tailscale/syncs/syncs.go
Joe Tsai ff5b4bae99
syncs: add MutexValue (#14422)
MutexValue is simply a value guarded by a mutex.
For any type that is not pointer-sized,
MutexValue will perform much better than AtomicValue
since it will not incur an allocation boxing the value
into an interface value (which is how Go's atomic.Value
is implemented under-the-hood).

Updates #cleanup

Signed-off-by: Joe Tsai <joetsai@digital-static.net>
2024-12-18 17:11:22 -08:00

415 lines
11 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package syncs contains additional sync types and functionality.
package syncs
import (
"context"
"iter"
"sync"
"sync/atomic"
"tailscale.com/util/mak"
)
// ClosedChan returns a channel that's already closed.
func ClosedChan() <-chan struct{} { return closedChan }
var closedChan = initClosedChan()
func initClosedChan() <-chan struct{} {
ch := make(chan struct{})
close(ch)
return ch
}
// AtomicValue is the generic version of [atomic.Value].
// See [MutexValue] for guidance on whether to use this type.
type AtomicValue[T any] struct {
v atomic.Value
}
// wrappedValue is used to wrap a value T in a concrete type,
// otherwise atomic.Value.Store may panic due to mismatching types in interfaces.
// This wrapping is not necessary for non-interface kinds of T,
// but there is no harm in wrapping anyways.
// See https://cs.opensource.google/go/go/+/refs/tags/go1.22.2:src/sync/atomic/value.go;l=78
type wrappedValue[T any] struct{ v T }
// Load returns the value set by the most recent Store.
// It returns the zero value for T if the value is empty.
func (v *AtomicValue[T]) Load() T {
x, _ := v.LoadOk()
return x
}
// LoadOk is like Load but returns a boolean indicating whether the value was
// loaded.
func (v *AtomicValue[T]) LoadOk() (_ T, ok bool) {
x := v.v.Load()
if x != nil {
return x.(wrappedValue[T]).v, true
}
var zero T
return zero, false
}
// Store sets the value of the Value to x.
func (v *AtomicValue[T]) Store(x T) {
v.v.Store(wrappedValue[T]{x})
}
// Swap stores new into Value and returns the previous value.
// It returns the zero value for T if the value is empty.
func (v *AtomicValue[T]) Swap(x T) (old T) {
oldV := v.v.Swap(wrappedValue[T]{x})
if oldV != nil {
return oldV.(wrappedValue[T]).v
}
return old
}
// CompareAndSwap executes the compare-and-swap operation for the Value.
func (v *AtomicValue[T]) CompareAndSwap(oldV, newV T) (swapped bool) {
return v.v.CompareAndSwap(wrappedValue[T]{oldV}, wrappedValue[T]{newV})
}
// MutexValue is a value protected by a mutex.
//
// AtomicValue, [MutexValue], [atomic.Pointer] are similar and
// overlap in their use cases.
//
// - Use [atomic.Pointer] if the value being stored is a pointer and
// you only ever need load and store operations.
// An atomic pointer only occupies 1 word of memory.
//
// - Use [MutexValue] if the value being stored is not a pointer or
// you need the ability for a mutex to protect a set of operations
// performed on the value.
// A mutex-guarded value occupies 1 word of memory plus
// the memory representation of T.
//
// - AtomicValue is useful for non-pointer types that happen to
// have the memory layout of a single pointer.
// Examples include a map, channel, func, or a single field struct
// that contains any prior types.
// An atomic value occupies 2 words of memory.
// Consequently, Storing of non-pointer types always allocates.
//
// Note that [AtomicValue] has the ability to report whether it was set
// while [MutexValue] lacks the ability to detect if the value was set
// and it happens to be the zero value of T. If such a use case is
// necessary, then you could consider wrapping T in [opt.Value].
type MutexValue[T any] struct {
mu sync.Mutex
v T
}
// WithLock calls f with a pointer to the value while holding the lock.
// The provided pointer must not leak beyond the scope of the call.
func (m *MutexValue[T]) WithLock(f func(p *T)) {
m.mu.Lock()
defer m.mu.Unlock()
f(&m.v)
}
// Load returns a shallow copy of the underlying value.
func (m *MutexValue[T]) Load() T {
m.mu.Lock()
defer m.mu.Unlock()
return m.v
}
// Store stores a shallow copy of the provided value.
func (m *MutexValue[T]) Store(v T) {
m.mu.Lock()
defer m.mu.Unlock()
m.v = v
}
// Swap stores new into m and returns the previous value.
func (m *MutexValue[T]) Swap(new T) (old T) {
m.mu.Lock()
defer m.mu.Unlock()
old, m.v = m.v, new
return old
}
// WaitGroupChan is like a sync.WaitGroup, but has a chan that closes
// on completion that you can wait on. (This, you can only use the
// value once)
// Also, its zero value is not usable. Use the constructor.
type WaitGroupChan struct {
n int64 // atomic
done chan struct{} // closed on transition to zero
}
// NewWaitGroupChan returns a new single-use WaitGroupChan.
func NewWaitGroupChan() *WaitGroupChan {
return &WaitGroupChan{done: make(chan struct{})}
}
// DoneChan returns a channel that's closed on completion.
func (wg *WaitGroupChan) DoneChan() <-chan struct{} { return wg.done }
// Add adds delta, which may be negative, to the WaitGroupChan
// counter. If the counter becomes zero, all goroutines blocked on
// Wait or the Done chan are released. If the counter goes negative,
// Add panics.
//
// Note that calls with a positive delta that occur when the counter
// is zero must happen before a Wait. Calls with a negative delta, or
// calls with a positive delta that start when the counter is greater
// than zero, may happen at any time. Typically this means the calls
// to Add should execute before the statement creating the goroutine
// or other event to be waited for.
func (wg *WaitGroupChan) Add(delta int) {
n := atomic.AddInt64(&wg.n, int64(delta))
if n == 0 {
close(wg.done)
}
}
// Decr decrements the WaitGroup counter by one.
//
// (It is like sync.WaitGroup's Done method, but we don't use Done in
// this type, because it's ambiguous between Context.Done and
// WaitGroup.Done. So we use DoneChan and Decr instead.)
func (wg *WaitGroupChan) Decr() {
wg.Add(-1)
}
// Wait blocks until the WaitGroupChan counter is zero.
func (wg *WaitGroupChan) Wait() { <-wg.done }
// Semaphore is a counting semaphore.
//
// Use NewSemaphore to create one.
type Semaphore struct {
c chan struct{}
}
// NewSemaphore returns a semaphore with resource count n.
func NewSemaphore(n int) Semaphore {
return Semaphore{c: make(chan struct{}, n)}
}
// Acquire blocks until a resource is acquired.
func (s Semaphore) Acquire() {
s.c <- struct{}{}
}
// AcquireContext reports whether the resource was acquired before the ctx was done.
func (s Semaphore) AcquireContext(ctx context.Context) bool {
select {
case s.c <- struct{}{}:
return true
case <-ctx.Done():
return false
}
}
// TryAcquire reports, without blocking, whether the resource was acquired.
func (s Semaphore) TryAcquire() bool {
select {
case s.c <- struct{}{}:
return true
default:
return false
}
}
// Release releases a resource.
func (s Semaphore) Release() {
<-s.c
}
// Map is a Go map protected by a [sync.RWMutex].
// It is preferred over [sync.Map] for maps with entries that change
// at a relatively high frequency.
// This must not be shallow copied.
type Map[K comparable, V any] struct {
mu sync.RWMutex
m map[K]V
}
// Load loads the value for the provided key and whether it was found.
func (m *Map[K, V]) Load(key K) (value V, loaded bool) {
m.mu.RLock()
defer m.mu.RUnlock()
value, loaded = m.m[key]
return value, loaded
}
// LoadFunc calls f with the value for the provided key
// regardless of whether the entry exists or not.
// The lock is held for the duration of the call to f.
func (m *Map[K, V]) LoadFunc(key K, f func(value V, loaded bool)) {
m.mu.RLock()
defer m.mu.RUnlock()
value, loaded := m.m[key]
f(value, loaded)
}
// Store stores the value for the provided key.
func (m *Map[K, V]) Store(key K, value V) {
m.mu.Lock()
defer m.mu.Unlock()
mak.Set(&m.m, key, value)
}
// LoadOrStore returns the value for the given key if it exists
// otherwise it stores value.
func (m *Map[K, V]) LoadOrStore(key K, value V) (actual V, loaded bool) {
if actual, loaded = m.Load(key); loaded {
return actual, loaded
}
m.mu.Lock()
defer m.mu.Unlock()
actual, loaded = m.m[key]
if !loaded {
actual = value
mak.Set(&m.m, key, value)
}
return actual, loaded
}
// LoadOrInit returns the value for the given key if it exists
// otherwise f is called to construct the value to be set.
// The lock is held for the duration to prevent duplicate initialization.
func (m *Map[K, V]) LoadOrInit(key K, f func() V) (actual V, loaded bool) {
if actual, loaded := m.Load(key); loaded {
return actual, loaded
}
m.mu.Lock()
defer m.mu.Unlock()
if actual, loaded = m.m[key]; loaded {
return actual, loaded
}
loaded = false
actual = f()
mak.Set(&m.m, key, actual)
return actual, loaded
}
// LoadAndDelete returns the value for the given key if it exists.
// It ensures that the map is cleared of any entry for the key.
func (m *Map[K, V]) LoadAndDelete(key K) (value V, loaded bool) {
m.mu.Lock()
defer m.mu.Unlock()
value, loaded = m.m[key]
if loaded {
delete(m.m, key)
}
return value, loaded
}
// Delete deletes the entry identified by key.
func (m *Map[K, V]) Delete(key K) {
m.mu.Lock()
defer m.mu.Unlock()
delete(m.m, key)
}
// Keys iterates over all keys in the map in an undefined order.
// A read lock is held for the entire duration of the iteration.
// Use the [WithLock] method instead to mutate the map during iteration.
func (m *Map[K, V]) Keys() iter.Seq[K] {
return func(yield func(K) bool) {
m.mu.RLock()
defer m.mu.RUnlock()
for k := range m.m {
if !yield(k) {
return
}
}
}
}
// Values iterates over all values in the map in an undefined order.
// A read lock is held for the entire duration of the iteration.
// Use the [WithLock] method instead to mutate the map during iteration.
func (m *Map[K, V]) Values() iter.Seq[V] {
return func(yield func(V) bool) {
m.mu.RLock()
defer m.mu.RUnlock()
for _, v := range m.m {
if !yield(v) {
return
}
}
}
}
// All iterates over all entries in the map in an undefined order.
// A read lock is held for the entire duration of the iteration.
// Use the [WithLock] method instead to mutate the map during iteration.
func (m *Map[K, V]) All() iter.Seq2[K, V] {
return func(yield func(K, V) bool) {
m.mu.RLock()
defer m.mu.RUnlock()
for k, v := range m.m {
if !yield(k, v) {
return
}
}
}
}
// WithLock calls f with the underlying map.
// Use of m2 must not escape the duration of this call.
// The write-lock is held for the entire duration of this call.
func (m *Map[K, V]) WithLock(f func(m2 map[K]V)) {
m.mu.Lock()
defer m.mu.Unlock()
if m.m == nil {
m.m = make(map[K]V)
}
f(m.m)
}
// Len returns the length of the map.
func (m *Map[K, V]) Len() int {
m.mu.RLock()
defer m.mu.RUnlock()
return len(m.m)
}
// Clear removes all entries from the map.
func (m *Map[K, V]) Clear() {
m.mu.Lock()
defer m.mu.Unlock()
clear(m.m)
}
// Swap stores the value for the provided key, and returns the previous value
// (if any). If there was no previous value set, a zero value will be returned.
func (m *Map[K, V]) Swap(key K, value V) (oldValue V) {
m.mu.Lock()
defer m.mu.Unlock()
oldValue = m.m[key]
mak.Set(&m.m, key, value)
return oldValue
}
// WaitGroup is identical to [sync.WaitGroup],
// but provides a Go method to start a goroutine.
type WaitGroup struct{ sync.WaitGroup }
// Go calls the given function in a new goroutine.
// It automatically increments the counter before execution and
// automatically decrements the counter after execution.
// It must not be called concurrently with Wait.
func (wg *WaitGroup) Go(f func()) {
wg.Add(1)
go func() {
defer wg.Done()
f()
}()
}