tailscale/derp/xdp/headers/bpf_helpers.h
Jordan Whited 65888d95c9
derp/xdp,cmd/xdpderper: initial skeleton (#12390)
This commit introduces a userspace program for managing an experimental
eBPF XDP STUN server program. derp/xdp contains the eBPF pseudo-C along
with a Go pkg for loading it and exporting its metrics.
cmd/xdpderper is a package main user of derp/xdp.

Updates tailscale/corp#20689

Signed-off-by: Jordan Whited <jordan@tailscale.com>
2024-06-14 08:45:24 -07:00

411 lines
15 KiB
C

/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
#ifndef __BPF_HELPERS__
#define __BPF_HELPERS__
/*
* Note that bpf programs need to include either
* vmlinux.h (auto-generated from BTF) or linux/types.h
* in advance since bpf_helper_defs.h uses such types
* as __u64.
*/
#include "bpf_helper_defs.h"
#define __uint(name, val) int (*name)[val]
#define __type(name, val) typeof(val) *name
#define __array(name, val) typeof(val) *name[]
#define __ulong(name, val) enum { ___bpf_concat(__unique_value, __COUNTER__) = val } name
/*
* Helper macro to place programs, maps, license in
* different sections in elf_bpf file. Section names
* are interpreted by libbpf depending on the context (BPF programs, BPF maps,
* extern variables, etc).
* To allow use of SEC() with externs (e.g., for extern .maps declarations),
* make sure __attribute__((unused)) doesn't trigger compilation warning.
*/
#if __GNUC__ && !__clang__
/*
* Pragma macros are broken on GCC
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=55578
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90400
*/
#define SEC(name) __attribute__((section(name), used))
#else
#define SEC(name) \
_Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic ignored \"-Wignored-attributes\"") \
__attribute__((section(name), used)) \
_Pragma("GCC diagnostic pop") \
#endif
/* Avoid 'linux/stddef.h' definition of '__always_inline'. */
#undef __always_inline
#define __always_inline inline __attribute__((always_inline))
#ifndef __noinline
#define __noinline __attribute__((noinline))
#endif
#ifndef __weak
#define __weak __attribute__((weak))
#endif
/*
* Use __hidden attribute to mark a non-static BPF subprogram effectively
* static for BPF verifier's verification algorithm purposes, allowing more
* extensive and permissive BPF verification process, taking into account
* subprogram's caller context.
*/
#define __hidden __attribute__((visibility("hidden")))
/* When utilizing vmlinux.h with BPF CO-RE, user BPF programs can't include
* any system-level headers (such as stddef.h, linux/version.h, etc), and
* commonly-used macros like NULL and KERNEL_VERSION aren't available through
* vmlinux.h. This just adds unnecessary hurdles and forces users to re-define
* them on their own. So as a convenience, provide such definitions here.
*/
#ifndef NULL
#define NULL ((void *)0)
#endif
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a, b, c) (((a) << 16) + ((b) << 8) + ((c) > 255 ? 255 : (c)))
#endif
/*
* Helper macros to manipulate data structures
*/
/* offsetof() definition that uses __builtin_offset() might not preserve field
* offset CO-RE relocation properly, so force-redefine offsetof() using
* old-school approach which works with CO-RE correctly
*/
#undef offsetof
#define offsetof(type, member) ((unsigned long)&((type *)0)->member)
/* redefined container_of() to ensure we use the above offsetof() macro */
#undef container_of
#define container_of(ptr, type, member) \
({ \
void *__mptr = (void *)(ptr); \
((type *)(__mptr - offsetof(type, member))); \
})
/*
* Compiler (optimization) barrier.
*/
#ifndef barrier
#define barrier() asm volatile("" ::: "memory")
#endif
/* Variable-specific compiler (optimization) barrier. It's a no-op which makes
* compiler believe that there is some black box modification of a given
* variable and thus prevents compiler from making extra assumption about its
* value and potential simplifications and optimizations on this variable.
*
* E.g., compiler might often delay or even omit 32-bit to 64-bit casting of
* a variable, making some code patterns unverifiable. Putting barrier_var()
* in place will ensure that cast is performed before the barrier_var()
* invocation, because compiler has to pessimistically assume that embedded
* asm section might perform some extra operations on that variable.
*
* This is a variable-specific variant of more global barrier().
*/
#ifndef barrier_var
#define barrier_var(var) asm volatile("" : "+r"(var))
#endif
/*
* Helper macro to throw a compilation error if __bpf_unreachable() gets
* built into the resulting code. This works given BPF back end does not
* implement __builtin_trap(). This is useful to assert that certain paths
* of the program code are never used and hence eliminated by the compiler.
*
* For example, consider a switch statement that covers known cases used by
* the program. __bpf_unreachable() can then reside in the default case. If
* the program gets extended such that a case is not covered in the switch
* statement, then it will throw a build error due to the default case not
* being compiled out.
*/
#ifndef __bpf_unreachable
# define __bpf_unreachable() __builtin_trap()
#endif
/*
* Helper function to perform a tail call with a constant/immediate map slot.
*/
#if __clang_major__ >= 8 && defined(__bpf__)
static __always_inline void
bpf_tail_call_static(void *ctx, const void *map, const __u32 slot)
{
if (!__builtin_constant_p(slot))
__bpf_unreachable();
/*
* Provide a hard guarantee that LLVM won't optimize setting r2 (map
* pointer) and r3 (constant map index) from _different paths_ ending
* up at the _same_ call insn as otherwise we won't be able to use the
* jmpq/nopl retpoline-free patching by the x86-64 JIT in the kernel
* given they mismatch. See also d2e4c1e6c294 ("bpf: Constant map key
* tracking for prog array pokes") for details on verifier tracking.
*
* Note on clobber list: we need to stay in-line with BPF calling
* convention, so even if we don't end up using r0, r4, r5, we need
* to mark them as clobber so that LLVM doesn't end up using them
* before / after the call.
*/
asm volatile("r1 = %[ctx]\n\t"
"r2 = %[map]\n\t"
"r3 = %[slot]\n\t"
"call 12"
:: [ctx]"r"(ctx), [map]"r"(map), [slot]"i"(slot)
: "r0", "r1", "r2", "r3", "r4", "r5");
}
#endif
enum libbpf_pin_type {
LIBBPF_PIN_NONE,
/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
LIBBPF_PIN_BY_NAME,
};
enum libbpf_tristate {
TRI_NO = 0,
TRI_YES = 1,
TRI_MODULE = 2,
};
#define __kconfig __attribute__((section(".kconfig")))
#define __ksym __attribute__((section(".ksyms")))
#define __kptr_untrusted __attribute__((btf_type_tag("kptr_untrusted")))
#define __kptr __attribute__((btf_type_tag("kptr")))
#define __percpu_kptr __attribute__((btf_type_tag("percpu_kptr")))
#define bpf_ksym_exists(sym) ({ \
_Static_assert(!__builtin_constant_p(!!sym), #sym " should be marked as __weak"); \
!!sym; \
})
#define __arg_ctx __attribute__((btf_decl_tag("arg:ctx")))
#define __arg_nonnull __attribute((btf_decl_tag("arg:nonnull")))
#define __arg_nullable __attribute((btf_decl_tag("arg:nullable")))
#define __arg_trusted __attribute((btf_decl_tag("arg:trusted")))
#define __arg_arena __attribute((btf_decl_tag("arg:arena")))
#ifndef ___bpf_concat
#define ___bpf_concat(a, b) a ## b
#endif
#ifndef ___bpf_apply
#define ___bpf_apply(fn, n) ___bpf_concat(fn, n)
#endif
#ifndef ___bpf_nth
#define ___bpf_nth(_, _1, _2, _3, _4, _5, _6, _7, _8, _9, _a, _b, _c, N, ...) N
#endif
#ifndef ___bpf_narg
#define ___bpf_narg(...) \
___bpf_nth(_, ##__VA_ARGS__, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
#endif
#define ___bpf_fill0(arr, p, x) do {} while (0)
#define ___bpf_fill1(arr, p, x) arr[p] = x
#define ___bpf_fill2(arr, p, x, args...) arr[p] = x; ___bpf_fill1(arr, p + 1, args)
#define ___bpf_fill3(arr, p, x, args...) arr[p] = x; ___bpf_fill2(arr, p + 1, args)
#define ___bpf_fill4(arr, p, x, args...) arr[p] = x; ___bpf_fill3(arr, p + 1, args)
#define ___bpf_fill5(arr, p, x, args...) arr[p] = x; ___bpf_fill4(arr, p + 1, args)
#define ___bpf_fill6(arr, p, x, args...) arr[p] = x; ___bpf_fill5(arr, p + 1, args)
#define ___bpf_fill7(arr, p, x, args...) arr[p] = x; ___bpf_fill6(arr, p + 1, args)
#define ___bpf_fill8(arr, p, x, args...) arr[p] = x; ___bpf_fill7(arr, p + 1, args)
#define ___bpf_fill9(arr, p, x, args...) arr[p] = x; ___bpf_fill8(arr, p + 1, args)
#define ___bpf_fill10(arr, p, x, args...) arr[p] = x; ___bpf_fill9(arr, p + 1, args)
#define ___bpf_fill11(arr, p, x, args...) arr[p] = x; ___bpf_fill10(arr, p + 1, args)
#define ___bpf_fill12(arr, p, x, args...) arr[p] = x; ___bpf_fill11(arr, p + 1, args)
#define ___bpf_fill(arr, args...) \
___bpf_apply(___bpf_fill, ___bpf_narg(args))(arr, 0, args)
/*
* BPF_SEQ_PRINTF to wrap bpf_seq_printf to-be-printed values
* in a structure.
*/
#define BPF_SEQ_PRINTF(seq, fmt, args...) \
({ \
static const char ___fmt[] = fmt; \
unsigned long long ___param[___bpf_narg(args)]; \
\
_Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic ignored \"-Wint-conversion\"") \
___bpf_fill(___param, args); \
_Pragma("GCC diagnostic pop") \
\
bpf_seq_printf(seq, ___fmt, sizeof(___fmt), \
___param, sizeof(___param)); \
})
/*
* BPF_SNPRINTF wraps the bpf_snprintf helper with variadic arguments instead of
* an array of u64.
*/
#define BPF_SNPRINTF(out, out_size, fmt, args...) \
({ \
static const char ___fmt[] = fmt; \
unsigned long long ___param[___bpf_narg(args)]; \
\
_Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic ignored \"-Wint-conversion\"") \
___bpf_fill(___param, args); \
_Pragma("GCC diagnostic pop") \
\
bpf_snprintf(out, out_size, ___fmt, \
___param, sizeof(___param)); \
})
#ifdef BPF_NO_GLOBAL_DATA
#define BPF_PRINTK_FMT_MOD
#else
#define BPF_PRINTK_FMT_MOD static const
#endif
#define __bpf_printk(fmt, ...) \
({ \
BPF_PRINTK_FMT_MOD char ____fmt[] = fmt; \
bpf_trace_printk(____fmt, sizeof(____fmt), \
##__VA_ARGS__); \
})
/*
* __bpf_vprintk wraps the bpf_trace_vprintk helper with variadic arguments
* instead of an array of u64.
*/
#define __bpf_vprintk(fmt, args...) \
({ \
static const char ___fmt[] = fmt; \
unsigned long long ___param[___bpf_narg(args)]; \
\
_Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic ignored \"-Wint-conversion\"") \
___bpf_fill(___param, args); \
_Pragma("GCC diagnostic pop") \
\
bpf_trace_vprintk(___fmt, sizeof(___fmt), \
___param, sizeof(___param)); \
})
/* Use __bpf_printk when bpf_printk call has 3 or fewer fmt args
* Otherwise use __bpf_vprintk
*/
#define ___bpf_pick_printk(...) \
___bpf_nth(_, ##__VA_ARGS__, __bpf_vprintk, __bpf_vprintk, __bpf_vprintk, \
__bpf_vprintk, __bpf_vprintk, __bpf_vprintk, __bpf_vprintk, \
__bpf_vprintk, __bpf_vprintk, __bpf_printk /*3*/, __bpf_printk /*2*/,\
__bpf_printk /*1*/, __bpf_printk /*0*/)
/* Helper macro to print out debug messages */
#define bpf_printk(fmt, args...) ___bpf_pick_printk(args)(fmt, ##args)
struct bpf_iter_num;
extern int bpf_iter_num_new(struct bpf_iter_num *it, int start, int end) __weak __ksym;
extern int *bpf_iter_num_next(struct bpf_iter_num *it) __weak __ksym;
extern void bpf_iter_num_destroy(struct bpf_iter_num *it) __weak __ksym;
#ifndef bpf_for_each
/* bpf_for_each(iter_type, cur_elem, args...) provides generic construct for
* using BPF open-coded iterators without having to write mundane explicit
* low-level loop logic. Instead, it provides for()-like generic construct
* that can be used pretty naturally. E.g., for some hypothetical cgroup
* iterator, you'd write:
*
* struct cgroup *cg, *parent_cg = <...>;
*
* bpf_for_each(cgroup, cg, parent_cg, CG_ITER_CHILDREN) {
* bpf_printk("Child cgroup id = %d", cg->cgroup_id);
* if (cg->cgroup_id == 123)
* break;
* }
*
* I.e., it looks almost like high-level for each loop in other languages,
* supports continue/break, and is verifiable by BPF verifier.
*
* For iterating integers, the difference betwen bpf_for_each(num, i, N, M)
* and bpf_for(i, N, M) is in that bpf_for() provides additional proof to
* verifier that i is in [N, M) range, and in bpf_for_each() case i is `int
* *`, not just `int`. So for integers bpf_for() is more convenient.
*
* Note: this macro relies on C99 feature of allowing to declare variables
* inside for() loop, bound to for() loop lifetime. It also utilizes GCC
* extension: __attribute__((cleanup(<func>))), supported by both GCC and
* Clang.
*/
#define bpf_for_each(type, cur, args...) for ( \
/* initialize and define destructor */ \
struct bpf_iter_##type ___it __attribute__((aligned(8), /* enforce, just in case */, \
cleanup(bpf_iter_##type##_destroy))), \
/* ___p pointer is just to call bpf_iter_##type##_new() *once* to init ___it */ \
*___p __attribute__((unused)) = ( \
bpf_iter_##type##_new(&___it, ##args), \
/* this is a workaround for Clang bug: it currently doesn't emit BTF */ \
/* for bpf_iter_##type##_destroy() when used from cleanup() attribute */ \
(void)bpf_iter_##type##_destroy, (void *)0); \
/* iteration and termination check */ \
(((cur) = bpf_iter_##type##_next(&___it))); \
)
#endif /* bpf_for_each */
#ifndef bpf_for
/* bpf_for(i, start, end) implements a for()-like looping construct that sets
* provided integer variable *i* to values starting from *start* through,
* but not including, *end*. It also proves to BPF verifier that *i* belongs
* to range [start, end), so this can be used for accessing arrays without
* extra checks.
*
* Note: *start* and *end* are assumed to be expressions with no side effects
* and whose values do not change throughout bpf_for() loop execution. They do
* not have to be statically known or constant, though.
*
* Note: similarly to bpf_for_each(), it relies on C99 feature of declaring for()
* loop bound variables and cleanup attribute, supported by GCC and Clang.
*/
#define bpf_for(i, start, end) for ( \
/* initialize and define destructor */ \
struct bpf_iter_num ___it __attribute__((aligned(8), /* enforce, just in case */ \
cleanup(bpf_iter_num_destroy))), \
/* ___p pointer is necessary to call bpf_iter_num_new() *once* to init ___it */ \
*___p __attribute__((unused)) = ( \
bpf_iter_num_new(&___it, (start), (end)), \
/* this is a workaround for Clang bug: it currently doesn't emit BTF */ \
/* for bpf_iter_num_destroy() when used from cleanup() attribute */ \
(void)bpf_iter_num_destroy, (void *)0); \
({ \
/* iteration step */ \
int *___t = bpf_iter_num_next(&___it); \
/* termination and bounds check */ \
(___t && ((i) = *___t, (i) >= (start) && (i) < (end))); \
}); \
)
#endif /* bpf_for */
#ifndef bpf_repeat
/* bpf_repeat(N) performs N iterations without exposing iteration number
*
* Note: similarly to bpf_for_each(), it relies on C99 feature of declaring for()
* loop bound variables and cleanup attribute, supported by GCC and Clang.
*/
#define bpf_repeat(N) for ( \
/* initialize and define destructor */ \
struct bpf_iter_num ___it __attribute__((aligned(8), /* enforce, just in case */ \
cleanup(bpf_iter_num_destroy))), \
/* ___p pointer is necessary to call bpf_iter_num_new() *once* to init ___it */ \
*___p __attribute__((unused)) = ( \
bpf_iter_num_new(&___it, 0, (N)), \
/* this is a workaround for Clang bug: it currently doesn't emit BTF */ \
/* for bpf_iter_num_destroy() when used from cleanup() attribute */ \
(void)bpf_iter_num_destroy, (void *)0); \
bpf_iter_num_next(&___it); \
/* nothing here */ \
)
#endif /* bpf_repeat */
#endif