mirror of
https://github.com/tailscale/tailscale.git
synced 2024-12-11 10:44:41 +00:00
02ad987e24
This is so that we can plumb our client capability version through the protocol as the Noise version. The capability version increments more frequently than strictly required (the Noise version only needs to change when cryptographically-significant changes are made to the protocol, whereas the capability version also indicates changes in non-cryptographically-significant parts of the protocol), but this gives us a safe pre-auth way to determine if the client supports future protocol features, while still relying on Noise's strong assurance that the client and server have agreed on the same version. Currently, the server executes the same protocol regardless of the version number, and just presents the version to the caller so they can do capability-based things in the upper RPC protocol. In future, we may add a ratchet to disallow obsolete protocols, or vary the Noise handshake behavior based on requested version. Updates #3488 Signed-off-by: David Anderson <danderson@tailscale.com>
240 lines
7.5 KiB
Go
240 lines
7.5 KiB
Go
// Copyright (c) 2021 Tailscale Inc & AUTHORS All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package controlhttp implements the Tailscale 2021 control protocol
|
|
// base transport over HTTP.
|
|
//
|
|
// This tunnels the protocol in control/controlbase over HTTP with a
|
|
// variety of compatibility fallbacks for handling picky or deep
|
|
// inspecting proxies.
|
|
//
|
|
// In the happy path, a client makes a single cleartext HTTP request
|
|
// to the server, the server responds with 101 Switching Protocols,
|
|
// and the control base protocol takes place over plain TCP.
|
|
//
|
|
// In the compatibility path, the client does the above over HTTPS,
|
|
// resulting in double encryption (once for the control transport, and
|
|
// once for the outer TLS layer).
|
|
package controlhttp
|
|
|
|
import (
|
|
"context"
|
|
"crypto/tls"
|
|
"encoding/base64"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"log"
|
|
"net"
|
|
"net/http"
|
|
"net/http/httptrace"
|
|
"net/url"
|
|
|
|
"tailscale.com/control/controlbase"
|
|
"tailscale.com/net/dnscache"
|
|
"tailscale.com/net/dnsfallback"
|
|
"tailscale.com/net/netns"
|
|
"tailscale.com/net/netutil"
|
|
"tailscale.com/net/tlsdial"
|
|
"tailscale.com/net/tshttpproxy"
|
|
"tailscale.com/types/key"
|
|
)
|
|
|
|
const (
|
|
// upgradeHeader is the value of the Upgrade HTTP header used to
|
|
// indicate the Tailscale control protocol.
|
|
upgradeHeaderValue = "tailscale-control-protocol"
|
|
|
|
// handshakeHeaderName is the HTTP request header that can
|
|
// optionally contain base64-encoded initial handshake
|
|
// payload, to save an RTT.
|
|
handshakeHeaderName = "X-Tailscale-Handshake"
|
|
|
|
// serverUpgradePath is where the server-side HTTP handler to
|
|
// to do the protocol switch is located.
|
|
serverUpgradePath = "/ts2021"
|
|
)
|
|
|
|
// Dial connects to the HTTP server at addr, requests to switch to the
|
|
// Tailscale control protocol, and returns an established control
|
|
// protocol connection.
|
|
//
|
|
// If Dial fails to connect using addr, it also tries to tunnel over
|
|
// TLS to <addr's host>:443 as a compatibility fallback.
|
|
//
|
|
// The provided ctx is only used for the initial connection, until
|
|
// Dial returns. It does not affect the connection once established.
|
|
func Dial(ctx context.Context, addr string, machineKey key.MachinePrivate, controlKey key.MachinePublic, protocolVersion uint16) (*controlbase.Conn, error) {
|
|
host, port, err := net.SplitHostPort(addr)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
a := &dialParams{
|
|
ctx: ctx,
|
|
host: host,
|
|
httpPort: port,
|
|
httpsPort: "443",
|
|
machineKey: machineKey,
|
|
controlKey: controlKey,
|
|
version: protocolVersion,
|
|
proxyFunc: tshttpproxy.ProxyFromEnvironment,
|
|
}
|
|
return a.dial()
|
|
}
|
|
|
|
type dialParams struct {
|
|
ctx context.Context
|
|
host string
|
|
httpPort string
|
|
httpsPort string
|
|
machineKey key.MachinePrivate
|
|
controlKey key.MachinePublic
|
|
version uint16
|
|
proxyFunc func(*http.Request) (*url.URL, error) // or nil
|
|
|
|
// For tests only
|
|
insecureTLS bool
|
|
}
|
|
|
|
func (a *dialParams) dial() (*controlbase.Conn, error) {
|
|
init, cont, err := controlbase.ClientDeferred(a.machineKey, a.controlKey, a.version)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
u := &url.URL{
|
|
Scheme: "http",
|
|
Host: net.JoinHostPort(a.host, a.httpPort),
|
|
Path: serverUpgradePath,
|
|
}
|
|
conn, httpErr := a.tryURL(u, init)
|
|
if httpErr == nil {
|
|
ret, err := cont(a.ctx, conn)
|
|
if err != nil {
|
|
conn.Close()
|
|
return nil, err
|
|
}
|
|
return ret, nil
|
|
}
|
|
|
|
// Connecting over plain HTTP failed, assume it's an HTTP proxy
|
|
// being difficult and see if we can get through over HTTPS.
|
|
u.Scheme = "https"
|
|
u.Host = net.JoinHostPort(a.host, a.httpsPort)
|
|
init, cont, err = controlbase.ClientDeferred(a.machineKey, a.controlKey, a.version)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
conn, tlsErr := a.tryURL(u, init)
|
|
if tlsErr == nil {
|
|
ret, err := cont(a.ctx, conn)
|
|
if err != nil {
|
|
conn.Close()
|
|
return nil, err
|
|
}
|
|
return ret, nil
|
|
}
|
|
|
|
return nil, fmt.Errorf("all connection attempts failed (HTTP: %v, HTTPS: %v)", httpErr, tlsErr)
|
|
}
|
|
|
|
func (a *dialParams) tryURL(u *url.URL, init []byte) (net.Conn, error) {
|
|
dns := &dnscache.Resolver{
|
|
Forward: dnscache.Get().Forward,
|
|
LookupIPFallback: dnsfallback.Lookup,
|
|
UseLastGood: true,
|
|
}
|
|
dialer := netns.NewDialer(log.Printf)
|
|
tr := http.DefaultTransport.(*http.Transport).Clone()
|
|
defer tr.CloseIdleConnections()
|
|
tr.Proxy = a.proxyFunc
|
|
tshttpproxy.SetTransportGetProxyConnectHeader(tr)
|
|
tr.DialContext = dnscache.Dialer(dialer.DialContext, dns)
|
|
// Disable HTTP2, since h2 can't do protocol switching.
|
|
tr.TLSClientConfig.NextProtos = []string{}
|
|
tr.TLSNextProto = map[string]func(string, *tls.Conn) http.RoundTripper{}
|
|
tr.TLSClientConfig = tlsdial.Config(a.host, tr.TLSClientConfig)
|
|
if a.insecureTLS {
|
|
tr.TLSClientConfig.InsecureSkipVerify = true
|
|
tr.TLSClientConfig.VerifyConnection = nil
|
|
}
|
|
tr.DialTLSContext = dnscache.TLSDialer(dialer.DialContext, dns, tr.TLSClientConfig)
|
|
tr.DisableCompression = true
|
|
|
|
// (mis)use httptrace to extract the underlying net.Conn from the
|
|
// transport. We make exactly 1 request using this transport, so
|
|
// there will be exactly 1 GotConn call. Additionally, the
|
|
// transport handles 101 Switching Protocols correctly, such that
|
|
// the Conn will not be reused or kept alive by the transport once
|
|
// the response has been handed back from RoundTrip.
|
|
//
|
|
// In theory, the machinery of net/http should make it such that
|
|
// the trace callback happens-before we get the response, but
|
|
// there's no promise of that. So, to make sure, we use a buffered
|
|
// channel as a synchronization step to avoid data races.
|
|
//
|
|
// Note that even though we're able to extract a net.Conn via this
|
|
// mechanism, we must still keep using the eventual resp.Body to
|
|
// read from, because it includes a buffer we can't get rid of. If
|
|
// the server never sends any data after sending the HTTP
|
|
// response, we could get away with it, but violating this
|
|
// assumption leads to very mysterious transport errors (lockups,
|
|
// unexpected EOFs...), and we're bound to forget someday and
|
|
// introduce a protocol optimization at a higher level that starts
|
|
// eagerly transmitting from the server.
|
|
connCh := make(chan net.Conn, 1)
|
|
trace := httptrace.ClientTrace{
|
|
GotConn: func(info httptrace.GotConnInfo) {
|
|
connCh <- info.Conn
|
|
},
|
|
}
|
|
ctx := httptrace.WithClientTrace(a.ctx, &trace)
|
|
req := &http.Request{
|
|
Method: "POST",
|
|
URL: u,
|
|
Header: http.Header{
|
|
"Upgrade": []string{upgradeHeaderValue},
|
|
"Connection": []string{"upgrade"},
|
|
handshakeHeaderName: []string{base64.StdEncoding.EncodeToString(init)},
|
|
},
|
|
}
|
|
req = req.WithContext(ctx)
|
|
|
|
resp, err := tr.RoundTrip(req)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if resp.StatusCode != http.StatusSwitchingProtocols {
|
|
return nil, fmt.Errorf("unexpected HTTP response: %s", resp.Status)
|
|
}
|
|
|
|
// From here on, the underlying net.Conn is ours to use, but there
|
|
// is still a read buffer attached to it within resp.Body. So, we
|
|
// must direct I/O through resp.Body, but we can still use the
|
|
// underlying net.Conn for stuff like deadlines.
|
|
var switchedConn net.Conn
|
|
select {
|
|
case switchedConn = <-connCh:
|
|
default:
|
|
}
|
|
if switchedConn == nil {
|
|
resp.Body.Close()
|
|
return nil, fmt.Errorf("httptrace didn't provide a connection")
|
|
}
|
|
|
|
if next := resp.Header.Get("Upgrade"); next != upgradeHeaderValue {
|
|
resp.Body.Close()
|
|
return nil, fmt.Errorf("server switched to unexpected protocol %q", next)
|
|
}
|
|
|
|
rwc, ok := resp.Body.(io.ReadWriteCloser)
|
|
if !ok {
|
|
resp.Body.Close()
|
|
return nil, errors.New("http Transport did not provide a writable body")
|
|
}
|
|
|
|
return netutil.NewAltReadWriteCloserConn(rwc, switchedConn), nil
|
|
}
|