mirror of
https://github.com/tailscale/tailscale.git
synced 2025-01-10 10:03:43 +00:00
00a4504cf1
This new type of probe sends DERP packets sized similarly to CallMeMaybe packets at a rate of 10 packets per second. It records the round-trip times in a Prometheus histogram. It also keeps track of how many packets are dropped. Packets that fail to arrive within 5 seconds are considered dropped. Updates tailscale/corp#24522 Signed-off-by: Percy Wegmann <percy@tailscale.com>
638 lines
17 KiB
Go
638 lines
17 KiB
Go
// Copyright (c) Tailscale Inc & AUTHORS
|
|
// SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
// Package prober implements a simple blackbox prober. Each probe runs
|
|
// in its own goroutine, and run results are recorded as Prometheus
|
|
// metrics.
|
|
package prober
|
|
|
|
import (
|
|
"container/ring"
|
|
"context"
|
|
"encoding/json"
|
|
"fmt"
|
|
"hash/fnv"
|
|
"log"
|
|
"maps"
|
|
"math/rand"
|
|
"net/http"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/prometheus/client_golang/prometheus"
|
|
"tailscale.com/tsweb"
|
|
)
|
|
|
|
// recentHistSize is the number of recent probe results and latencies to keep
|
|
// in memory.
|
|
const recentHistSize = 10
|
|
|
|
// ProbeClass defines a probe of a specific type: a probing function that will
|
|
// be regularly ran, and metric labels that will be added automatically to all
|
|
// probes using this class.
|
|
type ProbeClass struct {
|
|
// Probe is a function that probes something and reports whether the Probe
|
|
// succeeded. The provided context's deadline must be obeyed for correct
|
|
// Probe scheduling.
|
|
Probe func(context.Context) error
|
|
|
|
// Class defines a user-facing name of the probe class that will be used
|
|
// in the `class` metric label.
|
|
Class string
|
|
|
|
// Labels defines a set of metric labels that will be added to all metrics
|
|
// exposed by this probe class.
|
|
Labels Labels
|
|
|
|
// Metrics allows a probe class to export custom Metrics. Can be nil.
|
|
Metrics func(prometheus.Labels) []prometheus.Metric
|
|
}
|
|
|
|
// FuncProbe wraps a simple probe function in a ProbeClass.
|
|
func FuncProbe(fn func(context.Context) error) ProbeClass {
|
|
return ProbeClass{
|
|
Probe: fn,
|
|
}
|
|
}
|
|
|
|
// a Prober manages a set of probes and keeps track of their results.
|
|
type Prober struct {
|
|
// Whether to spread probe execution over time by introducing a
|
|
// random delay before the first probe run.
|
|
spread bool
|
|
|
|
// Whether to run all probes once instead of running them in a loop.
|
|
once bool
|
|
|
|
// Time-related functions that get faked out during tests.
|
|
now func() time.Time
|
|
newTicker func(time.Duration) ticker
|
|
|
|
mu sync.Mutex // protects all following fields
|
|
probes map[string]*Probe
|
|
|
|
namespace string
|
|
metrics *prometheus.Registry
|
|
}
|
|
|
|
// New returns a new Prober.
|
|
func New() *Prober {
|
|
return newForTest(time.Now, newRealTicker)
|
|
}
|
|
|
|
func newForTest(now func() time.Time, newTicker func(time.Duration) ticker) *Prober {
|
|
p := &Prober{
|
|
now: now,
|
|
newTicker: newTicker,
|
|
probes: map[string]*Probe{},
|
|
metrics: prometheus.NewRegistry(),
|
|
namespace: "prober",
|
|
}
|
|
prometheus.DefaultRegisterer.MustRegister(p.metrics)
|
|
return p
|
|
}
|
|
|
|
// Run executes probe class function every interval, and exports probe results under probeName.
|
|
//
|
|
// If interval is negative, the probe will run continuously. If it encounters a failure while
|
|
// running continuously, it will pause for -1*interval and then retry.
|
|
//
|
|
// Registering a probe under an already-registered name panics.
|
|
func (p *Prober) Run(name string, interval time.Duration, labels Labels, pc ProbeClass) *Probe {
|
|
p.mu.Lock()
|
|
defer p.mu.Unlock()
|
|
if _, ok := p.probes[name]; ok {
|
|
panic(fmt.Sprintf("probe named %q already registered", name))
|
|
}
|
|
|
|
l := prometheus.Labels{
|
|
"name": name,
|
|
"class": pc.Class,
|
|
}
|
|
for k, v := range pc.Labels {
|
|
l[k] = v
|
|
}
|
|
for k, v := range labels {
|
|
l[k] = v
|
|
}
|
|
|
|
probe := newProbe(p, name, interval, l, pc)
|
|
p.probes[name] = probe
|
|
go probe.loop()
|
|
return probe
|
|
}
|
|
|
|
// newProbe creates a new Probe with the given parameters, but does not start it.
|
|
func newProbe(p *Prober, name string, interval time.Duration, l prometheus.Labels, pc ProbeClass) *Probe {
|
|
ctx, cancel := context.WithCancel(context.Background())
|
|
probe := &Probe{
|
|
prober: p,
|
|
ctx: ctx,
|
|
cancel: cancel,
|
|
stopped: make(chan struct{}),
|
|
|
|
name: name,
|
|
probeClass: pc,
|
|
interval: interval,
|
|
initialDelay: initialDelay(name, interval),
|
|
successHist: ring.New(recentHistSize),
|
|
latencyHist: ring.New(recentHistSize),
|
|
|
|
metrics: prometheus.NewRegistry(),
|
|
metricLabels: l,
|
|
mInterval: prometheus.NewDesc("interval_secs", "Probe interval in seconds", nil, l),
|
|
mStartTime: prometheus.NewDesc("start_secs", "Latest probe start time (seconds since epoch)", nil, l),
|
|
mEndTime: prometheus.NewDesc("end_secs", "Latest probe end time (seconds since epoch)", nil, l),
|
|
mLatency: prometheus.NewDesc("latency_millis", "Latest probe latency (ms)", nil, l),
|
|
mResult: prometheus.NewDesc("result", "Latest probe result (1 = success, 0 = failure)", nil, l),
|
|
mAttempts: prometheus.NewCounterVec(prometheus.CounterOpts{
|
|
Name: "attempts_total", Help: "Total number of probing attempts", ConstLabels: l,
|
|
}, []string{"status"}),
|
|
mSeconds: prometheus.NewCounterVec(prometheus.CounterOpts{
|
|
Name: "seconds_total", Help: "Total amount of time spent executing the probe", ConstLabels: l,
|
|
}, []string{"status"}),
|
|
}
|
|
if p.metrics != nil {
|
|
prometheus.WrapRegistererWithPrefix(p.namespace+"_", p.metrics).MustRegister(probe.metrics)
|
|
}
|
|
probe.metrics.MustRegister(probe)
|
|
return probe
|
|
}
|
|
|
|
// unregister removes a probe from the prober's internal state.
|
|
func (p *Prober) unregister(probe *Probe) {
|
|
p.mu.Lock()
|
|
defer p.mu.Unlock()
|
|
probe.metrics.Unregister(probe)
|
|
p.metrics.Unregister(probe.metrics)
|
|
name := probe.name
|
|
delete(p.probes, name)
|
|
}
|
|
|
|
// WithSpread is used to enable random delay before the first run of
|
|
// each added probe.
|
|
func (p *Prober) WithSpread(s bool) *Prober {
|
|
p.spread = s
|
|
return p
|
|
}
|
|
|
|
// WithOnce mode can be used if you want to run all configured probes once
|
|
// rather than on a schedule.
|
|
func (p *Prober) WithOnce(s bool) *Prober {
|
|
p.once = s
|
|
return p
|
|
}
|
|
|
|
// WithMetricNamespace allows changing metric name prefix from the default `prober`.
|
|
func (p *Prober) WithMetricNamespace(n string) *Prober {
|
|
p.namespace = n
|
|
return p
|
|
}
|
|
|
|
// Wait blocks until all probes have finished execution. It should typically
|
|
// be used with the `once` mode to wait for probes to finish before collecting
|
|
// their results.
|
|
func (p *Prober) Wait() {
|
|
for {
|
|
chans := make([]chan struct{}, 0)
|
|
p.mu.Lock()
|
|
for _, p := range p.probes {
|
|
chans = append(chans, p.stopped)
|
|
}
|
|
p.mu.Unlock()
|
|
for _, c := range chans {
|
|
<-c
|
|
}
|
|
|
|
// Since probes can add other probes, retry if the number of probes has changed.
|
|
if p.activeProbes() != len(chans) {
|
|
continue
|
|
}
|
|
return
|
|
}
|
|
}
|
|
|
|
// Reports the number of registered probes.
|
|
func (p *Prober) activeProbes() int {
|
|
p.mu.Lock()
|
|
defer p.mu.Unlock()
|
|
return len(p.probes)
|
|
}
|
|
|
|
// Probe is a probe that healthchecks something and updates Prometheus
|
|
// metrics with the results.
|
|
type Probe struct {
|
|
prober *Prober
|
|
ctx context.Context
|
|
cancel context.CancelFunc // run to initiate shutdown
|
|
stopped chan struct{} // closed when shutdown is complete
|
|
runMu sync.Mutex // ensures only one probe runs at a time
|
|
|
|
name string
|
|
probeClass ProbeClass
|
|
interval time.Duration
|
|
initialDelay time.Duration
|
|
tick ticker
|
|
|
|
// metrics is a Prometheus metrics registry for metrics exported by this probe.
|
|
// Using a separate registry allows cleanly removing metrics exported by this
|
|
// probe when it gets unregistered.
|
|
metrics *prometheus.Registry
|
|
metricLabels prometheus.Labels
|
|
mInterval *prometheus.Desc
|
|
mStartTime *prometheus.Desc
|
|
mEndTime *prometheus.Desc
|
|
mLatency *prometheus.Desc
|
|
mResult *prometheus.Desc
|
|
mAttempts *prometheus.CounterVec
|
|
mSeconds *prometheus.CounterVec
|
|
|
|
mu sync.Mutex
|
|
start time.Time // last time doProbe started
|
|
end time.Time // last time doProbe returned
|
|
latency time.Duration // last successful probe latency
|
|
succeeded bool // whether the last doProbe call succeeded
|
|
lastErr error
|
|
|
|
// History of recent probe results and latencies.
|
|
successHist *ring.Ring
|
|
latencyHist *ring.Ring
|
|
}
|
|
|
|
// IsContinuous indicates that this is a continuous probe.
|
|
func (p *Probe) IsContinuous() bool {
|
|
return p.interval < 0
|
|
}
|
|
|
|
// Close shuts down the Probe and unregisters it from its Prober.
|
|
// It is safe to Run a new probe of the same name after Close returns.
|
|
func (p *Probe) Close() error {
|
|
p.cancel()
|
|
<-p.stopped
|
|
p.prober.unregister(p)
|
|
return nil
|
|
}
|
|
|
|
// probeLoop invokes runProbe on fun every interval. The first probe
|
|
// is run after a random delay (if spreading is enabled) or immediately.
|
|
func (p *Probe) loop() {
|
|
defer close(p.stopped)
|
|
|
|
if p.prober.spread && p.initialDelay > 0 {
|
|
t := p.prober.newTicker(p.initialDelay)
|
|
select {
|
|
case <-t.Chan():
|
|
p.run()
|
|
case <-p.ctx.Done():
|
|
t.Stop()
|
|
return
|
|
}
|
|
t.Stop()
|
|
} else {
|
|
p.run()
|
|
}
|
|
|
|
if p.prober.once {
|
|
return
|
|
}
|
|
|
|
if p.IsContinuous() {
|
|
// Probe function is going to run continuously.
|
|
for {
|
|
p.run()
|
|
// Wait and then retry if probe fails. We use the inverse of the
|
|
// configured negative interval as our sleep period.
|
|
// TODO(percy):implement exponential backoff, possibly using logtail/backoff.
|
|
select {
|
|
case <-time.After(-1 * p.interval):
|
|
p.run()
|
|
case <-p.ctx.Done():
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
p.tick = p.prober.newTicker(p.interval)
|
|
defer p.tick.Stop()
|
|
for {
|
|
select {
|
|
case <-p.tick.Chan():
|
|
p.run()
|
|
case <-p.ctx.Done():
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// run invokes the probe function and records the result. It returns the probe
|
|
// result and an error if the probe failed.
|
|
//
|
|
// The probe function is invoked with a timeout slightly less than interval, so
|
|
// that the probe either succeeds or fails before the next cycle is scheduled to
|
|
// start.
|
|
func (p *Probe) run() (pi ProbeInfo, err error) {
|
|
p.runMu.Lock()
|
|
defer p.runMu.Unlock()
|
|
|
|
p.recordStart()
|
|
defer func() {
|
|
// Prevent a panic within one probe function from killing the
|
|
// entire prober, so that a single buggy probe doesn't destroy
|
|
// our entire ability to monitor anything. A panic is recorded
|
|
// as a probe failure, so panicking probes will trigger an
|
|
// alert for debugging.
|
|
if r := recover(); r != nil {
|
|
log.Printf("probe %s panicked: %v", p.name, r)
|
|
err = fmt.Errorf("panic: %v", r)
|
|
p.recordEnd(err)
|
|
}
|
|
}()
|
|
ctx := p.ctx
|
|
if !p.IsContinuous() {
|
|
timeout := time.Duration(float64(p.interval) * 0.8)
|
|
var cancel func()
|
|
ctx, cancel = context.WithTimeout(ctx, timeout)
|
|
defer cancel()
|
|
}
|
|
|
|
err = p.probeClass.Probe(ctx)
|
|
p.recordEnd(err)
|
|
if err != nil {
|
|
log.Printf("probe %s: %v", p.name, err)
|
|
}
|
|
pi = p.probeInfoLocked()
|
|
return
|
|
}
|
|
|
|
func (p *Probe) recordStart() {
|
|
p.mu.Lock()
|
|
p.start = p.prober.now()
|
|
p.mu.Unlock()
|
|
}
|
|
|
|
func (p *Probe) recordEnd(err error) {
|
|
end := p.prober.now()
|
|
p.mu.Lock()
|
|
defer p.mu.Unlock()
|
|
p.end = end
|
|
p.succeeded = err == nil
|
|
p.lastErr = err
|
|
latency := end.Sub(p.start)
|
|
if p.succeeded {
|
|
p.latency = latency
|
|
p.mAttempts.WithLabelValues("ok").Inc()
|
|
p.mSeconds.WithLabelValues("ok").Add(latency.Seconds())
|
|
p.latencyHist.Value = latency
|
|
p.latencyHist = p.latencyHist.Next()
|
|
} else {
|
|
p.latency = 0
|
|
p.mAttempts.WithLabelValues("fail").Inc()
|
|
p.mSeconds.WithLabelValues("fail").Add(latency.Seconds())
|
|
}
|
|
p.successHist.Value = p.succeeded
|
|
p.successHist = p.successHist.Next()
|
|
}
|
|
|
|
// ProbeStatus indicates the status of a probe.
|
|
type ProbeStatus string
|
|
|
|
const (
|
|
ProbeStatusUnknown = "unknown"
|
|
ProbeStatusRunning = "running"
|
|
ProbeStatusFailed = "failed"
|
|
ProbeStatusSucceeded = "succeeded"
|
|
)
|
|
|
|
// ProbeInfo is a snapshot of the configuration and state of a Probe.
|
|
type ProbeInfo struct {
|
|
Name string
|
|
Class string
|
|
Interval time.Duration
|
|
Labels map[string]string
|
|
Start time.Time
|
|
End time.Time
|
|
Latency time.Duration
|
|
Status ProbeStatus
|
|
Error string
|
|
RecentResults []bool
|
|
RecentLatencies []time.Duration
|
|
}
|
|
|
|
// RecentSuccessRatio returns the success ratio of the probe in the recent history.
|
|
func (pb ProbeInfo) RecentSuccessRatio() float64 {
|
|
if len(pb.RecentResults) == 0 {
|
|
return 0
|
|
}
|
|
var sum int
|
|
for _, r := range pb.RecentResults {
|
|
if r {
|
|
sum++
|
|
}
|
|
}
|
|
return float64(sum) / float64(len(pb.RecentResults))
|
|
}
|
|
|
|
// RecentMedianLatency returns the median latency of the probe in the recent history.
|
|
func (pb ProbeInfo) RecentMedianLatency() time.Duration {
|
|
if len(pb.RecentLatencies) == 0 {
|
|
return 0
|
|
}
|
|
return pb.RecentLatencies[len(pb.RecentLatencies)/2]
|
|
}
|
|
|
|
func (pb ProbeInfo) Continuous() bool {
|
|
return pb.Interval < 0
|
|
}
|
|
|
|
// ProbeInfo returns the state of all probes.
|
|
func (p *Prober) ProbeInfo() map[string]ProbeInfo {
|
|
out := map[string]ProbeInfo{}
|
|
|
|
p.mu.Lock()
|
|
probes := make([]*Probe, 0, len(p.probes))
|
|
for _, probe := range p.probes {
|
|
probes = append(probes, probe)
|
|
}
|
|
p.mu.Unlock()
|
|
for _, probe := range probes {
|
|
probe.mu.Lock()
|
|
out[probe.name] = probe.probeInfoLocked()
|
|
probe.mu.Unlock()
|
|
}
|
|
return out
|
|
}
|
|
|
|
// probeInfoLocked returns the state of the probe.
|
|
func (probe *Probe) probeInfoLocked() ProbeInfo {
|
|
inf := ProbeInfo{
|
|
Name: probe.name,
|
|
Class: probe.probeClass.Class,
|
|
Interval: probe.interval,
|
|
Labels: probe.metricLabels,
|
|
Start: probe.start,
|
|
End: probe.end,
|
|
}
|
|
inf.Status = ProbeStatusUnknown
|
|
if probe.end.Before(probe.start) {
|
|
inf.Status = ProbeStatusRunning
|
|
} else if probe.succeeded {
|
|
inf.Status = ProbeStatusSucceeded
|
|
} else if probe.lastErr != nil {
|
|
inf.Status = ProbeStatusFailed
|
|
inf.Error = probe.lastErr.Error()
|
|
}
|
|
if probe.latency > 0 {
|
|
inf.Latency = probe.latency
|
|
}
|
|
probe.latencyHist.Do(func(v any) {
|
|
if l, ok := v.(time.Duration); ok {
|
|
inf.RecentLatencies = append(inf.RecentLatencies, l)
|
|
}
|
|
})
|
|
probe.successHist.Do(func(v any) {
|
|
if r, ok := v.(bool); ok {
|
|
inf.RecentResults = append(inf.RecentResults, r)
|
|
}
|
|
})
|
|
return inf
|
|
}
|
|
|
|
// RunHandlerResponse is the JSON response format for the RunHandler.
|
|
type RunHandlerResponse struct {
|
|
ProbeInfo ProbeInfo
|
|
PreviousSuccessRatio float64
|
|
PreviousMedianLatency time.Duration
|
|
}
|
|
|
|
// RunHandler runs a probe by name and returns the result as an HTTP response.
|
|
func (p *Prober) RunHandler(w http.ResponseWriter, r *http.Request) error {
|
|
// Look up prober by name.
|
|
name := r.FormValue("name")
|
|
if name == "" {
|
|
return tsweb.Error(http.StatusBadRequest, "missing name parameter", nil)
|
|
}
|
|
p.mu.Lock()
|
|
probe, ok := p.probes[name]
|
|
p.mu.Unlock()
|
|
if !ok || probe.IsContinuous() {
|
|
return tsweb.Error(http.StatusNotFound, fmt.Sprintf("unknown probe %q", name), nil)
|
|
}
|
|
|
|
probe.mu.Lock()
|
|
prevInfo := probe.probeInfoLocked()
|
|
probe.mu.Unlock()
|
|
|
|
info, err := probe.run()
|
|
respStatus := http.StatusOK
|
|
if err != nil {
|
|
respStatus = http.StatusFailedDependency
|
|
}
|
|
|
|
// Return serialized JSON response if the client requested JSON
|
|
if r.Header.Get("Accept") == "application/json" {
|
|
resp := &RunHandlerResponse{
|
|
ProbeInfo: info,
|
|
PreviousSuccessRatio: prevInfo.RecentSuccessRatio(),
|
|
PreviousMedianLatency: prevInfo.RecentMedianLatency(),
|
|
}
|
|
w.WriteHeader(respStatus)
|
|
w.Header().Set("Content-Type", "application/json")
|
|
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
|
return tsweb.Error(http.StatusInternalServerError, "error encoding JSON response", err)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
stats := fmt.Sprintf("Last %d probes: success rate %d%%, median latency %v\n",
|
|
len(prevInfo.RecentResults),
|
|
int(prevInfo.RecentSuccessRatio()*100), prevInfo.RecentMedianLatency())
|
|
if err != nil {
|
|
return tsweb.Error(respStatus, fmt.Sprintf("Probe failed: %s\n%s", err.Error(), stats), err)
|
|
}
|
|
w.WriteHeader(respStatus)
|
|
w.Write([]byte(fmt.Sprintf("Probe succeeded in %v\n%s", info.Latency, stats)))
|
|
return nil
|
|
}
|
|
|
|
// Describe implements prometheus.Collector.
|
|
func (p *Probe) Describe(ch chan<- *prometheus.Desc) {
|
|
ch <- p.mInterval
|
|
ch <- p.mStartTime
|
|
ch <- p.mEndTime
|
|
ch <- p.mResult
|
|
ch <- p.mLatency
|
|
p.mAttempts.Describe(ch)
|
|
p.mSeconds.Describe(ch)
|
|
if p.probeClass.Metrics != nil {
|
|
for _, m := range p.probeClass.Metrics(p.metricLabels) {
|
|
ch <- m.Desc()
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect implements prometheus.Collector.
|
|
func (p *Probe) Collect(ch chan<- prometheus.Metric) {
|
|
p.mu.Lock()
|
|
defer p.mu.Unlock()
|
|
ch <- prometheus.MustNewConstMetric(p.mInterval, prometheus.GaugeValue, p.interval.Seconds())
|
|
if !p.start.IsZero() {
|
|
ch <- prometheus.MustNewConstMetric(p.mStartTime, prometheus.GaugeValue, float64(p.start.Unix()))
|
|
}
|
|
// For periodic probes that haven't ended, don't collect probe metrics yet.
|
|
if p.end.IsZero() && !p.IsContinuous() {
|
|
return
|
|
}
|
|
ch <- prometheus.MustNewConstMetric(p.mEndTime, prometheus.GaugeValue, float64(p.end.Unix()))
|
|
if p.succeeded {
|
|
ch <- prometheus.MustNewConstMetric(p.mResult, prometheus.GaugeValue, 1)
|
|
} else {
|
|
ch <- prometheus.MustNewConstMetric(p.mResult, prometheus.GaugeValue, 0)
|
|
}
|
|
if p.latency > 0 {
|
|
ch <- prometheus.MustNewConstMetric(p.mLatency, prometheus.GaugeValue, float64(p.latency.Milliseconds()))
|
|
}
|
|
p.mAttempts.Collect(ch)
|
|
p.mSeconds.Collect(ch)
|
|
if p.probeClass.Metrics != nil {
|
|
for _, m := range p.probeClass.Metrics(p.metricLabels) {
|
|
ch <- m
|
|
}
|
|
}
|
|
}
|
|
|
|
// ticker wraps a time.Ticker in a way that can be faked for tests.
|
|
type ticker interface {
|
|
Chan() <-chan time.Time
|
|
Stop()
|
|
}
|
|
|
|
type realTicker struct {
|
|
*time.Ticker
|
|
}
|
|
|
|
func (t *realTicker) Chan() <-chan time.Time {
|
|
return t.Ticker.C
|
|
}
|
|
|
|
func newRealTicker(d time.Duration) ticker {
|
|
return &realTicker{time.NewTicker(d)}
|
|
}
|
|
|
|
// initialDelay returns a pseudorandom duration in [0, interval) that
|
|
// is based on the provided seed string.
|
|
func initialDelay(seed string, interval time.Duration) time.Duration {
|
|
h := fnv.New64()
|
|
fmt.Fprint(h, seed)
|
|
r := rand.New(rand.NewSource(int64(h.Sum64()))).Float64()
|
|
return time.Duration(float64(interval) * r)
|
|
}
|
|
|
|
// Labels is a set of metric labels used by a prober.
|
|
type Labels map[string]string
|
|
|
|
func (l Labels) With(k, v string) Labels {
|
|
new := maps.Clone(l)
|
|
new[k] = v
|
|
return new
|
|
}
|