tailscale/tstime/rate/value_test.go
Joe Tsai 87b4bbb94f
tstime/rate: add Value (#7491)
Add Value, which measures the rate at which an event occurs,
exponentially weighted towards recent activity.
It is guaranteed to occupy O(1) memory, operate in O(1) runtime,
and is safe for concurrent use.

Signed-off-by: Joe Tsai <joetsai@digital-static.net>
2023-03-09 11:13:09 -08:00

237 lines
6.7 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package rate
import (
"flag"
"math"
"testing"
"time"
qt "github.com/frankban/quicktest"
"github.com/google/go-cmp/cmp/cmpopts"
"tailscale.com/tstime/mono"
)
const (
min = mono.Time(time.Minute)
sec = mono.Time(time.Second)
msec = mono.Time(time.Millisecond)
usec = mono.Time(time.Microsecond)
nsec = mono.Time(time.Nanosecond)
val = 1.0e6
)
var longNumericalStabilityTest = flag.Bool("long-numerical-stability-test", false, "")
func TestValue(t *testing.T) {
// When performing many small calculations, the accuracy of the
// result can drift due to accumulated errors in the calculation.
// Verify that the result is correct even with many small updates.
// See https://en.wikipedia.org/wiki/Numerical_stability.
t.Run("NumericalStability", func(t *testing.T) {
step := usec
if *longNumericalStabilityTest {
step = nsec
}
numStep := int(sec / step)
c := qt.New(t)
var v Value
var now mono.Time
for i := 0; i < numStep; i++ {
v.addNow(now, float64(step))
now += step
}
c.Assert(v.rateNow(now), qt.CmpEquals(cmpopts.EquateApprox(1e-6, 0)), 1e9/2)
})
halfLives := []struct {
name string
period time.Duration
}{
{"½s", time.Second / 2},
{"1s", time.Second},
{"2s", 2 * time.Second},
}
for _, halfLife := range halfLives {
t.Run(halfLife.name+"/SpikeDecay", func(t *testing.T) {
testValueSpikeDecay(t, halfLife.period, false)
})
t.Run(halfLife.name+"/SpikeDecayAddZero", func(t *testing.T) {
testValueSpikeDecay(t, halfLife.period, true)
})
t.Run(halfLife.name+"/HighThenLow", func(t *testing.T) {
testValueHighThenLow(t, halfLife.period)
})
t.Run(halfLife.name+"/LowFrequency", func(t *testing.T) {
testLowFrequency(t, halfLife.period)
})
}
}
// testValueSpikeDecay starts with a target rate and ensure that it
// exponentially decays according to the half-life formula.
func testValueSpikeDecay(t *testing.T, halfLife time.Duration, addZero bool) {
c := qt.New(t)
v := Value{HalfLife: halfLife}
v.addNow(0, val*v.normalizedIntegral())
var now mono.Time
var prevRate float64
step := 100 * msec
wantHalfRate := float64(val)
for now < 10*sec {
// Adding zero for every time-step will repeatedly trigger the
// computation to decay the value, which may cause the result
// to become more numerically unstable.
if addZero {
v.addNow(now, 0)
}
currRate := v.rateNow(now)
t.Logf("%0.1fs:\t%0.3f", time.Duration(now).Seconds(), currRate)
// At every multiple of a half-life period,
// the current rate should be half the value of what
// it was at the last half-life period.
if time.Duration(now)%halfLife == 0 {
c.Assert(currRate, qt.CmpEquals(cmpopts.EquateApprox(1e-12, 0)), wantHalfRate)
wantHalfRate = currRate / 2
}
// Without any newly added events,
// the rate should be decaying over time.
if now > 0 && prevRate < currRate {
t.Errorf("%v: rate is not decaying: %0.1f < %0.1f", time.Duration(now), prevRate, currRate)
}
if currRate < 0 {
t.Errorf("%v: rate too low: %0.1f < %0.1f", time.Duration(now), currRate, 0.0)
}
prevRate = currRate
now += step
}
}
// testValueHighThenLow targets a steady-state rate that is high,
// then switches to a target steady-state rate that is low.
func testValueHighThenLow(t *testing.T, halfLife time.Duration) {
c := qt.New(t)
v := Value{HalfLife: halfLife}
var now mono.Time
var prevRate float64
var wantRate float64
const step = 10 * msec
const stepsPerSecond = int(sec / step)
// Target a higher steady-state rate.
wantRate = 2 * val
wantHalfRate := float64(0.0)
eventsPerStep := wantRate / float64(stepsPerSecond)
for now < 10*sec {
currRate := v.rateNow(now)
v.addNow(now, eventsPerStep)
t.Logf("%0.1fs:\t%0.3f", time.Duration(now).Seconds(), currRate)
// At every multiple of a half-life period,
// the current rate should be half-way more towards
// the target rate relative to before.
if time.Duration(now)%halfLife == 0 {
c.Assert(currRate, qt.CmpEquals(cmpopts.EquateApprox(0.1, 0)), wantHalfRate)
wantHalfRate += (wantRate - currRate) / 2
}
// Rate should approach wantRate from below,
// but never exceed it.
if now > 0 && prevRate > currRate {
t.Errorf("%v: rate is not growing: %0.1f > %0.1f", time.Duration(now), prevRate, currRate)
}
if currRate > 1.01*wantRate {
t.Errorf("%v: rate too high: %0.1f > %0.1f", time.Duration(now), currRate, wantRate)
}
prevRate = currRate
now += step
}
c.Assert(prevRate, qt.CmpEquals(cmpopts.EquateApprox(0.05, 0)), wantRate)
// Target a lower steady-state rate.
wantRate = val / 3
wantHalfRate = prevRate
eventsPerStep = wantRate / float64(stepsPerSecond)
for now < 20*sec {
currRate := v.rateNow(now)
v.addNow(now, eventsPerStep)
t.Logf("%0.1fs:\t%0.3f", time.Duration(now).Seconds(), currRate)
// At every multiple of a half-life period,
// the current rate should be half-way more towards
// the target rate relative to before.
if time.Duration(now)%halfLife == 0 {
c.Assert(currRate, qt.CmpEquals(cmpopts.EquateApprox(0.1, 0)), wantHalfRate)
wantHalfRate += (wantRate - currRate) / 2
}
// Rate should approach wantRate from above,
// but never exceed it.
if now > 10*sec && prevRate < currRate {
t.Errorf("%v: rate is not decaying: %0.1f < %0.1f", time.Duration(now), prevRate, currRate)
}
if currRate < 0.99*wantRate {
t.Errorf("%v: rate too low: %0.1f < %0.1f", time.Duration(now), currRate, wantRate)
}
prevRate = currRate
now += step
}
c.Assert(prevRate, qt.CmpEquals(cmpopts.EquateApprox(0.15, 0)), wantRate)
}
// testLowFrequency fires an event at a frequency much slower than
// the specified half-life period. While the average rate over time
// should be accurate, the standard deviation gets worse.
func testLowFrequency(t *testing.T, halfLife time.Duration) {
v := Value{HalfLife: halfLife}
var now mono.Time
var rates []float64
for now < 20*min {
if now%(10*sec) == 0 {
v.addNow(now, 1) // 1 event every 10 seconds
}
now += 50 * msec
rates = append(rates, v.rateNow(now))
now += 50 * msec
}
mean, stddev := stats(rates)
c := qt.New(t)
c.Assert(mean, qt.CmpEquals(cmpopts.EquateApprox(0.001, 0)), 0.1)
t.Logf("mean:%v stddev:%v", mean, stddev)
}
func stats(fs []float64) (mean, stddev float64) {
for _, rate := range fs {
mean += rate
}
mean /= float64(len(fs))
for _, rate := range fs {
stddev += (rate - mean) * (rate - mean)
}
stddev = math.Sqrt(stddev / float64(len(fs)))
return mean, stddev
}
// BenchmarkValue benchmarks the cost of Value.Add,
// which is called often and makes extensive use of floating-point math.
func BenchmarkValue(b *testing.B) {
b.ReportAllocs()
v := Value{HalfLife: time.Second}
for i := 0; i < b.N; i++ {
v.Add(1)
}
}