tailscale/tempfork/sshtest/ssh/client_auth.go
Brad Fitzpatrick 2f98197857 tempfork/sshtest/ssh: add fork of golang.org/x/crypto/ssh for testing only
This fork golang.org/x/crypto/ssh (at upstream x/crypto git rev e47973b1c1)
into tailscale.com/tempfork/sshtest/ssh so we can hack up the client in weird
ways to simulate other SSH clients seen in the wild.

Two changes were made to the files when they were copied from x/crypto:

* internal/poly1305 imports were replaced by the non-internal version;
  no code changes otherwise. It didn't need the internal one.
* all decode-with-passphrase funcs were deleted, to avoid
  using the internal package x/crypto/ssh/internal/bcrypt_pbkdf

Then the tests passed.

Updates #14969

Change-Id: Ibf1abebfe608c75fef4da0255314f65e54ce5077
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
2025-02-11 07:45:06 -08:00

797 lines
24 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssh
import (
"bytes"
"errors"
"fmt"
"io"
"strings"
)
type authResult int
const (
authFailure authResult = iota
authPartialSuccess
authSuccess
)
// clientAuthenticate authenticates with the remote server. See RFC 4252.
func (c *connection) clientAuthenticate(config *ClientConfig) error {
// initiate user auth session
if err := c.transport.writePacket(Marshal(&serviceRequestMsg{serviceUserAuth})); err != nil {
return err
}
packet, err := c.transport.readPacket()
if err != nil {
return err
}
// The server may choose to send a SSH_MSG_EXT_INFO at this point (if we
// advertised willingness to receive one, which we always do) or not. See
// RFC 8308, Section 2.4.
extensions := make(map[string][]byte)
if len(packet) > 0 && packet[0] == msgExtInfo {
var extInfo extInfoMsg
if err := Unmarshal(packet, &extInfo); err != nil {
return err
}
payload := extInfo.Payload
for i := uint32(0); i < extInfo.NumExtensions; i++ {
name, rest, ok := parseString(payload)
if !ok {
return parseError(msgExtInfo)
}
value, rest, ok := parseString(rest)
if !ok {
return parseError(msgExtInfo)
}
extensions[string(name)] = value
payload = rest
}
packet, err = c.transport.readPacket()
if err != nil {
return err
}
}
var serviceAccept serviceAcceptMsg
if err := Unmarshal(packet, &serviceAccept); err != nil {
return err
}
// during the authentication phase the client first attempts the "none" method
// then any untried methods suggested by the server.
var tried []string
var lastMethods []string
sessionID := c.transport.getSessionID()
for auth := AuthMethod(new(noneAuth)); auth != nil; {
ok, methods, err := auth.auth(sessionID, config.User, c.transport, config.Rand, extensions)
if err != nil {
// On disconnect, return error immediately
if _, ok := err.(*disconnectMsg); ok {
return err
}
// We return the error later if there is no other method left to
// try.
ok = authFailure
}
if ok == authSuccess {
// success
return nil
} else if ok == authFailure {
if m := auth.method(); !contains(tried, m) {
tried = append(tried, m)
}
}
if methods == nil {
methods = lastMethods
}
lastMethods = methods
auth = nil
findNext:
for _, a := range config.Auth {
candidateMethod := a.method()
if contains(tried, candidateMethod) {
continue
}
for _, meth := range methods {
if meth == candidateMethod {
auth = a
break findNext
}
}
}
if auth == nil && err != nil {
// We have an error and there are no other authentication methods to
// try, so we return it.
return err
}
}
return fmt.Errorf("ssh: unable to authenticate, attempted methods %v, no supported methods remain", tried)
}
func contains(list []string, e string) bool {
for _, s := range list {
if s == e {
return true
}
}
return false
}
// An AuthMethod represents an instance of an RFC 4252 authentication method.
type AuthMethod interface {
// auth authenticates user over transport t.
// Returns true if authentication is successful.
// If authentication is not successful, a []string of alternative
// method names is returned. If the slice is nil, it will be ignored
// and the previous set of possible methods will be reused.
auth(session []byte, user string, p packetConn, rand io.Reader, extensions map[string][]byte) (authResult, []string, error)
// method returns the RFC 4252 method name.
method() string
}
// "none" authentication, RFC 4252 section 5.2.
type noneAuth int
func (n *noneAuth) auth(session []byte, user string, c packetConn, rand io.Reader, _ map[string][]byte) (authResult, []string, error) {
if err := c.writePacket(Marshal(&userAuthRequestMsg{
User: user,
Service: serviceSSH,
Method: "none",
})); err != nil {
return authFailure, nil, err
}
return handleAuthResponse(c)
}
func (n *noneAuth) method() string {
return "none"
}
// passwordCallback is an AuthMethod that fetches the password through
// a function call, e.g. by prompting the user.
type passwordCallback func() (password string, err error)
func (cb passwordCallback) auth(session []byte, user string, c packetConn, rand io.Reader, _ map[string][]byte) (authResult, []string, error) {
type passwordAuthMsg struct {
User string `sshtype:"50"`
Service string
Method string
Reply bool
Password string
}
pw, err := cb()
// REVIEW NOTE: is there a need to support skipping a password attempt?
// The program may only find out that the user doesn't have a password
// when prompting.
if err != nil {
return authFailure, nil, err
}
if err := c.writePacket(Marshal(&passwordAuthMsg{
User: user,
Service: serviceSSH,
Method: cb.method(),
Reply: false,
Password: pw,
})); err != nil {
return authFailure, nil, err
}
return handleAuthResponse(c)
}
func (cb passwordCallback) method() string {
return "password"
}
// Password returns an AuthMethod using the given password.
func Password(secret string) AuthMethod {
return passwordCallback(func() (string, error) { return secret, nil })
}
// PasswordCallback returns an AuthMethod that uses a callback for
// fetching a password.
func PasswordCallback(prompt func() (secret string, err error)) AuthMethod {
return passwordCallback(prompt)
}
type publickeyAuthMsg struct {
User string `sshtype:"50"`
Service string
Method string
// HasSig indicates to the receiver packet that the auth request is signed and
// should be used for authentication of the request.
HasSig bool
Algoname string
PubKey []byte
// Sig is tagged with "rest" so Marshal will exclude it during
// validateKey
Sig []byte `ssh:"rest"`
}
// publicKeyCallback is an AuthMethod that uses a set of key
// pairs for authentication.
type publicKeyCallback func() ([]Signer, error)
func (cb publicKeyCallback) method() string {
return "publickey"
}
func pickSignatureAlgorithm(signer Signer, extensions map[string][]byte) (MultiAlgorithmSigner, string, error) {
var as MultiAlgorithmSigner
keyFormat := signer.PublicKey().Type()
// If the signer implements MultiAlgorithmSigner we use the algorithms it
// support, if it implements AlgorithmSigner we assume it supports all
// algorithms, otherwise only the key format one.
switch s := signer.(type) {
case MultiAlgorithmSigner:
as = s
case AlgorithmSigner:
as = &multiAlgorithmSigner{
AlgorithmSigner: s,
supportedAlgorithms: algorithmsForKeyFormat(underlyingAlgo(keyFormat)),
}
default:
as = &multiAlgorithmSigner{
AlgorithmSigner: algorithmSignerWrapper{signer},
supportedAlgorithms: []string{underlyingAlgo(keyFormat)},
}
}
getFallbackAlgo := func() (string, error) {
// Fallback to use if there is no "server-sig-algs" extension or a
// common algorithm cannot be found. We use the public key format if the
// MultiAlgorithmSigner supports it, otherwise we return an error.
if !contains(as.Algorithms(), underlyingAlgo(keyFormat)) {
return "", fmt.Errorf("ssh: no common public key signature algorithm, server only supports %q for key type %q, signer only supports %v",
underlyingAlgo(keyFormat), keyFormat, as.Algorithms())
}
return keyFormat, nil
}
extPayload, ok := extensions["server-sig-algs"]
if !ok {
// If there is no "server-sig-algs" extension use the fallback
// algorithm.
algo, err := getFallbackAlgo()
return as, algo, err
}
// The server-sig-algs extension only carries underlying signature
// algorithm, but we are trying to select a protocol-level public key
// algorithm, which might be a certificate type. Extend the list of server
// supported algorithms to include the corresponding certificate algorithms.
serverAlgos := strings.Split(string(extPayload), ",")
for _, algo := range serverAlgos {
if certAlgo, ok := certificateAlgo(algo); ok {
serverAlgos = append(serverAlgos, certAlgo)
}
}
// Filter algorithms based on those supported by MultiAlgorithmSigner.
var keyAlgos []string
for _, algo := range algorithmsForKeyFormat(keyFormat) {
if contains(as.Algorithms(), underlyingAlgo(algo)) {
keyAlgos = append(keyAlgos, algo)
}
}
algo, err := findCommon("public key signature algorithm", keyAlgos, serverAlgos)
if err != nil {
// If there is no overlap, return the fallback algorithm to support
// servers that fail to list all supported algorithms.
algo, err := getFallbackAlgo()
return as, algo, err
}
return as, algo, nil
}
func (cb publicKeyCallback) auth(session []byte, user string, c packetConn, rand io.Reader, extensions map[string][]byte) (authResult, []string, error) {
// Authentication is performed by sending an enquiry to test if a key is
// acceptable to the remote. If the key is acceptable, the client will
// attempt to authenticate with the valid key. If not the client will repeat
// the process with the remaining keys.
signers, err := cb()
if err != nil {
return authFailure, nil, err
}
var methods []string
var errSigAlgo error
origSignersLen := len(signers)
for idx := 0; idx < len(signers); idx++ {
signer := signers[idx]
pub := signer.PublicKey()
as, algo, err := pickSignatureAlgorithm(signer, extensions)
if err != nil && errSigAlgo == nil {
// If we cannot negotiate a signature algorithm store the first
// error so we can return it to provide a more meaningful message if
// no other signers work.
errSigAlgo = err
continue
}
ok, err := validateKey(pub, algo, user, c)
if err != nil {
return authFailure, nil, err
}
// OpenSSH 7.2-7.7 advertises support for rsa-sha2-256 and rsa-sha2-512
// in the "server-sig-algs" extension but doesn't support these
// algorithms for certificate authentication, so if the server rejects
// the key try to use the obtained algorithm as if "server-sig-algs" had
// not been implemented if supported from the algorithm signer.
if !ok && idx < origSignersLen && isRSACert(algo) && algo != CertAlgoRSAv01 {
if contains(as.Algorithms(), KeyAlgoRSA) {
// We retry using the compat algorithm after all signers have
// been tried normally.
signers = append(signers, &multiAlgorithmSigner{
AlgorithmSigner: as,
supportedAlgorithms: []string{KeyAlgoRSA},
})
}
}
if !ok {
continue
}
pubKey := pub.Marshal()
data := buildDataSignedForAuth(session, userAuthRequestMsg{
User: user,
Service: serviceSSH,
Method: cb.method(),
}, algo, pubKey)
sign, err := as.SignWithAlgorithm(rand, data, underlyingAlgo(algo))
if err != nil {
return authFailure, nil, err
}
// manually wrap the serialized signature in a string
s := Marshal(sign)
sig := make([]byte, stringLength(len(s)))
marshalString(sig, s)
msg := publickeyAuthMsg{
User: user,
Service: serviceSSH,
Method: cb.method(),
HasSig: true,
Algoname: algo,
PubKey: pubKey,
Sig: sig,
}
p := Marshal(&msg)
if err := c.writePacket(p); err != nil {
return authFailure, nil, err
}
var success authResult
success, methods, err = handleAuthResponse(c)
if err != nil {
return authFailure, nil, err
}
// If authentication succeeds or the list of available methods does not
// contain the "publickey" method, do not attempt to authenticate with any
// other keys. According to RFC 4252 Section 7, the latter can occur when
// additional authentication methods are required.
if success == authSuccess || !contains(methods, cb.method()) {
return success, methods, err
}
}
return authFailure, methods, errSigAlgo
}
// validateKey validates the key provided is acceptable to the server.
func validateKey(key PublicKey, algo string, user string, c packetConn) (bool, error) {
pubKey := key.Marshal()
msg := publickeyAuthMsg{
User: user,
Service: serviceSSH,
Method: "publickey",
HasSig: false,
Algoname: algo,
PubKey: pubKey,
}
if err := c.writePacket(Marshal(&msg)); err != nil {
return false, err
}
return confirmKeyAck(key, c)
}
func confirmKeyAck(key PublicKey, c packetConn) (bool, error) {
pubKey := key.Marshal()
for {
packet, err := c.readPacket()
if err != nil {
return false, err
}
switch packet[0] {
case msgUserAuthBanner:
if err := handleBannerResponse(c, packet); err != nil {
return false, err
}
case msgUserAuthPubKeyOk:
var msg userAuthPubKeyOkMsg
if err := Unmarshal(packet, &msg); err != nil {
return false, err
}
// According to RFC 4252 Section 7 the algorithm in
// SSH_MSG_USERAUTH_PK_OK should match that of the request but some
// servers send the key type instead. OpenSSH allows any algorithm
// that matches the public key, so we do the same.
// https://github.com/openssh/openssh-portable/blob/86bdd385/sshconnect2.c#L709
if !contains(algorithmsForKeyFormat(key.Type()), msg.Algo) {
return false, nil
}
if !bytes.Equal(msg.PubKey, pubKey) {
return false, nil
}
return true, nil
case msgUserAuthFailure:
return false, nil
default:
return false, unexpectedMessageError(msgUserAuthPubKeyOk, packet[0])
}
}
}
// PublicKeys returns an AuthMethod that uses the given key
// pairs.
func PublicKeys(signers ...Signer) AuthMethod {
return publicKeyCallback(func() ([]Signer, error) { return signers, nil })
}
// PublicKeysCallback returns an AuthMethod that runs the given
// function to obtain a list of key pairs.
func PublicKeysCallback(getSigners func() (signers []Signer, err error)) AuthMethod {
return publicKeyCallback(getSigners)
}
// handleAuthResponse returns whether the preceding authentication request succeeded
// along with a list of remaining authentication methods to try next and
// an error if an unexpected response was received.
func handleAuthResponse(c packetConn) (authResult, []string, error) {
gotMsgExtInfo := false
for {
packet, err := c.readPacket()
if err != nil {
return authFailure, nil, err
}
switch packet[0] {
case msgUserAuthBanner:
if err := handleBannerResponse(c, packet); err != nil {
return authFailure, nil, err
}
case msgExtInfo:
// Ignore post-authentication RFC 8308 extensions, once.
if gotMsgExtInfo {
return authFailure, nil, unexpectedMessageError(msgUserAuthSuccess, packet[0])
}
gotMsgExtInfo = true
case msgUserAuthFailure:
var msg userAuthFailureMsg
if err := Unmarshal(packet, &msg); err != nil {
return authFailure, nil, err
}
if msg.PartialSuccess {
return authPartialSuccess, msg.Methods, nil
}
return authFailure, msg.Methods, nil
case msgUserAuthSuccess:
return authSuccess, nil, nil
default:
return authFailure, nil, unexpectedMessageError(msgUserAuthSuccess, packet[0])
}
}
}
func handleBannerResponse(c packetConn, packet []byte) error {
var msg userAuthBannerMsg
if err := Unmarshal(packet, &msg); err != nil {
return err
}
transport, ok := c.(*handshakeTransport)
if !ok {
return nil
}
if transport.bannerCallback != nil {
return transport.bannerCallback(msg.Message)
}
return nil
}
// KeyboardInteractiveChallenge should print questions, optionally
// disabling echoing (e.g. for passwords), and return all the answers.
// Challenge may be called multiple times in a single session. After
// successful authentication, the server may send a challenge with no
// questions, for which the name and instruction messages should be
// printed. RFC 4256 section 3.3 details how the UI should behave for
// both CLI and GUI environments.
type KeyboardInteractiveChallenge func(name, instruction string, questions []string, echos []bool) (answers []string, err error)
// KeyboardInteractive returns an AuthMethod using a prompt/response
// sequence controlled by the server.
func KeyboardInteractive(challenge KeyboardInteractiveChallenge) AuthMethod {
return challenge
}
func (cb KeyboardInteractiveChallenge) method() string {
return "keyboard-interactive"
}
func (cb KeyboardInteractiveChallenge) auth(session []byte, user string, c packetConn, rand io.Reader, _ map[string][]byte) (authResult, []string, error) {
type initiateMsg struct {
User string `sshtype:"50"`
Service string
Method string
Language string
Submethods string
}
if err := c.writePacket(Marshal(&initiateMsg{
User: user,
Service: serviceSSH,
Method: "keyboard-interactive",
})); err != nil {
return authFailure, nil, err
}
gotMsgExtInfo := false
gotUserAuthInfoRequest := false
for {
packet, err := c.readPacket()
if err != nil {
return authFailure, nil, err
}
// like handleAuthResponse, but with less options.
switch packet[0] {
case msgUserAuthBanner:
if err := handleBannerResponse(c, packet); err != nil {
return authFailure, nil, err
}
continue
case msgExtInfo:
// Ignore post-authentication RFC 8308 extensions, once.
if gotMsgExtInfo {
return authFailure, nil, unexpectedMessageError(msgUserAuthInfoRequest, packet[0])
}
gotMsgExtInfo = true
continue
case msgUserAuthInfoRequest:
// OK
case msgUserAuthFailure:
var msg userAuthFailureMsg
if err := Unmarshal(packet, &msg); err != nil {
return authFailure, nil, err
}
if msg.PartialSuccess {
return authPartialSuccess, msg.Methods, nil
}
if !gotUserAuthInfoRequest {
return authFailure, msg.Methods, unexpectedMessageError(msgUserAuthInfoRequest, packet[0])
}
return authFailure, msg.Methods, nil
case msgUserAuthSuccess:
return authSuccess, nil, nil
default:
return authFailure, nil, unexpectedMessageError(msgUserAuthInfoRequest, packet[0])
}
var msg userAuthInfoRequestMsg
if err := Unmarshal(packet, &msg); err != nil {
return authFailure, nil, err
}
gotUserAuthInfoRequest = true
// Manually unpack the prompt/echo pairs.
rest := msg.Prompts
var prompts []string
var echos []bool
for i := 0; i < int(msg.NumPrompts); i++ {
prompt, r, ok := parseString(rest)
if !ok || len(r) == 0 {
return authFailure, nil, errors.New("ssh: prompt format error")
}
prompts = append(prompts, string(prompt))
echos = append(echos, r[0] != 0)
rest = r[1:]
}
if len(rest) != 0 {
return authFailure, nil, errors.New("ssh: extra data following keyboard-interactive pairs")
}
answers, err := cb(msg.Name, msg.Instruction, prompts, echos)
if err != nil {
return authFailure, nil, err
}
if len(answers) != len(prompts) {
return authFailure, nil, fmt.Errorf("ssh: incorrect number of answers from keyboard-interactive callback %d (expected %d)", len(answers), len(prompts))
}
responseLength := 1 + 4
for _, a := range answers {
responseLength += stringLength(len(a))
}
serialized := make([]byte, responseLength)
p := serialized
p[0] = msgUserAuthInfoResponse
p = p[1:]
p = marshalUint32(p, uint32(len(answers)))
for _, a := range answers {
p = marshalString(p, []byte(a))
}
if err := c.writePacket(serialized); err != nil {
return authFailure, nil, err
}
}
}
type retryableAuthMethod struct {
authMethod AuthMethod
maxTries int
}
func (r *retryableAuthMethod) auth(session []byte, user string, c packetConn, rand io.Reader, extensions map[string][]byte) (ok authResult, methods []string, err error) {
for i := 0; r.maxTries <= 0 || i < r.maxTries; i++ {
ok, methods, err = r.authMethod.auth(session, user, c, rand, extensions)
if ok != authFailure || err != nil { // either success, partial success or error terminate
return ok, methods, err
}
}
return ok, methods, err
}
func (r *retryableAuthMethod) method() string {
return r.authMethod.method()
}
// RetryableAuthMethod is a decorator for other auth methods enabling them to
// be retried up to maxTries before considering that AuthMethod itself failed.
// If maxTries is <= 0, will retry indefinitely
//
// This is useful for interactive clients using challenge/response type
// authentication (e.g. Keyboard-Interactive, Password, etc) where the user
// could mistype their response resulting in the server issuing a
// SSH_MSG_USERAUTH_FAILURE (rfc4252 #8 [password] and rfc4256 #3.4
// [keyboard-interactive]); Without this decorator, the non-retryable
// AuthMethod would be removed from future consideration, and never tried again
// (and so the user would never be able to retry their entry).
func RetryableAuthMethod(auth AuthMethod, maxTries int) AuthMethod {
return &retryableAuthMethod{authMethod: auth, maxTries: maxTries}
}
// GSSAPIWithMICAuthMethod is an AuthMethod with "gssapi-with-mic" authentication.
// See RFC 4462 section 3
// gssAPIClient is implementation of the GSSAPIClient interface, see the definition of the interface for details.
// target is the server host you want to log in to.
func GSSAPIWithMICAuthMethod(gssAPIClient GSSAPIClient, target string) AuthMethod {
if gssAPIClient == nil {
panic("gss-api client must be not nil with enable gssapi-with-mic")
}
return &gssAPIWithMICCallback{gssAPIClient: gssAPIClient, target: target}
}
type gssAPIWithMICCallback struct {
gssAPIClient GSSAPIClient
target string
}
func (g *gssAPIWithMICCallback) auth(session []byte, user string, c packetConn, rand io.Reader, _ map[string][]byte) (authResult, []string, error) {
m := &userAuthRequestMsg{
User: user,
Service: serviceSSH,
Method: g.method(),
}
// The GSS-API authentication method is initiated when the client sends an SSH_MSG_USERAUTH_REQUEST.
// See RFC 4462 section 3.2.
m.Payload = appendU32(m.Payload, 1)
m.Payload = appendString(m.Payload, string(krb5OID))
if err := c.writePacket(Marshal(m)); err != nil {
return authFailure, nil, err
}
// The server responds to the SSH_MSG_USERAUTH_REQUEST with either an
// SSH_MSG_USERAUTH_FAILURE if none of the mechanisms are supported or
// with an SSH_MSG_USERAUTH_GSSAPI_RESPONSE.
// See RFC 4462 section 3.3.
// OpenSSH supports Kerberos V5 mechanism only for GSS-API authentication,so I don't want to check
// selected mech if it is valid.
packet, err := c.readPacket()
if err != nil {
return authFailure, nil, err
}
userAuthGSSAPIResp := &userAuthGSSAPIResponse{}
if err := Unmarshal(packet, userAuthGSSAPIResp); err != nil {
return authFailure, nil, err
}
// Start the loop into the exchange token.
// See RFC 4462 section 3.4.
var token []byte
defer g.gssAPIClient.DeleteSecContext()
for {
// Initiates the establishment of a security context between the application and a remote peer.
nextToken, needContinue, err := g.gssAPIClient.InitSecContext("host@"+g.target, token, false)
if err != nil {
return authFailure, nil, err
}
if len(nextToken) > 0 {
if err := c.writePacket(Marshal(&userAuthGSSAPIToken{
Token: nextToken,
})); err != nil {
return authFailure, nil, err
}
}
if !needContinue {
break
}
packet, err = c.readPacket()
if err != nil {
return authFailure, nil, err
}
switch packet[0] {
case msgUserAuthFailure:
var msg userAuthFailureMsg
if err := Unmarshal(packet, &msg); err != nil {
return authFailure, nil, err
}
if msg.PartialSuccess {
return authPartialSuccess, msg.Methods, nil
}
return authFailure, msg.Methods, nil
case msgUserAuthGSSAPIError:
userAuthGSSAPIErrorResp := &userAuthGSSAPIError{}
if err := Unmarshal(packet, userAuthGSSAPIErrorResp); err != nil {
return authFailure, nil, err
}
return authFailure, nil, fmt.Errorf("GSS-API Error:\n"+
"Major Status: %d\n"+
"Minor Status: %d\n"+
"Error Message: %s\n", userAuthGSSAPIErrorResp.MajorStatus, userAuthGSSAPIErrorResp.MinorStatus,
userAuthGSSAPIErrorResp.Message)
case msgUserAuthGSSAPIToken:
userAuthGSSAPITokenReq := &userAuthGSSAPIToken{}
if err := Unmarshal(packet, userAuthGSSAPITokenReq); err != nil {
return authFailure, nil, err
}
token = userAuthGSSAPITokenReq.Token
}
}
// Binding Encryption Keys.
// See RFC 4462 section 3.5.
micField := buildMIC(string(session), user, "ssh-connection", "gssapi-with-mic")
micToken, err := g.gssAPIClient.GetMIC(micField)
if err != nil {
return authFailure, nil, err
}
if err := c.writePacket(Marshal(&userAuthGSSAPIMIC{
MIC: micToken,
})); err != nil {
return authFailure, nil, err
}
return handleAuthResponse(c)
}
func (g *gssAPIWithMICCallback) method() string {
return "gssapi-with-mic"
}