tailscale/types/views/views.go
Nick Khyl da9965d51c cmd/viewer,types/views,various: avoid allocations in pointer field getters whenever possible
In this PR, we add a generic views.ValuePointer type that can be used as a view for pointers
to basic types and struct types that do not require deep cloning and do not have corresponding
view types. Its Get/GetOk methods return stack-allocated shallow copies of the underlying value.

We then update the cmd/viewer codegen to produce getters that return either concrete views
when available or ValuePointer views when not, for pointer fields in generated view types.
This allows us to avoid unnecessary allocations compared to returning pointers to newly
allocated shallow copies.

Updates #14570

Signed-off-by: Nick Khyl <nickk@tailscale.com>
2025-01-14 09:37:10 -06:00

815 lines
22 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package views provides read-only accessors for commonly used
// value types.
package views
import (
"bytes"
"encoding/json"
"errors"
"fmt"
"iter"
"maps"
"reflect"
"slices"
"go4.org/mem"
"tailscale.com/types/ptr"
)
func unmarshalSliceFromJSON[T any](b []byte, x *[]T) error {
if *x != nil {
return errors.New("already initialized")
}
if len(b) == 0 {
return nil
}
return json.Unmarshal(b, x)
}
// ByteSlice is a read-only accessor for types that are backed by a []byte.
type ByteSlice[T ~[]byte] struct {
// ж is the underlying mutable value, named with a hard-to-type
// character that looks pointy like a pointer.
// It is named distinctively to make you think of how dangerous it is to escape
// to callers. You must not let callers be able to mutate it.
ж T
}
// ByteSliceOf returns a ByteSlice for the provided slice.
func ByteSliceOf[T ~[]byte](x T) ByteSlice[T] {
return ByteSlice[T]{x}
}
// MapKey returns a unique key for a slice, based on its address and length.
func (v ByteSlice[T]) MapKey() SliceMapKey[byte] { return mapKey(v.ж) }
// Len returns the length of the slice.
func (v ByteSlice[T]) Len() int {
return len(v.ж)
}
// IsNil reports whether the underlying slice is nil.
func (v ByteSlice[T]) IsNil() bool {
return v.ж == nil
}
// Mem returns a read-only view of the underlying slice.
func (v ByteSlice[T]) Mem() mem.RO {
return mem.B(v.ж)
}
// Equal reports whether the underlying slice is equal to b.
func (v ByteSlice[T]) Equal(b T) bool {
return bytes.Equal(v.ж, b)
}
// EqualView reports whether the underlying slice is equal to b.
func (v ByteSlice[T]) EqualView(b ByteSlice[T]) bool {
return bytes.Equal(v.ж, b.ж)
}
// AsSlice returns a copy of the underlying slice.
func (v ByteSlice[T]) AsSlice() T {
return v.AppendTo(v.ж[:0:0])
}
// AppendTo appends the underlying slice values to dst.
func (v ByteSlice[T]) AppendTo(dst T) T {
return append(dst, v.ж...)
}
// At returns the byte at index `i` of the slice.
func (v ByteSlice[T]) At(i int) byte { return v.ж[i] }
// SliceFrom returns v[i:].
func (v ByteSlice[T]) SliceFrom(i int) ByteSlice[T] { return ByteSlice[T]{v.ж[i:]} }
// SliceTo returns v[:i]
func (v ByteSlice[T]) SliceTo(i int) ByteSlice[T] { return ByteSlice[T]{v.ж[:i]} }
// Slice returns v[i:j]
func (v ByteSlice[T]) Slice(i, j int) ByteSlice[T] { return ByteSlice[T]{v.ж[i:j]} }
// MarshalJSON implements json.Marshaler.
func (v ByteSlice[T]) MarshalJSON() ([]byte, error) { return json.Marshal(v.ж) }
// UnmarshalJSON implements json.Unmarshaler.
func (v *ByteSlice[T]) UnmarshalJSON(b []byte) error {
if v.ж != nil {
return errors.New("already initialized")
}
return json.Unmarshal(b, &v.ж)
}
// StructView represents the corresponding StructView of a Viewable. The concrete types are
// typically generated by tailscale.com/cmd/viewer.
type StructView[T any] interface {
// Valid reports whether the underlying Viewable is nil.
Valid() bool
// AsStruct returns a deep-copy of the underlying value.
// It returns nil, if Valid() is false.
AsStruct() T
}
// Cloner is any type that has a Clone function returning a deep-clone of the receiver.
type Cloner[T any] interface {
// Clone returns a deep-clone of the receiver.
// It returns nil, when the receiver is nil.
Clone() T
}
// ViewCloner is any type that has had View and Clone funcs generated using
// tailscale.com/cmd/viewer.
type ViewCloner[T any, V StructView[T]] interface {
// View returns a read-only view of Viewable.
// If Viewable is nil, View().Valid() reports false.
View() V
// Clone returns a deep-clone of Viewable.
// It returns nil, when Viewable is nil.
Clone() T
}
// SliceOfViews returns a ViewSlice for x.
func SliceOfViews[T ViewCloner[T, V], V StructView[T]](x []T) SliceView[T, V] {
return SliceView[T, V]{x}
}
// SliceView wraps []T to provide accessors which return an immutable view V of
// T. It is used to provide the equivalent of SliceOf([]V) without having to
// allocate []V from []T.
type SliceView[T ViewCloner[T, V], V StructView[T]] struct {
// ж is the underlying mutable value, named with a hard-to-type
// character that looks pointy like a pointer.
// It is named distinctively to make you think of how dangerous it is to escape
// to callers. You must not let callers be able to mutate it.
ж []T
}
// All returns an iterator over v.
func (v SliceView[T, V]) All() iter.Seq2[int, V] {
return func(yield func(int, V) bool) {
for i := range v.ж {
if !yield(i, v.ж[i].View()) {
return
}
}
}
}
// MarshalJSON implements json.Marshaler.
func (v SliceView[T, V]) MarshalJSON() ([]byte, error) { return json.Marshal(v.ж) }
// UnmarshalJSON implements json.Unmarshaler.
func (v *SliceView[T, V]) UnmarshalJSON(b []byte) error { return unmarshalSliceFromJSON(b, &v.ж) }
// IsNil reports whether the underlying slice is nil.
func (v SliceView[T, V]) IsNil() bool { return v.ж == nil }
// Len returns the length of the slice.
func (v SliceView[T, V]) Len() int { return len(v.ж) }
// At returns a View of the element at index `i` of the slice.
func (v SliceView[T, V]) At(i int) V { return v.ж[i].View() }
// SliceFrom returns v[i:].
func (v SliceView[T, V]) SliceFrom(i int) SliceView[T, V] { return SliceView[T, V]{v.ж[i:]} }
// SliceTo returns v[:i]
func (v SliceView[T, V]) SliceTo(i int) SliceView[T, V] { return SliceView[T, V]{v.ж[:i]} }
// Slice returns v[i:j]
func (v SliceView[T, V]) Slice(i, j int) SliceView[T, V] { return SliceView[T, V]{v.ж[i:j]} }
// SliceMapKey represents a comparable unique key for a slice, based on its
// address and length. It can be used to key maps by slices but should only be
// used when the underlying slice is immutable.
//
// Empty and nil slices have different keys.
type SliceMapKey[T any] struct {
// t is the address of the first element, or nil if the slice is nil or
// empty.
t *T
// n is the length of the slice, or -1 if the slice is nil.
n int
}
// MapKey returns a unique key for a slice, based on its address and length.
func (v SliceView[T, V]) MapKey() SliceMapKey[T] { return mapKey(v.ж) }
// AppendTo appends the underlying slice values to dst.
func (v SliceView[T, V]) AppendTo(dst []V) []V {
for _, x := range v.ж {
dst = append(dst, x.View())
}
return dst
}
// AsSlice returns a copy of underlying slice.
func (v SliceView[T, V]) AsSlice() []V {
return v.AppendTo(nil)
}
// Slice is a read-only accessor for a slice.
type Slice[T any] struct {
// ж is the underlying mutable value, named with a hard-to-type
// character that looks pointy like a pointer.
// It is named distinctively to make you think of how dangerous it is to escape
// to callers. You must not let callers be able to mutate it.
ж []T
}
// All returns an iterator over v.
func (v Slice[T]) All() iter.Seq2[int, T] {
return func(yield func(int, T) bool) {
for i, v := range v.ж {
if !yield(i, v) {
return
}
}
}
}
// MapKey returns a unique key for a slice, based on its address and length.
func (v Slice[T]) MapKey() SliceMapKey[T] { return mapKey(v.ж) }
// mapKey returns a unique key for a slice, based on its address and length.
func mapKey[T any](x []T) SliceMapKey[T] {
if x == nil {
return SliceMapKey[T]{nil, -1}
}
if len(x) == 0 {
return SliceMapKey[T]{nil, 0}
}
return SliceMapKey[T]{&x[0], len(x)}
}
// SliceOf returns a Slice for the provided slice for immutable values.
// It is the caller's responsibility to make sure V is immutable.
func SliceOf[T any](x []T) Slice[T] {
return Slice[T]{x}
}
// MarshalJSON implements json.Marshaler.
func (v Slice[T]) MarshalJSON() ([]byte, error) {
return json.Marshal(v.ж)
}
// UnmarshalJSON implements json.Unmarshaler.
func (v *Slice[T]) UnmarshalJSON(b []byte) error {
return unmarshalSliceFromJSON(b, &v.ж)
}
// IsNil reports whether the underlying slice is nil.
func (v Slice[T]) IsNil() bool { return v.ж == nil }
// Len returns the length of the slice.
func (v Slice[T]) Len() int { return len(v.ж) }
// At returns the element at index `i` of the slice.
func (v Slice[T]) At(i int) T { return v.ж[i] }
// SliceFrom returns v[i:].
func (v Slice[T]) SliceFrom(i int) Slice[T] { return Slice[T]{v.ж[i:]} }
// SliceTo returns v[:i]
func (v Slice[T]) SliceTo(i int) Slice[T] { return Slice[T]{v.ж[:i]} }
// Slice returns v[i:j]
func (v Slice[T]) Slice(i, j int) Slice[T] { return Slice[T]{v.ж[i:j]} }
// AppendTo appends the underlying slice values to dst.
func (v Slice[T]) AppendTo(dst []T) []T {
return append(dst, v.ж...)
}
// AsSlice returns a copy of underlying slice.
func (v Slice[T]) AsSlice() []T {
return v.AppendTo(v.ж[:0:0])
}
// IndexFunc returns the first index of an element in v satisfying f(e),
// or -1 if none do.
//
// As it runs in O(n) time, use with care.
func (v Slice[T]) IndexFunc(f func(T) bool) int {
for i := range v.Len() {
if f(v.At(i)) {
return i
}
}
return -1
}
// ContainsFunc reports whether any element in v satisfies f(e).
//
// As it runs in O(n) time, use with care.
func (v Slice[T]) ContainsFunc(f func(T) bool) bool {
return slices.ContainsFunc(v.ж, f)
}
// AppendStrings appends the string representation of each element in v to dst.
func AppendStrings[T fmt.Stringer](dst []string, v Slice[T]) []string {
for _, x := range v.ж {
dst = append(dst, x.String())
}
return dst
}
// SliceContains reports whether v contains element e.
//
// As it runs in O(n) time, use with care.
func SliceContains[T comparable](v Slice[T], e T) bool {
return slices.Contains(v.ж, e)
}
// SliceEqual is like the standard library's slices.Equal, but for two views.
func SliceEqual[T comparable](a, b Slice[T]) bool {
return slices.Equal(a.ж, b.ж)
}
// SliceEqualAnyOrder reports whether a and b contain the same elements, regardless of order.
// The underlying slices for a and b can be nil.
func SliceEqualAnyOrder[T comparable](a, b Slice[T]) bool {
if a.Len() != b.Len() {
return false
}
var diffStart int // beginning index where a and b differ
for n := a.Len(); diffStart < n; diffStart++ {
if a.At(diffStart) != b.At(diffStart) {
break
}
}
if diffStart == a.Len() {
return true
}
// count the occurrences of remaining values and compare
valueCount := make(map[T]int)
for i, n := diffStart, a.Len(); i < n; i++ {
valueCount[a.At(i)]++
valueCount[b.At(i)]--
}
for _, count := range valueCount {
if count != 0 {
return false
}
}
return true
}
// SliceEqualAnyOrderFunc reports whether a and b contain the same elements,
// regardless of order. The underlying slices for a and b can be nil.
//
// The provided function should return a comparable value for each element.
func SliceEqualAnyOrderFunc[T any, V comparable](a, b Slice[T], cmp func(T) V) bool {
if a.Len() != b.Len() {
return false
}
var diffStart int // beginning index where a and b differ
for n := a.Len(); diffStart < n; diffStart++ {
av := cmp(a.At(diffStart))
bv := cmp(b.At(diffStart))
if av != bv {
break
}
}
if diffStart == a.Len() {
return true
}
// For a small number of items, avoid the allocation of a map and just
// do the quadratic thing. We can also only check the items between
// diffStart and the end.
nRemain := a.Len() - diffStart
if nRemain <= 5 {
maxLen := a.Len() // same as b.Len()
for i := diffStart; i < maxLen; i++ {
av := cmp(a.At(i))
found := false
for j := diffStart; j < maxLen; j++ {
bv := cmp(b.At(j))
if av == bv {
found = true
break
}
}
if !found {
return false
}
}
return true
}
// count the occurrences of remaining values and compare
valueCount := make(map[V]int)
for i, n := diffStart, a.Len(); i < n; i++ {
valueCount[cmp(a.At(i))]++
valueCount[cmp(b.At(i))]--
}
for _, count := range valueCount {
if count != 0 {
return false
}
}
return true
}
// MapSlice is a view over a map whose values are slices.
type MapSlice[K comparable, V any] struct {
// ж is the underlying mutable value, named with a hard-to-type
// character that looks pointy like a pointer.
// It is named distinctively to make you think of how dangerous it is to escape
// to callers. You must not let callers be able to mutate it.
ж map[K][]V
}
// MapSliceOf returns a MapSlice for the provided map. It is the caller's
// responsibility to make sure V is immutable.
func MapSliceOf[K comparable, V any](m map[K][]V) MapSlice[K, V] {
return MapSlice[K, V]{m}
}
// Contains reports whether k has an entry in the map.
func (m MapSlice[K, V]) Contains(k K) bool {
_, ok := m.ж[k]
return ok
}
// IsNil reports whether the underlying map is nil.
func (m MapSlice[K, V]) IsNil() bool {
return m.ж == nil
}
// Len returns the number of elements in the map.
func (m MapSlice[K, V]) Len() int { return len(m.ж) }
// Get returns the element with key k.
func (m MapSlice[K, V]) Get(k K) Slice[V] {
return SliceOf(m.ж[k])
}
// GetOk returns the element with key k and a bool representing whether the key
// is in map.
func (m MapSlice[K, V]) GetOk(k K) (Slice[V], bool) {
v, ok := m.ж[k]
return SliceOf(v), ok
}
// MarshalJSON implements json.Marshaler.
func (m MapSlice[K, V]) MarshalJSON() ([]byte, error) {
return json.Marshal(m.ж)
}
// UnmarshalJSON implements json.Unmarshaler.
// It should only be called on an uninitialized Map.
func (m *MapSlice[K, V]) UnmarshalJSON(b []byte) error {
if m.ж != nil {
return errors.New("already initialized")
}
return json.Unmarshal(b, &m.ж)
}
// AsMap returns a shallow-clone of the underlying map.
//
// If V is a pointer type, it is the caller's responsibility to make sure the
// values are immutable. The map and slices are cloned, but the values are not.
func (m MapSlice[K, V]) AsMap() map[K][]V {
if m.ж == nil {
return nil
}
out := maps.Clone(m.ж)
for k, v := range out {
out[k] = slices.Clone(v)
}
return out
}
// All returns an iterator iterating over the keys and values of m.
func (m MapSlice[K, V]) All() iter.Seq2[K, Slice[V]] {
return func(yield func(K, Slice[V]) bool) {
for k, v := range m.ж {
if !yield(k, SliceOf(v)) {
return
}
}
}
}
// Map provides a read-only view of a map. It is the caller's responsibility to
// make sure V is immutable.
type Map[K comparable, V any] struct {
// ж is the underlying mutable value, named with a hard-to-type
// character that looks pointy like a pointer.
// It is named distinctively to make you think of how dangerous it is to escape
// to callers. You must not let callers be able to mutate it.
ж map[K]V
}
// MapOf returns a view over m. It is the caller's responsibility to make sure V
// is immutable.
func MapOf[K comparable, V any](m map[K]V) Map[K, V] {
return Map[K, V]{m}
}
// Has reports whether k has an entry in the map.
// Deprecated: use Contains instead.
func (m Map[K, V]) Has(k K) bool {
return m.Contains(k)
}
// Contains reports whether k has an entry in the map.
func (m Map[K, V]) Contains(k K) bool {
_, ok := m.ж[k]
return ok
}
// IsNil reports whether the underlying map is nil.
func (m Map[K, V]) IsNil() bool {
return m.ж == nil
}
// Len returns the number of elements in the map.
func (m Map[K, V]) Len() int { return len(m.ж) }
// Get returns the element with key k.
func (m Map[K, V]) Get(k K) V {
return m.ж[k]
}
// GetOk returns the element with key k and a bool representing whether the key
// is in map.
func (m Map[K, V]) GetOk(k K) (V, bool) {
v, ok := m.ж[k]
return v, ok
}
// MarshalJSON implements json.Marshaler.
func (m Map[K, V]) MarshalJSON() ([]byte, error) {
return json.Marshal(m.ж)
}
// UnmarshalJSON implements json.Unmarshaler.
// It should only be called on an uninitialized Map.
func (m *Map[K, V]) UnmarshalJSON(b []byte) error {
if m.ж != nil {
return errors.New("already initialized")
}
return json.Unmarshal(b, &m.ж)
}
// AsMap returns a shallow-clone of the underlying map.
// If V is a pointer type, it is the caller's responsibility to make sure
// the values are immutable.
func (m Map[K, V]) AsMap() map[K]V {
if m.ж == nil {
return nil
}
return maps.Clone(m.ж)
}
// NOTE: the type constraints for MapViewsEqual and MapViewsEqualFunc are based
// on those for maps.Equal and maps.EqualFunc.
// MapViewsEqual returns whether the two given [Map]s are equal. Both K and V
// must be comparable; if V is non-comparable, use [MapViewsEqualFunc] instead.
func MapViewsEqual[K, V comparable](a, b Map[K, V]) bool {
if a.Len() != b.Len() || a.IsNil() != b.IsNil() {
return false
}
if a.IsNil() {
return true // both nil; can exit early
}
for k, v := range a.All() {
bv, ok := b.GetOk(k)
if !ok || v != bv {
return false
}
}
return true
}
// MapViewsEqualFunc returns whether the two given [Map]s are equal, using the
// given function to compare two values.
func MapViewsEqualFunc[K comparable, V1, V2 any](a Map[K, V1], b Map[K, V2], eq func(V1, V2) bool) bool {
if a.Len() != b.Len() || a.IsNil() != b.IsNil() {
return false
}
if a.IsNil() {
return true // both nil; can exit early
}
for k, v := range a.All() {
bv, ok := b.GetOk(k)
if !ok || !eq(v, bv) {
return false
}
}
return true
}
// MapRangeFn is the func called from a Map.Range call.
// Implementations should return false to stop range.
type MapRangeFn[K comparable, V any] func(k K, v V) (cont bool)
// All returns an iterator iterating over the keys
// and values of m.
func (m Map[K, V]) All() iter.Seq2[K, V] {
return func(yield func(K, V) bool) {
for k, v := range m.ж {
if !yield(k, v) {
return
}
}
}
}
// MapFnOf returns a MapFn for m.
func MapFnOf[K comparable, T any, V any](m map[K]T, f func(T) V) MapFn[K, T, V] {
return MapFn[K, T, V]{
ж: m,
wrapv: f,
}
}
// MapFn is like Map but with a func to convert values from T to V.
// It is used to provide map of slices and views.
type MapFn[K comparable, T any, V any] struct {
// ж is the underlying mutable value, named with a hard-to-type
// character that looks pointy like a pointer.
// It is named distinctively to make you think of how dangerous it is to escape
// to callers. You must not let callers be able to mutate it.
ж map[K]T
wrapv func(T) V
}
// Has reports whether k has an entry in the map.
// Deprecated: use Contains instead.
func (m MapFn[K, T, V]) Has(k K) bool {
return m.Contains(k)
}
// Contains reports whether k has an entry in the map.
func (m MapFn[K, T, V]) Contains(k K) bool {
_, ok := m.ж[k]
return ok
}
// Get returns the element with key k.
func (m MapFn[K, T, V]) Get(k K) V {
return m.wrapv(m.ж[k])
}
// IsNil reports whether the underlying map is nil.
func (m MapFn[K, T, V]) IsNil() bool {
return m.ж == nil
}
// Len returns the number of elements in the map.
func (m MapFn[K, T, V]) Len() int { return len(m.ж) }
// GetOk returns the element with key k and a bool representing whether the key
// is in map.
func (m MapFn[K, T, V]) GetOk(k K) (V, bool) {
v, ok := m.ж[k]
return m.wrapv(v), ok
}
// All returns an iterator iterating over the keys and value views of m.
func (m MapFn[K, T, V]) All() iter.Seq2[K, V] {
return func(yield func(K, V) bool) {
for k, v := range m.ж {
if !yield(k, m.wrapv(v)) {
return
}
}
}
}
// ValuePointer provides a read-only view of a pointer to a value type,
// such as a primitive type or an immutable struct. Its Value and ValueOk
// methods return a stack-allocated shallow copy of the underlying value.
// It is the caller's responsibility to ensure that T
// is free from memory aliasing/mutation concerns.
type ValuePointer[T any] struct {
// ж is the underlying value, named with a hard-to-type
// character that looks pointy like a pointer.
// It is named distinctively to make you think of how dangerous it is to escape
// to callers. You must not let callers be able to mutate it.
ж *T
}
// Valid reports whether the underlying pointer is non-nil.
func (p ValuePointer[T]) Valid() bool {
return p.ж != nil
}
// Get returns a shallow copy of the value if the underlying pointer is non-nil.
// Otherwise, it returns a zero value.
func (p ValuePointer[T]) Get() T {
v, _ := p.GetOk()
return v
}
// GetOk returns a shallow copy of the underlying value and true if the underlying
// pointer is non-nil. Otherwise, it returns a zero value and false.
func (p ValuePointer[T]) GetOk() (value T, ok bool) {
if p.ж == nil {
return value, false // value holds a zero value
}
return *p.ж, true
}
// GetOr returns a shallow copy of the underlying value if it is non-nil.
// Otherwise, it returns the provided default value.
func (p ValuePointer[T]) GetOr(def T) T {
if p.ж == nil {
return def
}
return *p.ж
}
// Clone returns a shallow copy of the underlying value.
func (p ValuePointer[T]) Clone() *T {
if p.ж == nil {
return nil
}
return ptr.To(*p.ж)
}
// String implements [fmt.Stringer].
func (p ValuePointer[T]) String() string {
if p.ж == nil {
return "nil"
}
return fmt.Sprint(p.ж)
}
// ValuePointerOf returns an immutable view of a pointer to an immutable value.
// It is the caller's responsibility to ensure that T
// is free from memory aliasing/mutation concerns.
func ValuePointerOf[T any](v *T) ValuePointer[T] {
return ValuePointer[T]{v}
}
// MarshalJSON implements [json.Marshaler].
func (p ValuePointer[T]) MarshalJSON() ([]byte, error) {
return json.Marshal(p.ж)
}
// UnmarshalJSON implements [json.Unmarshaler].
func (p *ValuePointer[T]) UnmarshalJSON(b []byte) error {
if p.ж != nil {
return errors.New("already initialized")
}
return json.Unmarshal(b, &p.ж)
}
// ContainsPointers reports whether T contains any pointers,
// either explicitly or implicitly.
// It has special handling for some types that contain pointers
// that we know are free from memory aliasing/mutation concerns.
func ContainsPointers[T any]() bool {
return containsPointers(reflect.TypeFor[T]())
}
func containsPointers(typ reflect.Type) bool {
switch typ.Kind() {
case reflect.Pointer, reflect.UnsafePointer:
return true
case reflect.Chan, reflect.Map, reflect.Slice:
return true
case reflect.Array:
return containsPointers(typ.Elem())
case reflect.Interface, reflect.Func:
return true // err on the safe side.
case reflect.Struct:
if isWellKnownImmutableStruct(typ) {
return false
}
for i := range typ.NumField() {
if containsPointers(typ.Field(i).Type) {
return true
}
}
}
return false
}
func isWellKnownImmutableStruct(typ reflect.Type) bool {
switch typ.String() {
case "time.Time":
// time.Time contains a pointer that does not need copying
return true
case "netip.Addr", "netip.Prefix", "netip.AddrPort":
return true
default:
return false
}
}