mirror of
https://github.com/tailscale/tailscale.git
synced 2024-11-25 19:15:34 +00:00
420c7a35e2
Signed-off-by: Naman Sood <mail@nsood.in>
1440 lines
41 KiB
Go
1440 lines
41 KiB
Go
// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package wgengine
|
|
|
|
import (
|
|
"bufio"
|
|
"bytes"
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"log"
|
|
"net"
|
|
"os"
|
|
"os/exec"
|
|
"runtime"
|
|
"strconv"
|
|
"strings"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/tailscale/wireguard-go/device"
|
|
"github.com/tailscale/wireguard-go/tun"
|
|
"github.com/tailscale/wireguard-go/wgcfg"
|
|
"go4.org/mem"
|
|
"inet.af/netaddr"
|
|
"tailscale.com/control/controlclient"
|
|
"tailscale.com/internal/deepprint"
|
|
"tailscale.com/ipn/ipnstate"
|
|
"tailscale.com/net/flowtrack"
|
|
"tailscale.com/net/interfaces"
|
|
"tailscale.com/net/packet"
|
|
"tailscale.com/net/tsaddr"
|
|
"tailscale.com/net/tshttpproxy"
|
|
"tailscale.com/tailcfg"
|
|
"tailscale.com/types/key"
|
|
"tailscale.com/types/logger"
|
|
"tailscale.com/types/wgkey"
|
|
"tailscale.com/version"
|
|
"tailscale.com/version/distro"
|
|
"tailscale.com/wgengine/filter"
|
|
"tailscale.com/wgengine/magicsock"
|
|
"tailscale.com/wgengine/monitor"
|
|
"tailscale.com/wgengine/router"
|
|
"tailscale.com/wgengine/tsdns"
|
|
"tailscale.com/wgengine/tstun"
|
|
)
|
|
|
|
// minimalMTU is the MTU we set on tailscale's TUN
|
|
// interface. wireguard-go defaults to 1420 bytes, which only works if
|
|
// the "outer" MTU is 1500 bytes. This breaks on DSL connections
|
|
// (typically 1492 MTU) and on GCE (1460 MTU?!).
|
|
//
|
|
// 1280 is the smallest MTU allowed for IPv6, which is a sensible
|
|
// "probably works everywhere" setting until we develop proper PMTU
|
|
// discovery.
|
|
const minimalMTU = 1280
|
|
|
|
const magicDNSPort = 53
|
|
|
|
var magicDNSIP = netaddr.IPv4(100, 100, 100, 100)
|
|
|
|
// Lazy wireguard-go configuration parameters.
|
|
const (
|
|
// lazyPeerIdleThreshold is the idle duration after
|
|
// which we remove a peer from the wireguard configuration.
|
|
// (This includes peers that have never been idle, which
|
|
// effectively have infinite idleness)
|
|
lazyPeerIdleThreshold = 5 * time.Minute
|
|
|
|
// packetSendTimeUpdateFrequency controls how often we record
|
|
// the time that we wrote a packet to an IP address.
|
|
packetSendTimeUpdateFrequency = 10 * time.Second
|
|
|
|
// packetSendRecheckWireguardThreshold controls how long we can go
|
|
// between packet sends to an IP before checking to see
|
|
// whether this IP address needs to be added back to the
|
|
// Wireguard peer oconfig.
|
|
packetSendRecheckWireguardThreshold = 1 * time.Minute
|
|
)
|
|
|
|
type userspaceEngine struct {
|
|
logf logger.Logf
|
|
reqCh chan struct{}
|
|
waitCh chan struct{} // chan is closed when first Close call completes; contrast with closing bool
|
|
timeNow func() time.Time
|
|
tundev *tstun.TUN
|
|
wgdev *device.Device
|
|
router router.Router
|
|
resolver *tsdns.Resolver
|
|
magicConn *magicsock.Conn
|
|
linkMon *monitor.Mon
|
|
|
|
testMaybeReconfigHook func() // for tests; if non-nil, fires if maybeReconfigWireguardLocked called
|
|
|
|
// localAddrs is the set of IP addresses assigned to the local
|
|
// tunnel interface. It's used to reflect local packets
|
|
// incorrectly sent to us.
|
|
localAddrs atomic.Value // of map[netaddr.IP]bool
|
|
|
|
wgLock sync.Mutex // serializes all wgdev operations; see lock order comment below
|
|
lastCfgFull wgcfg.Config
|
|
lastRouterSig string // of router.Config
|
|
lastEngineSigFull string // of full wireguard config
|
|
lastEngineSigTrim string // of trimmed wireguard config
|
|
recvActivityAt map[tailcfg.DiscoKey]time.Time
|
|
trimmedDisco map[tailcfg.DiscoKey]bool // set of disco keys of peers currently excluded from wireguard config
|
|
sentActivityAt map[netaddr.IP]*int64 // value is atomic int64 of unixtime
|
|
destIPActivityFuncs map[netaddr.IP]func()
|
|
|
|
mu sync.Mutex // guards following; see lock order comment below
|
|
closing bool // Close was called (even if we're still closing)
|
|
statusCallback StatusCallback
|
|
linkChangeCallback func(major bool, newState *interfaces.State)
|
|
peerSequence []wgkey.Key
|
|
endpoints []string
|
|
pingers map[wgkey.Key]*pinger // legacy pingers for pre-discovery peers
|
|
linkState *interfaces.State
|
|
pendOpen map[flowtrack.Tuple]*pendingOpenFlow // see pendopen.go
|
|
networkMapCallbacks map[*someHandle]NetworkMapCallback
|
|
|
|
// Lock ordering: magicsock.Conn.mu, wgLock, then mu.
|
|
}
|
|
|
|
// RouterGen is the signature for a function that creates a
|
|
// router.Router.
|
|
type RouterGen func(logf logger.Logf, wgdev *device.Device, tundev tun.Device) (router.Router, error)
|
|
|
|
type EngineConfig struct {
|
|
// Logf is the logging function used by the engine.
|
|
Logf logger.Logf
|
|
// TUN is the tun device used by the engine.
|
|
TUN tun.Device
|
|
// RouterGen is the function used to instantiate the router.
|
|
RouterGen RouterGen
|
|
// ListenPort is the port on which the engine will listen.
|
|
ListenPort uint16
|
|
// Fake determines whether this engine is running in fake mode,
|
|
// which disables such features as DNS configuration and unrestricted ICMP Echo responses.
|
|
Fake bool
|
|
|
|
// FakeImpl, if non-nil, specifies which type of fake implementation to
|
|
// use. Two values are typical: nil, for a basic ping-only fake
|
|
// implementation, and netstack.Impl, which brings in gvisor's netstack
|
|
// to the binary. The desire to keep that out of some binaries is why
|
|
// this func exists, so wgengine need not depend on gvisor.
|
|
FakeImpl FakeImplFunc
|
|
}
|
|
|
|
// FakeImplFunc is the type used by EngineConfig.FakeImpl. See docs there.
|
|
type FakeImplFunc func(logger.Logf, *tstun.TUN, Engine, *magicsock.Conn) error
|
|
|
|
func NewFakeUserspaceEngine(logf logger.Logf, listenPort uint16, impl FakeImplFunc) (Engine, error) {
|
|
logf("Starting userspace wireguard engine (with fake TUN device)")
|
|
conf := EngineConfig{
|
|
Logf: logf,
|
|
TUN: tstun.NewFakeTUN(),
|
|
RouterGen: router.NewFake,
|
|
ListenPort: listenPort,
|
|
Fake: true,
|
|
FakeImpl: impl,
|
|
}
|
|
return NewUserspaceEngineAdvanced(conf)
|
|
}
|
|
|
|
// NewUserspaceEngine creates the named tun device and returns a
|
|
// Tailscale Engine running on it.
|
|
func NewUserspaceEngine(logf logger.Logf, tunname string, listenPort uint16) (Engine, error) {
|
|
if tunname == "" {
|
|
return nil, fmt.Errorf("--tun name must not be blank")
|
|
}
|
|
|
|
logf("Starting userspace wireguard engine with tun device %q", tunname)
|
|
|
|
tun, err := tun.CreateTUN(tunname, minimalMTU)
|
|
if err != nil {
|
|
diagnoseTUNFailure(logf)
|
|
logf("CreateTUN: %v", err)
|
|
return nil, err
|
|
}
|
|
logf("CreateTUN ok.")
|
|
|
|
conf := EngineConfig{
|
|
Logf: logf,
|
|
TUN: tun,
|
|
RouterGen: router.New,
|
|
ListenPort: listenPort,
|
|
}
|
|
|
|
e, err := NewUserspaceEngineAdvanced(conf)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return e, err
|
|
}
|
|
|
|
// NewUserspaceEngineAdvanced is like NewUserspaceEngine
|
|
// but provides control over all config fields.
|
|
func NewUserspaceEngineAdvanced(conf EngineConfig) (Engine, error) {
|
|
return newUserspaceEngineAdvanced(conf)
|
|
}
|
|
|
|
func newUserspaceEngineAdvanced(conf EngineConfig) (_ Engine, reterr error) {
|
|
logf := conf.Logf
|
|
|
|
rconf := tsdns.ResolverConfig{
|
|
Logf: conf.Logf,
|
|
Forward: true,
|
|
}
|
|
e := &userspaceEngine{
|
|
timeNow: time.Now,
|
|
logf: logf,
|
|
reqCh: make(chan struct{}, 1),
|
|
waitCh: make(chan struct{}),
|
|
tundev: tstun.WrapTUN(logf, conf.TUN),
|
|
resolver: tsdns.NewResolver(rconf),
|
|
pingers: make(map[wgkey.Key]*pinger),
|
|
}
|
|
e.localAddrs.Store(map[netaddr.IP]bool{})
|
|
e.linkState, _ = getLinkState()
|
|
logf("link state: %+v", e.linkState)
|
|
|
|
mon, err := monitor.New(logf, func() {
|
|
e.LinkChange(false)
|
|
tshttpproxy.InvalidateCache()
|
|
})
|
|
if err != nil {
|
|
e.tundev.Close()
|
|
return nil, err
|
|
}
|
|
e.linkMon = mon
|
|
|
|
endpointsFn := func(endpoints []string) {
|
|
e.mu.Lock()
|
|
e.endpoints = append(e.endpoints[:0], endpoints...)
|
|
e.mu.Unlock()
|
|
|
|
e.RequestStatus()
|
|
}
|
|
magicsockOpts := magicsock.Options{
|
|
Logf: logf,
|
|
Port: conf.ListenPort,
|
|
EndpointsFunc: endpointsFn,
|
|
DERPActiveFunc: e.RequestStatus,
|
|
IdleFunc: e.tundev.IdleDuration,
|
|
NoteRecvActivity: e.noteReceiveActivity,
|
|
}
|
|
e.magicConn, err = magicsock.NewConn(magicsockOpts)
|
|
if err != nil {
|
|
e.tundev.Close()
|
|
return nil, fmt.Errorf("wgengine: %v", err)
|
|
}
|
|
e.magicConn.SetNetworkUp(e.linkState.AnyInterfaceUp())
|
|
|
|
// Respond to all pings only in fake mode.
|
|
if conf.Fake {
|
|
if impl := conf.FakeImpl; impl != nil {
|
|
if err := impl(logf, e.tundev, e, e.magicConn); err != nil {
|
|
return nil, err
|
|
}
|
|
} else {
|
|
// Respond to all pings only in fake mode.
|
|
e.tundev.PostFilterIn = echoRespondToAll
|
|
}
|
|
}
|
|
e.tundev.PreFilterOut = e.handleLocalPackets
|
|
|
|
if debugConnectFailures() {
|
|
if e.tundev.PreFilterIn != nil {
|
|
return nil, errors.New("unexpected PreFilterIn already set")
|
|
}
|
|
e.tundev.PreFilterIn = e.trackOpenPreFilterIn
|
|
if e.tundev.PostFilterOut != nil {
|
|
return nil, errors.New("unexpected PostFilterOut already set")
|
|
}
|
|
e.tundev.PostFilterOut = e.trackOpenPostFilterOut
|
|
}
|
|
|
|
// wireguard-go logs as it starts and stops routines.
|
|
// Silence those; there are a lot of them, and they're just noise.
|
|
allowLogf := func(s string) bool {
|
|
return !strings.HasPrefix(s, "Routine:")
|
|
}
|
|
filtered := logger.Filtered(logf, allowLogf)
|
|
// flags==0 because logf is already nested in another logger.
|
|
// The outer one can display the preferred log prefixes, etc.
|
|
dlog := logger.StdLogger(filtered)
|
|
logger := device.Logger{
|
|
Debug: dlog,
|
|
Info: dlog,
|
|
Error: dlog,
|
|
}
|
|
|
|
opts := &device.DeviceOptions{
|
|
Logger: &logger,
|
|
HandshakeDone: func(peerKey device.NoisePublicKey, peer *device.Peer, deviceAllowedIPs *device.AllowedIPs) {
|
|
// Send an unsolicited status event every time a
|
|
// handshake completes. This makes sure our UI can
|
|
// update quickly as soon as it connects to a peer.
|
|
//
|
|
// We use a goroutine here to avoid deadlocking
|
|
// wireguard, since RequestStatus() will call back
|
|
// into it, and wireguard is what called us to get
|
|
// here.
|
|
go e.RequestStatus()
|
|
|
|
peerWGKey := wgkey.Key(peerKey)
|
|
if e.magicConn.PeerHasDiscoKey(tailcfg.NodeKey(peerKey)) {
|
|
e.logf("wireguard handshake complete for %v", peerWGKey.ShortString())
|
|
// This is a modern peer with discovery support. No need to send pings.
|
|
return
|
|
}
|
|
|
|
e.logf("wireguard handshake complete for %v; sending legacy pings", peerWGKey.ShortString())
|
|
|
|
// Ping every single-IP that peer routes.
|
|
// These synthetic packets are used to traverse NATs.
|
|
var ips []netaddr.IP
|
|
allowedIPs := deviceAllowedIPs.EntriesForPeer(peer)
|
|
for _, ipNet := range allowedIPs {
|
|
if ones, bits := ipNet.Mask.Size(); ones == bits && ones != 0 {
|
|
ip, ok := netaddr.FromStdIP(ipNet.IP)
|
|
if !ok {
|
|
continue
|
|
}
|
|
ips = append(ips, ip)
|
|
}
|
|
}
|
|
if len(ips) > 0 {
|
|
go e.pinger(peerWGKey, ips)
|
|
} else {
|
|
logf("[unexpected] peer %s has no single-IP routes: %v", peerWGKey.ShortString(), allowedIPs)
|
|
}
|
|
},
|
|
CreateBind: e.magicConn.CreateBind,
|
|
CreateEndpoint: e.magicConn.CreateEndpoint,
|
|
SkipBindUpdate: true,
|
|
}
|
|
|
|
// wgdev takes ownership of tundev, will close it when closed.
|
|
e.logf("Creating wireguard device...")
|
|
e.wgdev = device.NewDevice(e.tundev, opts)
|
|
defer func() {
|
|
if reterr != nil {
|
|
e.wgdev.Close()
|
|
}
|
|
}()
|
|
|
|
// Pass the underlying tun.(*NativeDevice) to the router:
|
|
// routers do not Read or Write, but do access native interfaces.
|
|
e.logf("Creating router...")
|
|
e.router, err = conf.RouterGen(logf, e.wgdev, e.tundev.Unwrap())
|
|
if err != nil {
|
|
e.magicConn.Close()
|
|
return nil, err
|
|
}
|
|
|
|
go func() {
|
|
up := false
|
|
for event := range e.tundev.Events() {
|
|
if event&tun.EventMTUUpdate != 0 {
|
|
mtu, err := e.tundev.MTU()
|
|
e.logf("external route MTU: %d (%v)", mtu, err)
|
|
}
|
|
if event&tun.EventUp != 0 && !up {
|
|
e.logf("external route: up")
|
|
e.RequestStatus()
|
|
up = true
|
|
}
|
|
if event&tun.EventDown != 0 && up {
|
|
e.logf("external route: down")
|
|
e.RequestStatus()
|
|
up = false
|
|
}
|
|
}
|
|
}()
|
|
|
|
e.logf("Bringing wireguard device up...")
|
|
e.wgdev.Up()
|
|
e.logf("Bringing router up...")
|
|
if err := e.router.Up(); err != nil {
|
|
e.magicConn.Close()
|
|
e.wgdev.Close()
|
|
return nil, err
|
|
}
|
|
// TODO(danderson): we should delete this. It's pointless to apply
|
|
// a no-op settings here.
|
|
// TODO(bradfitz): counter-point: it tests the router implementation early
|
|
// to see if any part of it might fail.
|
|
e.logf("Clearing router settings...")
|
|
if err := e.router.Set(nil); err != nil {
|
|
e.magicConn.Close()
|
|
e.wgdev.Close()
|
|
return nil, err
|
|
}
|
|
e.logf("Starting link monitor...")
|
|
e.linkMon.Start()
|
|
e.logf("Starting magicsock...")
|
|
e.magicConn.Start()
|
|
|
|
e.logf("Starting resolver...")
|
|
e.resolver.Start()
|
|
go e.pollResolver()
|
|
|
|
e.logf("Engine created.")
|
|
return e, nil
|
|
}
|
|
|
|
// echoRespondToAll is an inbound post-filter responding to all echo requests.
|
|
func echoRespondToAll(p *packet.Parsed, t *tstun.TUN) filter.Response {
|
|
if p.IsEchoRequest() {
|
|
header := p.ICMP4Header()
|
|
header.ToResponse()
|
|
outp := packet.Generate(&header, p.Payload())
|
|
t.InjectOutbound(outp)
|
|
// We already responded to it, but it's not an error.
|
|
// Proceed with regular delivery. (Since this code is only
|
|
// used in fake mode, regular delivery just means throwing
|
|
// it away. If this ever gets run in non-fake mode, you'll
|
|
// get double responses to pings, which is an indicator you
|
|
// shouldn't be doing that I guess.)
|
|
return filter.Accept
|
|
}
|
|
return filter.Accept
|
|
}
|
|
|
|
// handleLocalPackets inspects packets coming from the local network
|
|
// stack, and intercepts any packets that should be handled by
|
|
// tailscaled directly. Other packets are allowed to proceed into the
|
|
// main ACL filter.
|
|
func (e *userspaceEngine) handleLocalPackets(p *packet.Parsed, t *tstun.TUN) filter.Response {
|
|
if verdict := e.handleDNS(p, t); verdict == filter.Drop {
|
|
// local DNS handled the packet.
|
|
return filter.Drop
|
|
}
|
|
|
|
if (runtime.GOOS == "darwin" || runtime.GOOS == "ios") && e.isLocalAddr(p.Dst.IP) {
|
|
// macOS NetworkExtension directs packets destined to the
|
|
// tunnel's local IP address into the tunnel, instead of
|
|
// looping back within the kernel network stack. We have to
|
|
// notice that an outbound packet is actually destined for
|
|
// ourselves, and loop it back into macOS.
|
|
t.InjectInboundCopy(p.Buffer())
|
|
return filter.Drop
|
|
}
|
|
|
|
return filter.Accept
|
|
}
|
|
|
|
func (e *userspaceEngine) isLocalAddr(ip netaddr.IP) bool {
|
|
localAddrs, ok := e.localAddrs.Load().(map[netaddr.IP]bool)
|
|
if !ok {
|
|
e.logf("[unexpected] e.localAddrs was nil, can't check for loopback packet")
|
|
return false
|
|
}
|
|
return localAddrs[ip]
|
|
}
|
|
|
|
// handleDNS is an outbound pre-filter resolving Tailscale domains.
|
|
func (e *userspaceEngine) handleDNS(p *packet.Parsed, t *tstun.TUN) filter.Response {
|
|
if p.Dst.IP == magicDNSIP && p.Dst.Port == magicDNSPort && p.IPProto == packet.UDP {
|
|
request := tsdns.Packet{
|
|
Payload: append([]byte(nil), p.Payload()...),
|
|
Addr: netaddr.IPPort{IP: p.Src.IP, Port: p.Src.Port},
|
|
}
|
|
err := e.resolver.EnqueueRequest(request)
|
|
if err != nil {
|
|
e.logf("tsdns: enqueue: %v", err)
|
|
}
|
|
return filter.Drop
|
|
}
|
|
return filter.Accept
|
|
}
|
|
|
|
// pollResolver reads responses from the DNS resolver and injects them inbound.
|
|
func (e *userspaceEngine) pollResolver() {
|
|
for {
|
|
resp, err := e.resolver.NextResponse()
|
|
if err == tsdns.ErrClosed {
|
|
return
|
|
}
|
|
if err != nil {
|
|
e.logf("tsdns: error: %v", err)
|
|
continue
|
|
}
|
|
|
|
h := packet.UDP4Header{
|
|
IP4Header: packet.IP4Header{
|
|
Src: magicDNSIP,
|
|
Dst: resp.Addr.IP,
|
|
},
|
|
SrcPort: magicDNSPort,
|
|
DstPort: resp.Addr.Port,
|
|
}
|
|
hlen := h.Len()
|
|
|
|
// TODO(dmytro): avoid this allocation without importing tstun quirks into tsdns.
|
|
const offset = tstun.PacketStartOffset
|
|
buf := make([]byte, offset+hlen+len(resp.Payload))
|
|
copy(buf[offset+hlen:], resp.Payload)
|
|
h.Marshal(buf[offset:])
|
|
|
|
e.tundev.InjectInboundDirect(buf, offset)
|
|
}
|
|
}
|
|
|
|
// pinger sends ping packets for a few seconds.
|
|
//
|
|
// These generated packets are used to ensure we trigger the spray logic in
|
|
// the magicsock package for NAT traversal.
|
|
//
|
|
// These are only used with legacy peers (before 0.100.0) that don't
|
|
// have advertised discovery keys.
|
|
type pinger struct {
|
|
e *userspaceEngine
|
|
done chan struct{} // closed after shutdown (not the ctx.Done() chan)
|
|
cancel context.CancelFunc
|
|
}
|
|
|
|
// close cleans up pinger and removes it from the userspaceEngine.pingers map.
|
|
// It cannot be called while p.e.mu is held.
|
|
func (p *pinger) close() {
|
|
p.cancel()
|
|
<-p.done
|
|
}
|
|
|
|
func (p *pinger) run(ctx context.Context, peerKey wgkey.Key, ips []netaddr.IP, srcIP netaddr.IP) {
|
|
defer func() {
|
|
p.e.mu.Lock()
|
|
if p.e.pingers[peerKey] == p {
|
|
delete(p.e.pingers, peerKey)
|
|
}
|
|
p.e.mu.Unlock()
|
|
|
|
close(p.done)
|
|
}()
|
|
|
|
header := packet.ICMP4Header{
|
|
IP4Header: packet.IP4Header{
|
|
Src: srcIP,
|
|
},
|
|
Type: packet.ICMP4EchoRequest,
|
|
Code: packet.ICMP4NoCode,
|
|
}
|
|
|
|
// sendFreq is slightly longer than sprayFreq in magicsock to ensure
|
|
// that if these ping packets are the only source of early packets
|
|
// sent to the peer, that each one will be sprayed.
|
|
const sendFreq = 300 * time.Millisecond
|
|
const stopAfter = 3 * time.Second
|
|
|
|
start := time.Now()
|
|
var dstIPs []netaddr.IP
|
|
for _, ip := range ips {
|
|
if ip.Is6() {
|
|
// This code is only used for legacy (pre-discovery)
|
|
// peers. They're not going to work right with IPv6 on the
|
|
// overlay anyway, so don't bother trying to make ping
|
|
// work.
|
|
continue
|
|
}
|
|
dstIPs = append(dstIPs, ip)
|
|
}
|
|
|
|
payload := []byte("magicsock_spray") // no meaning
|
|
|
|
header.IPID = 1
|
|
t := time.NewTicker(sendFreq)
|
|
defer t.Stop()
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
return
|
|
case <-t.C:
|
|
}
|
|
if time.Since(start) > stopAfter {
|
|
return
|
|
}
|
|
for _, dstIP := range dstIPs {
|
|
header.Dst = dstIP
|
|
// InjectOutbound take ownership of the packet, so we allocate.
|
|
b := packet.Generate(&header, payload)
|
|
p.e.tundev.InjectOutbound(b)
|
|
}
|
|
header.IPID++
|
|
}
|
|
}
|
|
|
|
// pinger sends ping packets for a few seconds.
|
|
//
|
|
// These generated packets are used to ensure we trigger the spray logic in
|
|
// the magicsock package for NAT traversal.
|
|
//
|
|
// This is only used with legacy peers (before 0.100.0) that don't
|
|
// have advertised discovery keys.
|
|
func (e *userspaceEngine) pinger(peerKey wgkey.Key, ips []netaddr.IP) {
|
|
e.logf("[v1] generating initial ping traffic to %s (%v)", peerKey.ShortString(), ips)
|
|
var srcIP netaddr.IP
|
|
|
|
e.wgLock.Lock()
|
|
if len(e.lastCfgFull.Addresses) > 0 {
|
|
srcIP = e.lastCfgFull.Addresses[0].IP
|
|
}
|
|
e.wgLock.Unlock()
|
|
|
|
if srcIP.IsZero() {
|
|
e.logf("generating initial ping traffic: no source IP")
|
|
return
|
|
}
|
|
|
|
ctx, cancel := context.WithCancel(context.Background())
|
|
p := &pinger{
|
|
e: e,
|
|
done: make(chan struct{}),
|
|
cancel: cancel,
|
|
}
|
|
|
|
e.mu.Lock()
|
|
if e.closing {
|
|
e.mu.Unlock()
|
|
return
|
|
}
|
|
oldPinger := e.pingers[peerKey]
|
|
e.pingers[peerKey] = p
|
|
e.mu.Unlock()
|
|
|
|
if oldPinger != nil {
|
|
oldPinger.close()
|
|
}
|
|
p.run(ctx, peerKey, ips, srcIP)
|
|
}
|
|
|
|
var (
|
|
debugTrimWireguardEnv = os.Getenv("TS_DEBUG_TRIM_WIREGUARD")
|
|
debugTrimWireguard, _ = strconv.ParseBool(debugTrimWireguardEnv)
|
|
)
|
|
|
|
// forceFullWireguardConfig reports whether we should give wireguard
|
|
// our full network map, even for inactive peers
|
|
//
|
|
// TODO(bradfitz): remove this after our 1.0 launch; we don't want to
|
|
// enable wireguard config trimming quite yet because it just landed
|
|
// and we haven't got enough time testing it.
|
|
func forceFullWireguardConfig(numPeers int) bool {
|
|
// Did the user explicitly enable trimmming via the environment variable knob?
|
|
if debugTrimWireguardEnv != "" {
|
|
return !debugTrimWireguard
|
|
}
|
|
if opt := controlclient.TrimWGConfig(); opt != "" {
|
|
return !opt.EqualBool(true)
|
|
}
|
|
|
|
// On iOS with large networks, it's critical, so turn on trimming.
|
|
// Otherwise we run out of memory from wireguard-go goroutine stacks+buffers.
|
|
// This will be the default later for all platforms and network sizes.
|
|
if numPeers > 50 && version.OS() == "iOS" {
|
|
return false
|
|
}
|
|
return false
|
|
}
|
|
|
|
// isTrimmablePeer reports whether p is a peer that we can trim out of the
|
|
// network map.
|
|
//
|
|
// We can only trim peers that both a) support discovery (because we
|
|
// know who they are when we receive their data and don't need to rely
|
|
// on wireguard-go figuring it out) and b) for implementation
|
|
// simplicity, have only non-subnet AllowedIPs (an IPv4 /32 or IPv6
|
|
// /128), which is the common case for most peers. Subnet router nodes
|
|
// will just always be created in the wireguard-go config.
|
|
func isTrimmablePeer(p *wgcfg.Peer, numPeers int) bool {
|
|
if forceFullWireguardConfig(numPeers) {
|
|
return false
|
|
}
|
|
if !isSingleEndpoint(p.Endpoints) {
|
|
return false
|
|
}
|
|
|
|
host, _, err := net.SplitHostPort(p.Endpoints)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
if !strings.HasSuffix(host, ".disco.tailscale") {
|
|
return false
|
|
}
|
|
|
|
// AllowedIPs must all be single IPs, not subnets.
|
|
for _, aip := range p.AllowedIPs {
|
|
if !aip.IsSingleIP() {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// noteReceiveActivity is called by magicsock when a packet has been received
|
|
// by the peer using discovery key dk. Magicsock calls this no more than
|
|
// every 10 seconds for a given peer.
|
|
func (e *userspaceEngine) noteReceiveActivity(dk tailcfg.DiscoKey) {
|
|
e.wgLock.Lock()
|
|
defer e.wgLock.Unlock()
|
|
|
|
if _, ok := e.recvActivityAt[dk]; !ok {
|
|
// Not a trimmable peer we care about tracking. (See isTrimmablePeer)
|
|
if e.trimmedDisco[dk] {
|
|
e.logf("wgengine: [unexpected] noteReceiveActivity called on idle discokey %v that's not in recvActivityAt", dk.ShortString())
|
|
}
|
|
return
|
|
}
|
|
now := e.timeNow()
|
|
e.recvActivityAt[dk] = now
|
|
|
|
// If the last activity time jumped a bunch (say, at least
|
|
// half the idle timeout) then see if we need to reprogram
|
|
// Wireguard. This could probably be just
|
|
// lazyPeerIdleThreshold without the divide by 2, but
|
|
// maybeReconfigWireguardLocked is cheap enough to call every
|
|
// couple minutes (just not on every packet).
|
|
if e.trimmedDisco[dk] {
|
|
e.logf("wgengine: idle peer %v now active, reconfiguring wireguard", dk.ShortString())
|
|
e.maybeReconfigWireguardLocked(nil)
|
|
}
|
|
}
|
|
|
|
// isActiveSince reports whether the peer identified by (dk, ip) has
|
|
// had a packet sent to or received from it since t.
|
|
//
|
|
// e.wgLock must be held.
|
|
func (e *userspaceEngine) isActiveSince(dk tailcfg.DiscoKey, ip netaddr.IP, t time.Time) bool {
|
|
if e.recvActivityAt[dk].After(t) {
|
|
return true
|
|
}
|
|
timePtr, ok := e.sentActivityAt[ip]
|
|
if !ok {
|
|
return false
|
|
}
|
|
unixTime := atomic.LoadInt64(timePtr)
|
|
return unixTime >= t.Unix()
|
|
}
|
|
|
|
// discoKeyFromPeer returns the DiscoKey for a wireguard config's Peer.
|
|
//
|
|
// Invariant: isTrimmablePeer(p) == true, so it should have 1 endpoint with
|
|
// Host of form "<64-hex-digits>.disco.tailscale". If invariant is violated,
|
|
// we return the zero value.
|
|
func discoKeyFromPeer(p *wgcfg.Peer) tailcfg.DiscoKey {
|
|
if len(p.Endpoints) < 64 {
|
|
return tailcfg.DiscoKey{}
|
|
}
|
|
host, rest := p.Endpoints[:64], p.Endpoints[64:]
|
|
if !strings.HasPrefix(rest, ".disco.tailscale") {
|
|
return tailcfg.DiscoKey{}
|
|
}
|
|
k, err := key.NewPublicFromHexMem(mem.S(host))
|
|
if err != nil {
|
|
return tailcfg.DiscoKey{}
|
|
}
|
|
return tailcfg.DiscoKey(k)
|
|
}
|
|
|
|
// discoChanged are the set of peers whose disco keys have changed, implying they've restarted.
|
|
// If a peer is in this set and was previously in the live wireguard config,
|
|
// it needs to be first removed and then re-added to flush out its wireguard session key.
|
|
// If discoChanged is nil or empty, this extra removal step isn't done.
|
|
//
|
|
// e.wgLock must be held.
|
|
func (e *userspaceEngine) maybeReconfigWireguardLocked(discoChanged map[key.Public]bool) error {
|
|
if hook := e.testMaybeReconfigHook; hook != nil {
|
|
hook()
|
|
return nil
|
|
}
|
|
|
|
full := e.lastCfgFull
|
|
|
|
// Compute a minimal config to pass to wireguard-go
|
|
// based on the full config. Prune off all the peers
|
|
// and only add the active ones back.
|
|
min := full
|
|
min.Peers = nil
|
|
|
|
// We'll only keep a peer around if it's been active in
|
|
// the past 5 minutes. That's more than WireGuard's key
|
|
// rotation time anyway so it's no harm if we remove it
|
|
// later if it's been inactive.
|
|
activeCutoff := e.timeNow().Add(-lazyPeerIdleThreshold)
|
|
|
|
// Not all peers can be trimmed from the network map (see
|
|
// isTrimmablePeer). For those are are trimmable, keep track
|
|
// of their DiscoKey and Tailscale IPs. These are the ones
|
|
// we'll need to install tracking hooks for to watch their
|
|
// send/receive activity.
|
|
trackDisco := make([]tailcfg.DiscoKey, 0, len(full.Peers))
|
|
trackIPs := make([]netaddr.IP, 0, len(full.Peers))
|
|
|
|
trimmedDisco := map[tailcfg.DiscoKey]bool{} // TODO: don't re-alloc this map each time
|
|
|
|
needRemoveStep := false
|
|
for i := range full.Peers {
|
|
p := &full.Peers[i]
|
|
if !isTrimmablePeer(p, len(full.Peers)) {
|
|
min.Peers = append(min.Peers, *p)
|
|
if discoChanged[key.Public(p.PublicKey)] {
|
|
needRemoveStep = true
|
|
}
|
|
continue
|
|
}
|
|
tsIP := p.AllowedIPs[0].IP
|
|
dk := discoKeyFromPeer(p)
|
|
trackDisco = append(trackDisco, dk)
|
|
trackIPs = append(trackIPs, tsIP)
|
|
if e.isActiveSince(dk, tsIP, activeCutoff) {
|
|
min.Peers = append(min.Peers, *p)
|
|
if discoChanged[key.Public(p.PublicKey)] {
|
|
needRemoveStep = true
|
|
}
|
|
} else {
|
|
trimmedDisco[dk] = true
|
|
}
|
|
}
|
|
|
|
if !deepprint.UpdateHash(&e.lastEngineSigTrim, min, trimmedDisco, trackDisco, trackIPs) {
|
|
// No changes
|
|
return nil
|
|
}
|
|
|
|
e.trimmedDisco = trimmedDisco
|
|
|
|
e.updateActivityMapsLocked(trackDisco, trackIPs)
|
|
|
|
if needRemoveStep {
|
|
minner := min
|
|
minner.Peers = nil
|
|
numRemove := 0
|
|
for _, p := range min.Peers {
|
|
if discoChanged[key.Public(p.PublicKey)] {
|
|
numRemove++
|
|
continue
|
|
}
|
|
minner.Peers = append(minner.Peers, p)
|
|
}
|
|
if numRemove > 0 {
|
|
e.logf("wgengine: Reconfig: removing session keys for %d peers", numRemove)
|
|
if err := e.wgdev.Reconfig(&minner); err != nil {
|
|
e.logf("wgdev.Reconfig: %v", err)
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
|
|
e.logf("wgengine: Reconfig: configuring userspace wireguard config (with %d/%d peers)", len(min.Peers), len(full.Peers))
|
|
if err := e.wgdev.Reconfig(&min); err != nil {
|
|
e.logf("wgdev.Reconfig: %v", err)
|
|
return err
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// updateActivityMapsLocked updates the data structures used for tracking the activity
|
|
// of wireguard peers that we might add/remove dynamically from the real config
|
|
// as given to wireguard-go.
|
|
//
|
|
// e.wgLock must be held.
|
|
func (e *userspaceEngine) updateActivityMapsLocked(trackDisco []tailcfg.DiscoKey, trackIPs []netaddr.IP) {
|
|
// Generate the new map of which discokeys we want to track
|
|
// receive times for.
|
|
mr := map[tailcfg.DiscoKey]time.Time{} // TODO: only recreate this if set of keys changed
|
|
for _, dk := range trackDisco {
|
|
// Preserve old times in the new map, but also
|
|
// populate map entries for new trackDisco values with
|
|
// time.Time{} zero values. (Only entries in this map
|
|
// are tracked, so the Time zero values allow it to be
|
|
// tracked later)
|
|
mr[dk] = e.recvActivityAt[dk]
|
|
}
|
|
e.recvActivityAt = mr
|
|
|
|
oldTime := e.sentActivityAt
|
|
e.sentActivityAt = make(map[netaddr.IP]*int64, len(oldTime))
|
|
oldFunc := e.destIPActivityFuncs
|
|
e.destIPActivityFuncs = make(map[netaddr.IP]func(), len(oldFunc))
|
|
|
|
updateFn := func(timePtr *int64) func() {
|
|
return func() {
|
|
now := e.timeNow().Unix()
|
|
old := atomic.LoadInt64(timePtr)
|
|
|
|
// How long's it been since we last sent a packet?
|
|
// For our first packet, old is Unix epoch time 0 (1970).
|
|
elapsedSec := now - old
|
|
|
|
if elapsedSec >= int64(packetSendTimeUpdateFrequency/time.Second) {
|
|
atomic.StoreInt64(timePtr, now)
|
|
}
|
|
// On a big jump, assume we might no longer be in the wireguard
|
|
// config and go check.
|
|
if elapsedSec >= int64(packetSendRecheckWireguardThreshold/time.Second) {
|
|
e.wgLock.Lock()
|
|
defer e.wgLock.Unlock()
|
|
e.maybeReconfigWireguardLocked(nil)
|
|
}
|
|
}
|
|
}
|
|
|
|
for _, ip := range trackIPs {
|
|
timePtr := oldTime[ip]
|
|
if timePtr == nil {
|
|
timePtr = new(int64)
|
|
}
|
|
e.sentActivityAt[ip] = timePtr
|
|
|
|
fn := oldFunc[ip]
|
|
if fn == nil {
|
|
fn = updateFn(timePtr)
|
|
}
|
|
e.destIPActivityFuncs[ip] = fn
|
|
}
|
|
e.tundev.SetDestIPActivityFuncs(e.destIPActivityFuncs)
|
|
}
|
|
|
|
func (e *userspaceEngine) Reconfig(cfg *wgcfg.Config, routerCfg *router.Config) error {
|
|
if routerCfg == nil {
|
|
panic("routerCfg must not be nil")
|
|
}
|
|
|
|
localAddrs := map[netaddr.IP]bool{}
|
|
for _, addr := range routerCfg.LocalAddrs {
|
|
localAddrs[addr.IP] = true
|
|
}
|
|
e.localAddrs.Store(localAddrs)
|
|
|
|
e.wgLock.Lock()
|
|
defer e.wgLock.Unlock()
|
|
|
|
peerSet := make(map[key.Public]struct{}, len(cfg.Peers))
|
|
e.mu.Lock()
|
|
e.peerSequence = e.peerSequence[:0]
|
|
for _, p := range cfg.Peers {
|
|
e.peerSequence = append(e.peerSequence, wgkey.Key(p.PublicKey))
|
|
peerSet[key.Public(p.PublicKey)] = struct{}{}
|
|
}
|
|
e.mu.Unlock()
|
|
|
|
engineChanged := deepprint.UpdateHash(&e.lastEngineSigFull, cfg)
|
|
routerChanged := deepprint.UpdateHash(&e.lastRouterSig, routerCfg)
|
|
if !engineChanged && !routerChanged {
|
|
return ErrNoChanges
|
|
}
|
|
|
|
// See if any peers have changed disco keys, which means they've restarted.
|
|
// If so, we need to update the wireguard-go/device.Device in two phases:
|
|
// once without the node which has restarted, to clear its wireguard session key,
|
|
// and a second time with it.
|
|
discoChanged := make(map[key.Public]bool)
|
|
{
|
|
prevEP := make(map[key.Public]string)
|
|
for i := range e.lastCfgFull.Peers {
|
|
if p := &e.lastCfgFull.Peers[i]; isSingleEndpoint(p.Endpoints) {
|
|
prevEP[key.Public(p.PublicKey)] = p.Endpoints
|
|
}
|
|
}
|
|
for i := range cfg.Peers {
|
|
p := &cfg.Peers[i]
|
|
if !isSingleEndpoint(p.Endpoints) {
|
|
continue
|
|
}
|
|
pub := key.Public(p.PublicKey)
|
|
if old, ok := prevEP[pub]; ok && old != p.Endpoints {
|
|
discoChanged[pub] = true
|
|
e.logf("wgengine: Reconfig: %s changed from %q to %q", pub.ShortString(), old, p.Endpoints)
|
|
}
|
|
}
|
|
}
|
|
|
|
e.lastCfgFull = cfg.Copy()
|
|
|
|
// Tell magicsock about the new (or initial) private key
|
|
// (which is needed by DERP) before wgdev gets it, as wgdev
|
|
// will start trying to handshake, which we want to be able to
|
|
// go over DERP.
|
|
if err := e.magicConn.SetPrivateKey(wgkey.Private(cfg.PrivateKey)); err != nil {
|
|
e.logf("wgengine: Reconfig: SetPrivateKey: %v", err)
|
|
}
|
|
e.magicConn.UpdatePeers(peerSet)
|
|
|
|
if err := e.maybeReconfigWireguardLocked(discoChanged); err != nil {
|
|
return err
|
|
}
|
|
|
|
if routerChanged {
|
|
if routerCfg.DNS.Proxied {
|
|
ips := routerCfg.DNS.Nameservers
|
|
upstreams := make([]net.Addr, len(ips))
|
|
for i, ip := range ips {
|
|
stdIP := ip.IPAddr()
|
|
upstreams[i] = &net.UDPAddr{
|
|
IP: stdIP.IP,
|
|
Port: 53,
|
|
Zone: stdIP.Zone,
|
|
}
|
|
}
|
|
e.resolver.SetUpstreams(upstreams)
|
|
routerCfg.DNS.Nameservers = []netaddr.IP{tsaddr.TailscaleServiceIP()}
|
|
}
|
|
e.logf("wgengine: Reconfig: configuring router")
|
|
if err := e.router.Set(routerCfg); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
e.logf("[v1] wgengine: Reconfig done")
|
|
return nil
|
|
}
|
|
|
|
// isSingleEndpoint reports whether endpoints contains exactly one host:port pair.
|
|
func isSingleEndpoint(s string) bool {
|
|
return s != "" && !strings.Contains(s, ",")
|
|
}
|
|
|
|
func (e *userspaceEngine) GetFilter() *filter.Filter {
|
|
return e.tundev.GetFilter()
|
|
}
|
|
|
|
func (e *userspaceEngine) SetFilter(filt *filter.Filter) {
|
|
e.tundev.SetFilter(filt)
|
|
}
|
|
|
|
func (e *userspaceEngine) SetDNSMap(dm *tsdns.Map) {
|
|
e.resolver.SetMap(dm)
|
|
}
|
|
|
|
func (e *userspaceEngine) SetStatusCallback(cb StatusCallback) {
|
|
e.mu.Lock()
|
|
defer e.mu.Unlock()
|
|
e.statusCallback = cb
|
|
}
|
|
|
|
func (e *userspaceEngine) getStatusCallback() StatusCallback {
|
|
e.mu.Lock()
|
|
defer e.mu.Unlock()
|
|
return e.statusCallback
|
|
}
|
|
|
|
// TODO: this function returns an error but it's always nil, and when
|
|
// there's actually a problem it just calls log.Fatal. Why?
|
|
func (e *userspaceEngine) getStatus() (*Status, error) {
|
|
// Grab derpConns before acquiring wgLock to not violate lock ordering;
|
|
// the DERPs method acquires magicsock.Conn.mu.
|
|
// (See comment in userspaceEngine's declaration.)
|
|
derpConns := e.magicConn.DERPs()
|
|
|
|
e.wgLock.Lock()
|
|
defer e.wgLock.Unlock()
|
|
|
|
e.mu.Lock()
|
|
closing := e.closing
|
|
e.mu.Unlock()
|
|
if closing {
|
|
return nil, errors.New("engine closing; no status")
|
|
}
|
|
|
|
if e.wgdev == nil {
|
|
// RequestStatus was invoked before the wgengine has
|
|
// finished initializing. This can happen when wgegine
|
|
// provides a callback to magicsock for endpoint
|
|
// updates that calls RequestStatus.
|
|
return nil, nil
|
|
}
|
|
|
|
// lineLen is the max UAPI line we expect. The longest I see is
|
|
// len("preshared_key=")+64 hex+"\n" == 79. Add some slop.
|
|
const lineLen = 100
|
|
|
|
pr, pw := io.Pipe()
|
|
errc := make(chan error, 1)
|
|
go func() {
|
|
defer pw.Close()
|
|
bw := bufio.NewWriterSize(pw, lineLen)
|
|
// TODO(apenwarr): get rid of silly uapi stuff for in-process comms
|
|
// FIXME: get notified of status changes instead of polling.
|
|
filter := device.IPCGetFilter{
|
|
// The allowed_ips are somewhat expensive to compute and they're
|
|
// unused below; request that they not be sent instead.
|
|
FilterAllowedIPs: true,
|
|
}
|
|
if err := e.wgdev.IpcGetOperationFiltered(bw, filter); err != nil {
|
|
errc <- fmt.Errorf("IpcGetOperation: %w", err)
|
|
return
|
|
}
|
|
errc <- bw.Flush()
|
|
}()
|
|
|
|
pp := make(map[wgkey.Key]*PeerStatus)
|
|
p := &PeerStatus{}
|
|
|
|
var hst1, hst2, n int64
|
|
var err error
|
|
|
|
bs := bufio.NewScanner(pr)
|
|
bs.Buffer(make([]byte, lineLen), lineLen)
|
|
for bs.Scan() {
|
|
line := bs.Bytes()
|
|
k := line
|
|
var v mem.RO
|
|
if i := bytes.IndexByte(line, '='); i != -1 {
|
|
k = line[:i]
|
|
v = mem.B(line[i+1:])
|
|
}
|
|
switch string(k) {
|
|
case "public_key":
|
|
pk, err := key.NewPublicFromHexMem(v)
|
|
if err != nil {
|
|
log.Fatalf("IpcGetOperation: invalid key %#v", v)
|
|
}
|
|
p = &PeerStatus{}
|
|
pp[wgkey.Key(pk)] = p
|
|
|
|
key := tailcfg.NodeKey(pk)
|
|
p.NodeKey = key
|
|
case "rx_bytes":
|
|
n, err = mem.ParseInt(v, 10, 64)
|
|
p.RxBytes = ByteCount(n)
|
|
if err != nil {
|
|
log.Fatalf("IpcGetOperation: rx_bytes invalid: %#v", line)
|
|
}
|
|
case "tx_bytes":
|
|
n, err = mem.ParseInt(v, 10, 64)
|
|
p.TxBytes = ByteCount(n)
|
|
if err != nil {
|
|
log.Fatalf("IpcGetOperation: tx_bytes invalid: %#v", line)
|
|
}
|
|
case "last_handshake_time_sec":
|
|
hst1, err = mem.ParseInt(v, 10, 64)
|
|
if err != nil {
|
|
log.Fatalf("IpcGetOperation: hst1 invalid: %#v", line)
|
|
}
|
|
case "last_handshake_time_nsec":
|
|
hst2, err = mem.ParseInt(v, 10, 64)
|
|
if err != nil {
|
|
log.Fatalf("IpcGetOperation: hst2 invalid: %#v", line)
|
|
}
|
|
if hst1 != 0 || hst2 != 0 {
|
|
p.LastHandshake = time.Unix(hst1, hst2)
|
|
} // else leave at time.IsZero()
|
|
}
|
|
}
|
|
if err := bs.Err(); err != nil {
|
|
log.Fatalf("reading IpcGetOperation output: %v", err)
|
|
}
|
|
if err := <-errc; err != nil {
|
|
log.Fatalf("IpcGetOperation: %v", err)
|
|
}
|
|
|
|
e.mu.Lock()
|
|
defer e.mu.Unlock()
|
|
|
|
var peers []PeerStatus
|
|
for _, pk := range e.peerSequence {
|
|
if p, ok := pp[pk]; ok { // ignore idle ones not in wireguard-go's config
|
|
peers = append(peers, *p)
|
|
}
|
|
}
|
|
|
|
return &Status{
|
|
LocalAddrs: append([]string(nil), e.endpoints...),
|
|
Peers: peers,
|
|
DERPs: derpConns,
|
|
}, nil
|
|
}
|
|
|
|
func (e *userspaceEngine) RequestStatus() {
|
|
// This is slightly tricky. e.getStatus() can theoretically get
|
|
// blocked inside wireguard for a while, and RequestStatus() is
|
|
// sometimes called from a goroutine, so we don't want a lot of
|
|
// them hanging around. On the other hand, requesting multiple
|
|
// status updates simultaneously is pointless anyway; they will
|
|
// all say the same thing.
|
|
|
|
// Enqueue at most one request. If one is in progress already, this
|
|
// adds one more to the queue. If one has been requested but not
|
|
// started, it is a no-op.
|
|
select {
|
|
case e.reqCh <- struct{}{}:
|
|
default:
|
|
}
|
|
|
|
// Dequeue at most one request. Another thread may have already
|
|
// dequeued the request we enqueued above, which is fine, since the
|
|
// information is guaranteed to be at least as recent as the current
|
|
// call to RequestStatus().
|
|
select {
|
|
case <-e.reqCh:
|
|
s, err := e.getStatus()
|
|
if s == nil && err == nil {
|
|
e.logf("RequestStatus: weird: both s and err are nil")
|
|
return
|
|
}
|
|
if cb := e.getStatusCallback(); cb != nil {
|
|
cb(s, err)
|
|
}
|
|
default:
|
|
}
|
|
}
|
|
|
|
func (e *userspaceEngine) Close() {
|
|
var pingers []*pinger
|
|
|
|
e.mu.Lock()
|
|
if e.closing {
|
|
e.mu.Unlock()
|
|
return
|
|
}
|
|
e.closing = true
|
|
for _, pinger := range e.pingers {
|
|
pingers = append(pingers, pinger)
|
|
}
|
|
e.mu.Unlock()
|
|
|
|
r := bufio.NewReader(strings.NewReader(""))
|
|
e.wgdev.IpcSetOperation(r)
|
|
e.resolver.Close()
|
|
e.magicConn.Close()
|
|
e.linkMon.Close()
|
|
e.router.Close()
|
|
e.wgdev.Close()
|
|
e.tundev.Close()
|
|
|
|
// Shut down pingers after tundev is closed (by e.wgdev.Close) so the
|
|
// synchronous close does not get stuck on InjectOutbound.
|
|
for _, pinger := range pingers {
|
|
pinger.close()
|
|
}
|
|
|
|
close(e.waitCh)
|
|
}
|
|
|
|
func (e *userspaceEngine) Wait() {
|
|
<-e.waitCh
|
|
}
|
|
|
|
func (e *userspaceEngine) setLinkState(st *interfaces.State) (changed bool, cb func(major bool, newState *interfaces.State)) {
|
|
if st == nil {
|
|
return false, nil
|
|
}
|
|
e.mu.Lock()
|
|
defer e.mu.Unlock()
|
|
changed = e.linkState == nil || !st.Equal(e.linkState)
|
|
e.linkState = st
|
|
return changed, e.linkChangeCallback
|
|
}
|
|
|
|
func (e *userspaceEngine) LinkChange(isExpensive bool) {
|
|
cur, err := getLinkState()
|
|
if err != nil {
|
|
e.logf("LinkChange: interfaces.GetState: %v", err)
|
|
return
|
|
}
|
|
cur.IsExpensive = isExpensive
|
|
needRebind, linkChangeCallback := e.setLinkState(cur)
|
|
|
|
up := cur.AnyInterfaceUp()
|
|
if !up {
|
|
e.logf("LinkChange: all links down; pausing: %v", cur)
|
|
} else if needRebind {
|
|
e.logf("LinkChange: major, rebinding. New state: %v", cur)
|
|
} else {
|
|
e.logf("[v1] LinkChange: minor")
|
|
}
|
|
|
|
e.magicConn.SetNetworkUp(up)
|
|
|
|
why := "link-change-minor"
|
|
if needRebind {
|
|
why = "link-change-major"
|
|
e.magicConn.Rebind()
|
|
}
|
|
e.magicConn.ReSTUN(why)
|
|
if linkChangeCallback != nil {
|
|
go linkChangeCallback(needRebind, cur)
|
|
}
|
|
}
|
|
|
|
func (e *userspaceEngine) SetLinkChangeCallback(cb func(major bool, newState *interfaces.State)) {
|
|
e.mu.Lock()
|
|
defer e.mu.Unlock()
|
|
e.linkChangeCallback = cb
|
|
if e.linkState != nil {
|
|
go cb(false, e.linkState)
|
|
}
|
|
}
|
|
|
|
func (e *userspaceEngine) AddNetworkMapCallback(cb NetworkMapCallback) func() {
|
|
e.mu.Lock()
|
|
defer e.mu.Unlock()
|
|
if e.networkMapCallbacks == nil {
|
|
e.networkMapCallbacks = make(map[*someHandle]NetworkMapCallback)
|
|
}
|
|
h := new(someHandle)
|
|
e.networkMapCallbacks[h] = cb
|
|
return func() {
|
|
e.mu.Lock()
|
|
defer e.mu.Unlock()
|
|
delete(e.networkMapCallbacks, h)
|
|
}
|
|
}
|
|
|
|
func getLinkState() (*interfaces.State, error) {
|
|
s, err := interfaces.GetState()
|
|
if s != nil {
|
|
s.RemoveTailscaleInterfaces()
|
|
}
|
|
return s, err
|
|
}
|
|
|
|
func (e *userspaceEngine) SetNetInfoCallback(cb NetInfoCallback) {
|
|
e.magicConn.SetNetInfoCallback(cb)
|
|
}
|
|
|
|
func (e *userspaceEngine) SetDERPMap(dm *tailcfg.DERPMap) {
|
|
e.magicConn.SetDERPMap(dm)
|
|
}
|
|
|
|
func (e *userspaceEngine) SetNetworkMap(nm *controlclient.NetworkMap) {
|
|
e.magicConn.SetNetworkMap(nm)
|
|
e.mu.Lock()
|
|
callbacks := make([]NetworkMapCallback, 0, 4)
|
|
for _, fn := range e.networkMapCallbacks {
|
|
callbacks = append(callbacks, fn)
|
|
}
|
|
e.mu.Unlock()
|
|
for _, fn := range callbacks {
|
|
fn(nm)
|
|
}
|
|
}
|
|
|
|
func (e *userspaceEngine) DiscoPublicKey() tailcfg.DiscoKey {
|
|
return e.magicConn.DiscoPublicKey()
|
|
}
|
|
|
|
func (e *userspaceEngine) UpdateStatus(sb *ipnstate.StatusBuilder) {
|
|
st, err := e.getStatus()
|
|
if err != nil {
|
|
e.logf("wgengine: getStatus: %v", err)
|
|
return
|
|
}
|
|
for _, ps := range st.Peers {
|
|
sb.AddPeer(key.Public(ps.NodeKey), &ipnstate.PeerStatus{
|
|
RxBytes: int64(ps.RxBytes),
|
|
TxBytes: int64(ps.TxBytes),
|
|
LastHandshake: ps.LastHandshake,
|
|
InEngine: true,
|
|
})
|
|
}
|
|
|
|
e.magicConn.UpdateStatus(sb)
|
|
}
|
|
|
|
func (e *userspaceEngine) Ping(ip netaddr.IP, cb func(*ipnstate.PingResult)) {
|
|
e.magicConn.Ping(ip, cb)
|
|
}
|
|
|
|
// diagnoseTUNFailure is called if tun.CreateTUN fails, to poke around
|
|
// the system and log some diagnostic info that might help debug why
|
|
// TUN failed. Because TUN's already failed and things the program's
|
|
// about to end, we might as well log a lot.
|
|
func diagnoseTUNFailure(logf logger.Logf) {
|
|
switch runtime.GOOS {
|
|
case "linux":
|
|
diagnoseLinuxTUNFailure(logf)
|
|
default:
|
|
logf("no TUN failure diagnostics for OS %q", runtime.GOOS)
|
|
}
|
|
}
|
|
|
|
func diagnoseLinuxTUNFailure(logf logger.Logf) {
|
|
kernel, err := exec.Command("uname", "-r").Output()
|
|
kernel = bytes.TrimSpace(kernel)
|
|
if err != nil {
|
|
logf("no TUN, and failed to look up kernel version: %v", err)
|
|
return
|
|
}
|
|
logf("Linux kernel version: %s", kernel)
|
|
|
|
modprobeOut, err := exec.Command("/sbin/modprobe", "tun").CombinedOutput()
|
|
if err == nil {
|
|
logf("'modprobe tun' successful")
|
|
// Either tun is currently loaded, or it's statically
|
|
// compiled into the kernel (which modprobe checks
|
|
// with /lib/modules/$(uname -r)/modules.builtin)
|
|
//
|
|
// So if there's a problem at this point, it's
|
|
// probably because /dev/net/tun doesn't exist.
|
|
const dev = "/dev/net/tun"
|
|
if fi, err := os.Stat(dev); err != nil {
|
|
logf("tun module loaded in kernel, but %s does not exist", dev)
|
|
} else {
|
|
logf("%s: %v", dev, fi.Mode())
|
|
}
|
|
|
|
// We failed to find why it failed. Just let our
|
|
// caller report the error it got from wireguard-go.
|
|
return
|
|
}
|
|
logf("is CONFIG_TUN enabled in your kernel? `modprobe tun` failed with: %s", modprobeOut)
|
|
|
|
switch distro.Get() {
|
|
case distro.Debian:
|
|
dpkgOut, err := exec.Command("dpkg", "-S", "kernel/drivers/net/tun.ko").CombinedOutput()
|
|
if len(bytes.TrimSpace(dpkgOut)) == 0 || err != nil {
|
|
logf("tun module not loaded nor found on disk")
|
|
return
|
|
}
|
|
if !bytes.Contains(dpkgOut, kernel) {
|
|
logf("kernel/drivers/net/tun.ko found on disk, but not for current kernel; are you in middle of a system update and haven't rebooted? found: %s", dpkgOut)
|
|
}
|
|
case distro.Arch:
|
|
findOut, err := exec.Command("find", "/lib/modules/", "-path", "*/net/tun.ko*").CombinedOutput()
|
|
if len(bytes.TrimSpace(findOut)) == 0 || err != nil {
|
|
logf("tun module not loaded nor found on disk")
|
|
return
|
|
}
|
|
if !bytes.Contains(findOut, kernel) {
|
|
logf("kernel/drivers/net/tun.ko found on disk, but not for current kernel; are you in middle of a system update and haven't rebooted? found: %s", findOut)
|
|
}
|
|
case distro.OpenWrt:
|
|
out, err := exec.Command("opkg", "list-installed").CombinedOutput()
|
|
if err != nil {
|
|
logf("error querying OpenWrt installed packages: %s", out)
|
|
return
|
|
}
|
|
for _, pkg := range []string{"kmod-tun", "ca-bundle"} {
|
|
if !bytes.Contains(out, []byte(pkg+" - ")) {
|
|
logf("Missing required package %s; run: opkg install %s", pkg, pkg)
|
|
}
|
|
}
|
|
}
|
|
}
|