutFin,
URL: url,
Persist: p,
NetMap: nm,
State: state,
Err: err,
}
c.statusFunc(new)
c.mu.Lock()
c.inSendStatus--
c.mu.Unlock()
}
func (c *Auto) Login(t *tailcfg.Oauth2Token, flags LoginFlags) {
c.logf("client.Login(%v, %v)", t != nil, flags)
c.mu.Lock()
c.loginGoal = &LoginGoal{
wantLoggedIn: true,
token: t,
flags: flags,
}
c.mu.Unlock()
c.cancelAuth()
}
func (c *Auto) StartLogout() {
c.logf("client.StartLogout()")
c.mu.Lock()
c.loginGoal = &LoginGoal{
wantLoggedIn: false,
}
c.mu.Unlock()
c.cancelAuth()
}
func (c *Auto) Logout(ctx context.Context) error {
c.logf("client.Logout()")
errc := make(chan error, 1)
c.mu.Lock()
c.loginGoal = &LoginGoal{
wantLoggedIn: false,
loggedOutResult: errc,
}
c.mu.Unlock()
c.cancelAuth()
timer := time.NewTimer(10 * time.Second)
defer timer.Stop()
select {
case err := <-errc:
return err
case <-ctx.Done():
return ctx.Err()
case <-timer.C:
return context.DeadlineExceeded
}
}
func (c *Auto) SetExpirySooner(ctx context.Context, expiry time.Time) error {
return c.direct.SetExpirySooner(ctx, expiry)
}
// UpdateEndpoints sets the client's discovered endpoints and sends
// them to the control server if they've changed.
//
// It does not retain the provided slice.
func (c *Auto) UpdateEndpoints(endpoints []tailcfg.Endpoint) {
changed := c.direct.SetEndpoints(endpoints)
if changed {
c.sendNewMapRequest()
}
}
func (c *Auto) Shutdown() {
c.logf("client.Shutdown()")
c.mu.Lock()
inSendStatus := c.inSendStatus
closed := c.closed
direct := c.direct
if !closed {
c.closed = true
}
c.mu.Unlock()
c.logf("client.Shutdown: inSendStatus=%v", inSendStatus)
if !closed {
c.unregisterHealthWatch()
close(c.quit)
c.cancelAuth()
<-c.authDone
c.cancelMapUnsafely()
<-c.mapDone
if direct != nil {
direct.Close()
}
c.logf("Client.Shutdown done.")
}
}
// NodePublicKey returns the node public key currently in use. This is
// used exclusively in tests.
func (c *Auto) TestOnlyNodePublicKey() key.NodePublic {
priv := c.direct.GetPersist()
return priv.PrivateNodeKey().Public()
}
func (c *Auto) TestOnlySetAuthKey(authkey string) {
c.direct.mu.Lock()
defer c.direct.mu.Unlock()
c.direct.authKey = authkey
}
func (c *Auto) TestOnlyTimeNow() time.Time {
return c.timeNow()
}
// SetDNS sends the SetDNSRequest request to the control plane server,
// requesting a DNS record be created or updated.
func (c *Auto) SetDNS(ctx context.Context, req *tailcfg.SetDNSRequest) error {
return c.direct.SetDNS(ctx, req)
}
func (c *Auto) DoNoiseRequest(req *http.Request) (*http.Response, error) {
return c.direct.DoNoiseRequest(req)
}
// GetSingleUseNoiseRoundTripper returns a RoundTripper that can be only be used
// once (and must be used once) to make a single HTTP request over the noise
// channel to the coordination server.
//
// In addition to the RoundTripper, it returns the HTTP/2 channel's early noise
// payload, if any.
func (c *Auto) GetSingleUseNoiseRoundTripper(ctx context.Context) (http.RoundTripper, *tailcfg.EarlyNoise, error) {
return c.direct.GetSingleUseNoiseRoundTripper(ctx)
}