tailscale/wgengine/netstack/link_endpoint.go
James Tucker 4903d6c80b wgengine/netstack: block link writes when full rather than drop
Originally identified by Coder and documented in their blog post, this
implementation differs slightly as our link endpoint was introduced for
a different purpose, but the behavior is the same: apply backpressure
rather than dropping packets. This reduces the negative impact of large
packet count bursts substantially. An alternative would be to swell the
size of the channel buffer substantially, however that's largely just
moving where buffering occurs and may lead to reduced signalling back to
lower layer or upstream congestion controls.

Updates #9707
Updates #10408
Updates #12393
Updates tailscale/corp#24483
Updates tailscale/corp#25169

Signed-off-by: James Tucker <james@tailscale.com>
2025-02-06 16:17:25 -08:00

308 lines
7.7 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package netstack
import (
"context"
"sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"tailscale.com/net/packet"
"tailscale.com/types/ipproto"
"tailscale.com/wgengine/netstack/gro"
)
type queue struct {
// TODO(jwhited): evaluate performance with a non-channel buffer.
c chan *stack.PacketBuffer
closeOnce sync.Once
closedCh chan struct{}
mu sync.RWMutex
closed bool
}
func (q *queue) Close() {
q.closeOnce.Do(func() {
close(q.closedCh)
})
q.mu.Lock()
defer q.mu.Unlock()
if q.closed {
return
}
close(q.c)
q.closed = true
}
func (q *queue) Read() *stack.PacketBuffer {
select {
case p := <-q.c:
return p
default:
return nil
}
}
func (q *queue) ReadContext(ctx context.Context) *stack.PacketBuffer {
select {
case pkt := <-q.c:
return pkt
case <-ctx.Done():
return nil
}
}
func (q *queue) Write(pkt *stack.PacketBuffer) tcpip.Error {
q.mu.RLock()
defer q.mu.RUnlock()
if q.closed {
return &tcpip.ErrClosedForSend{}
}
select {
case q.c <- pkt.IncRef():
return nil
case <-q.closedCh:
pkt.DecRef()
return &tcpip.ErrClosedForSend{}
}
}
func (q *queue) Drain() int {
c := 0
for pkt := range q.c {
pkt.DecRef()
c++
}
return c
}
func (q *queue) Num() int {
return len(q.c)
}
var _ stack.LinkEndpoint = (*linkEndpoint)(nil)
var _ stack.GSOEndpoint = (*linkEndpoint)(nil)
type supportedGRO int
const (
groNotSupported supportedGRO = iota
tcpGROSupported
)
// linkEndpoint implements stack.LinkEndpoint and stack.GSOEndpoint. Outbound
// packets written by gVisor towards Tailscale are stored in a channel.
// Inbound is fed to gVisor via injectInbound or gro. This is loosely
// modeled after gvisor.dev/pkg/tcpip/link/channel.Endpoint.
type linkEndpoint struct {
SupportedGSOKind stack.SupportedGSO
supportedGRO supportedGRO
mu sync.RWMutex // mu guards the following fields
dispatcher stack.NetworkDispatcher
linkAddr tcpip.LinkAddress
mtu uint32
q *queue // outbound
}
func newLinkEndpoint(size int, mtu uint32, linkAddr tcpip.LinkAddress, supportedGRO supportedGRO) *linkEndpoint {
le := &linkEndpoint{
supportedGRO: supportedGRO,
q: &queue{
c: make(chan *stack.PacketBuffer, size),
closedCh: make(chan struct{}),
},
mtu: mtu,
linkAddr: linkAddr,
}
return le
}
// gro attempts to enqueue p on g if l supports a GRO kind matching the
// transport protocol carried in p. gro may allocate g if it is nil. gro can
// either return the existing g, a newly allocated one, or nil. Callers are
// responsible for calling Flush() on the returned value if it is non-nil once
// they have finished iterating through all GRO candidates for a given vector.
// If gro allocates a *gro.GRO it will have l's stack.NetworkDispatcher set via
// SetDispatcher().
func (l *linkEndpoint) gro(p *packet.Parsed, g *gro.GRO) *gro.GRO {
if l.supportedGRO == groNotSupported || p.IPProto != ipproto.TCP {
// IPv6 may have extension headers preceding a TCP header, but we trade
// for a fast path and assume p cannot be coalesced in such a case.
l.injectInbound(p)
return g
}
if g == nil {
l.mu.RLock()
d := l.dispatcher
l.mu.RUnlock()
g = gro.NewGRO()
g.SetDispatcher(d)
}
g.Enqueue(p)
return g
}
// Close closes l. Further packet injections will return an error, and all
// pending packets are discarded. Close may be called concurrently with
// WritePackets.
func (l *linkEndpoint) Close() {
l.mu.Lock()
l.dispatcher = nil
l.mu.Unlock()
l.q.Close()
l.Drain()
}
// Read does non-blocking read one packet from the outbound packet queue.
func (l *linkEndpoint) Read() *stack.PacketBuffer {
return l.q.Read()
}
// ReadContext does blocking read for one packet from the outbound packet queue.
// It can be cancelled by ctx, and in this case, it returns nil.
func (l *linkEndpoint) ReadContext(ctx context.Context) *stack.PacketBuffer {
return l.q.ReadContext(ctx)
}
// Drain removes all outbound packets from the channel and counts them.
func (l *linkEndpoint) Drain() int {
return l.q.Drain()
}
// NumQueued returns the number of packets queued for outbound.
func (l *linkEndpoint) NumQueued() int {
return l.q.Num()
}
func (l *linkEndpoint) injectInbound(p *packet.Parsed) {
l.mu.RLock()
d := l.dispatcher
l.mu.RUnlock()
if d == nil {
return
}
pkt := gro.RXChecksumOffload(p)
if pkt == nil {
return
}
d.DeliverNetworkPacket(pkt.NetworkProtocolNumber, pkt)
pkt.DecRef()
}
// Attach saves the stack network-layer dispatcher for use later when packets
// are injected.
func (l *linkEndpoint) Attach(dispatcher stack.NetworkDispatcher) {
l.mu.Lock()
defer l.mu.Unlock()
l.dispatcher = dispatcher
}
// IsAttached implements stack.LinkEndpoint.IsAttached.
func (l *linkEndpoint) IsAttached() bool {
l.mu.RLock()
defer l.mu.RUnlock()
return l.dispatcher != nil
}
// MTU implements stack.LinkEndpoint.MTU.
func (l *linkEndpoint) MTU() uint32 {
l.mu.RLock()
defer l.mu.RUnlock()
return l.mtu
}
// SetMTU implements stack.LinkEndpoint.SetMTU.
func (l *linkEndpoint) SetMTU(mtu uint32) {
l.mu.Lock()
defer l.mu.Unlock()
l.mtu = mtu
}
// Capabilities implements stack.LinkEndpoint.Capabilities.
func (l *linkEndpoint) Capabilities() stack.LinkEndpointCapabilities {
// We are required to offload RX checksum validation for the purposes of
// GRO.
return stack.CapabilityRXChecksumOffload
}
// GSOMaxSize implements stack.GSOEndpoint.
func (*linkEndpoint) GSOMaxSize() uint32 {
// This an increase from 32k returned by channel.Endpoint.GSOMaxSize() to
// 64k, which improves throughput.
return (1 << 16) - 1
}
// SupportedGSO implements stack.GSOEndpoint.
func (l *linkEndpoint) SupportedGSO() stack.SupportedGSO {
return l.SupportedGSOKind
}
// MaxHeaderLength returns the maximum size of the link layer header. Given it
// doesn't have a header, it just returns 0.
func (*linkEndpoint) MaxHeaderLength() uint16 {
return 0
}
// LinkAddress returns the link address of this endpoint.
func (l *linkEndpoint) LinkAddress() tcpip.LinkAddress {
l.mu.RLock()
defer l.mu.RUnlock()
return l.linkAddr
}
// SetLinkAddress implements stack.LinkEndpoint.SetLinkAddress.
func (l *linkEndpoint) SetLinkAddress(addr tcpip.LinkAddress) {
l.mu.Lock()
defer l.mu.Unlock()
l.linkAddr = addr
}
// WritePackets stores outbound packets into the channel.
// Multiple concurrent calls are permitted.
func (l *linkEndpoint) WritePackets(pkts stack.PacketBufferList) (int, tcpip.Error) {
n := 0
// TODO(jwhited): evaluate writing a stack.PacketBufferList instead of a
// single packet. We can split 2 x 64K GSO across
// wireguard-go/conn.IdealBatchSize (128 slots) @ 1280 MTU, and non-GSO we
// could do more. Read API would need to change to take advantage. Verify
// gVisor limits around max number of segments packed together. Since we
// control MTU (and by effect TCP MSS in gVisor) we *shouldn't* expect to
// ever overflow 128 slots (see wireguard-go/tun.ErrTooManySegments usage).
for _, pkt := range pkts.AsSlice() {
if err := l.q.Write(pkt); err != nil {
if _, ok := err.(*tcpip.ErrNoBufferSpace); !ok && n == 0 {
return 0, err
}
break
}
n++
}
return n, nil
}
// Wait implements stack.LinkEndpoint.Wait.
func (*linkEndpoint) Wait() {}
// ARPHardwareType implements stack.LinkEndpoint.ARPHardwareType.
func (*linkEndpoint) ARPHardwareType() header.ARPHardwareType {
return header.ARPHardwareNone
}
// AddHeader implements stack.LinkEndpoint.AddHeader.
func (*linkEndpoint) AddHeader(*stack.PacketBuffer) {}
// ParseHeader implements stack.LinkEndpoint.ParseHeader.
func (*linkEndpoint) ParseHeader(*stack.PacketBuffer) bool { return true }
// SetOnCloseAction implements stack.LinkEndpoint.
func (*linkEndpoint) SetOnCloseAction(func()) {}