Brad Fitzpatrick c1a2e2c380 net/{packet,tstun},wgengine/filter: fix unknown IP protocol handling
01b90df2fa4f9101e4f0ae8334b00dd9c3ccc148 added SCTP support before
(with explicit parsing for ports) and
69de3bf7bfddb37b4c0e076c93115f82a51ec407 tried to add support for
arbitrary IP protocols (as long as the ACL permited a port of "*",
since we might not know how to find ports from an arbitrary IP
protocol, if it even has such a concept). But apparently that latter
commit wasn't tested end-to-end enough. It had a lot of tests, but the
tests made assumptions about layering that either weren't true, or
regressed since 1.20. Notably, it didn't remove the (*Filter).pre
bidirectional filter that dropped all "unknown" protocol packets both
leaving and entering, even if there were explicit protocol matches
allowing them in.

Also, don't map all unknown protocols to 0. Keep their IP protocol
number parsed so it's matchable by later layers. Only reject illegal
things.

Fixes #6423
Updates #2162
Updates #2163

Change-Id: I9659b3ece86f4db51d644f9b34df78821758842c
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
2023-01-14 10:32:18 -08:00

606 lines
17 KiB
Go

// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package filter is a stateful packet filter.
package filter
import (
"fmt"
"net/netip"
"sync"
"time"
"go4.org/netipx"
"tailscale.com/envknob"
"tailscale.com/net/flowtrack"
"tailscale.com/net/netaddr"
"tailscale.com/net/packet"
"tailscale.com/tstime/rate"
"tailscale.com/types/ipproto"
"tailscale.com/types/logger"
)
// Filter is a stateful packet filter.
type Filter struct {
logf logger.Logf
// local is the set of IPs prefixes that we know to be "local" to
// this node. All packets coming in over tailscale must have a
// destination within local, regardless of the policy filter
// below.
local *netipx.IPSet
// logIPs is the set of IPs that are allowed to appear in flow
// logs. If a packet is to or from an IP not in logIPs, it will
// never be logged.
logIPs *netipx.IPSet
// matches4 and matches6 are lists of match->action rules
// applied to all packets arriving over tailscale
// tunnels. Matches are checked in order, and processing stops
// at the first matching rule. The default policy if no rules
// match is to drop the packet.
matches4 matches
matches6 matches
// cap4 and cap6 are the subsets of the matches that are about
// capability grants, partitioned by source IP address family.
cap4, cap6 matches
// state is the connection tracking state attached to this
// filter. It is used to allow incoming traffic that is a response
// to an outbound connection that this node made, even if those
// incoming packets don't get accepted by matches above.
state *filterState
shieldsUp bool
}
// filterState is a state cache of past seen packets.
type filterState struct {
mu sync.Mutex
lru *flowtrack.Cache[struct{}] // from flowtrack.Tuple -> struct{}
}
// lruMax is the size of the LRU cache in filterState.
const lruMax = 512
// Response is a verdict from the packet filter.
type Response int
const (
Drop Response = iota // do not continue processing packet.
DropSilently // do not continue processing packet, but also don't log
Accept // continue processing packet.
noVerdict // no verdict yet, continue running filter
)
func (r Response) String() string {
switch r {
case Drop:
return "Drop"
case DropSilently:
return "DropSilently"
case Accept:
return "Accept"
case noVerdict:
return "noVerdict"
default:
return "???"
}
}
func (r Response) IsDrop() bool {
return r == Drop || r == DropSilently
}
// RunFlags controls the filter's debug log verbosity at runtime.
type RunFlags int
const (
LogDrops RunFlags = 1 << iota // write dropped packet info to logf
LogAccepts // write accepted packet info to logf
HexdumpDrops // print packet hexdump when logging drops
HexdumpAccepts // print packet hexdump when logging accepts
)
// NewAllowAllForTest returns a packet filter that accepts
// everything. Use in tests only, as it permits some kinds of spoofing
// attacks to reach the OS network stack.
func NewAllowAllForTest(logf logger.Logf) *Filter {
any4 := netip.PrefixFrom(netaddr.IPv4(0, 0, 0, 0), 0)
any6 := netip.PrefixFrom(netip.AddrFrom16([16]byte{}), 0)
ms := []Match{
{
IPProto: []ipproto.Proto{ipproto.TCP, ipproto.UDP, ipproto.ICMPv4},
Srcs: []netip.Prefix{any4},
Dsts: []NetPortRange{
{
Net: any4,
Ports: PortRange{
First: 0,
Last: 65535,
},
},
},
},
{
IPProto: []ipproto.Proto{ipproto.TCP, ipproto.UDP, ipproto.ICMPv6},
Srcs: []netip.Prefix{any6},
Dsts: []NetPortRange{
{
Net: any6,
Ports: PortRange{
First: 0,
Last: 65535,
},
},
},
},
}
var sb netipx.IPSetBuilder
sb.AddPrefix(any4)
sb.AddPrefix(any6)
ipSet, _ := sb.IPSet()
return New(ms, ipSet, ipSet, nil, logf)
}
// NewAllowNone returns a packet filter that rejects everything.
func NewAllowNone(logf logger.Logf, logIPs *netipx.IPSet) *Filter {
return New(nil, &netipx.IPSet{}, logIPs, nil, logf)
}
// NewShieldsUpFilter returns a packet filter that rejects incoming connections.
//
// If shareStateWith is non-nil, the returned filter shares state with the previous one,
// as long as the previous one was also a shields up filter.
func NewShieldsUpFilter(localNets *netipx.IPSet, logIPs *netipx.IPSet, shareStateWith *Filter, logf logger.Logf) *Filter {
// Don't permit sharing state with a prior filter that wasn't a shields-up filter.
if shareStateWith != nil && !shareStateWith.shieldsUp {
shareStateWith = nil
}
f := New(nil, localNets, logIPs, shareStateWith, logf)
f.shieldsUp = true
return f
}
// New creates a new packet filter. The filter enforces that incoming
// packets must be destined to an IP in localNets, and must be allowed
// by matches. If shareStateWith is non-nil, the returned filter
// shares state with the previous one, to enable changing rules at
// runtime without breaking existing stateful flows.
func New(matches []Match, localNets *netipx.IPSet, logIPs *netipx.IPSet, shareStateWith *Filter, logf logger.Logf) *Filter {
var state *filterState
if shareStateWith != nil {
state = shareStateWith.state
} else {
state = &filterState{
lru: &flowtrack.Cache[struct{}]{MaxEntries: lruMax},
}
}
f := &Filter{
logf: logf,
matches4: matchesFamily(matches, netip.Addr.Is4),
matches6: matchesFamily(matches, netip.Addr.Is6),
cap4: capMatchesFunc(matches, netip.Addr.Is4),
cap6: capMatchesFunc(matches, netip.Addr.Is6),
local: localNets,
logIPs: logIPs,
state: state,
}
return f
}
// matchesFamily returns the subset of ms for which keep(srcNet.IP)
// and keep(dstNet.IP) are both true.
func matchesFamily(ms matches, keep func(netip.Addr) bool) matches {
var ret matches
for _, m := range ms {
var retm Match
retm.IPProto = m.IPProto
for _, src := range m.Srcs {
if keep(src.Addr()) {
retm.Srcs = append(retm.Srcs, src)
}
}
for _, dst := range m.Dsts {
if keep(dst.Net.Addr()) {
retm.Dsts = append(retm.Dsts, dst)
}
}
if len(retm.Srcs) > 0 && len(retm.Dsts) > 0 {
ret = append(ret, retm)
}
}
return ret
}
// capMatchesFunc returns a copy of the subset of ms for which keep(srcNet.IP)
// and the match is a capability grant.
func capMatchesFunc(ms matches, keep func(netip.Addr) bool) matches {
var ret matches
for _, m := range ms {
if len(m.Caps) == 0 {
continue
}
retm := Match{Caps: m.Caps}
for _, src := range m.Srcs {
if keep(src.Addr()) {
retm.Srcs = append(retm.Srcs, src)
}
}
if len(retm.Srcs) > 0 {
ret = append(ret, retm)
}
}
return ret
}
func maybeHexdump(flag RunFlags, b []byte) string {
if flag == 0 {
return ""
}
return packet.Hexdump(b) + "\n"
}
// TODO(apenwarr): use a bigger bucket for specifically TCP SYN accept logging?
// Logging is a quick way to record every newly opened TCP connection, but
// we have to be cautious about flooding the logs vs letting people use
// flood protection to hide their traffic. We could use a rate limiter in
// the actual *filter* for SYN accepts, perhaps.
var acceptBucket = rate.NewLimiter(rate.Every(10*time.Second), 3)
var dropBucket = rate.NewLimiter(rate.Every(5*time.Second), 10)
// NOTE(Xe): This func init is used to detect
// TS_DEBUG_FILTER_RATE_LIMIT_LOGS=all, and if it matches, to
// effectively disable the limits on the log rate by setting the limit
// to 1 millisecond. This should capture everything.
func init() {
if envknob.String("TS_DEBUG_FILTER_RATE_LIMIT_LOGS") != "all" {
return
}
acceptBucket = rate.NewLimiter(rate.Every(time.Millisecond), 10)
dropBucket = rate.NewLimiter(rate.Every(time.Millisecond), 10)
}
func (f *Filter) logRateLimit(runflags RunFlags, q *packet.Parsed, dir direction, r Response, why string) {
if !f.loggingAllowed(q) {
return
}
if r == Drop && omitDropLogging(q, dir) {
return
}
var verdict string
if r == Drop && (runflags&LogDrops) != 0 && dropBucket.Allow() {
verdict = "Drop"
runflags &= HexdumpDrops
} else if r == Accept && (runflags&LogAccepts) != 0 && acceptBucket.Allow() {
verdict = "Accept"
runflags &= HexdumpAccepts
}
// Note: it is crucial that q.String() be called only if {accept,drop}Bucket.Allow() passes,
// since it causes an allocation.
if verdict != "" {
b := q.Buffer()
f.logf("%s: %s %d %s\n%s", verdict, q.String(), len(b), why, maybeHexdump(runflags, b))
}
}
// dummyPacket is a 20-byte slice of garbage, to pass the filter
// pre-check when evaluating synthesized packets.
var dummyPacket = []byte{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
}
// CheckTCP determines whether TCP traffic from srcIP to dstIP:dstPort
// is allowed.
func (f *Filter) CheckTCP(srcIP, dstIP netip.Addr, dstPort uint16) Response {
pkt := &packet.Parsed{}
pkt.Decode(dummyPacket) // initialize private fields
switch {
case (srcIP.Is4() && dstIP.Is6()) || (srcIP.Is6() && srcIP.Is4()):
// Mismatched address families, no filters will
// match.
return Drop
case srcIP.Is4():
pkt.IPVersion = 4
case srcIP.Is6():
pkt.IPVersion = 6
default:
panic("unreachable")
}
pkt.Src = netip.AddrPortFrom(srcIP, 0)
pkt.Dst = netip.AddrPortFrom(dstIP, dstPort)
pkt.IPProto = ipproto.TCP
pkt.TCPFlags = packet.TCPSyn
return f.RunIn(pkt, 0)
}
// AppendCaps appends to base the capabilities that srcIP has talking
// to dstIP.
func (f *Filter) AppendCaps(base []string, srcIP, dstIP netip.Addr) []string {
ret := base
var mm matches
switch {
case srcIP.Is4():
mm = f.cap4
case srcIP.Is6():
mm = f.cap6
}
for _, m := range mm {
if !ipInList(srcIP, m.Srcs) {
continue
}
for _, cm := range m.Caps {
if cm.Cap != "" && cm.Dst.Contains(dstIP) {
ret = append(ret, cm.Cap)
}
}
}
return ret
}
// ShieldsUp reports whether this is a "shields up" (block everything
// incoming) filter.
func (f *Filter) ShieldsUp() bool { return f.shieldsUp }
// RunIn determines whether this node is allowed to receive q from a
// Tailscale peer.
func (f *Filter) RunIn(q *packet.Parsed, rf RunFlags) Response {
dir := in
r := f.pre(q, rf, dir)
if r == Accept || r == Drop {
// already logged
return r
}
var why string
switch q.IPVersion {
case 4:
r, why = f.runIn4(q)
case 6:
r, why = f.runIn6(q)
default:
r, why = Drop, "not-ip"
}
f.logRateLimit(rf, q, dir, r, why)
return r
}
// RunOut determines whether this node is allowed to send q to a
// Tailscale peer.
func (f *Filter) RunOut(q *packet.Parsed, rf RunFlags) Response {
dir := out
r := f.pre(q, rf, dir)
if r == Accept || r == Drop {
// already logged
return r
}
r, why := f.runOut(q)
f.logRateLimit(rf, q, dir, r, why)
return r
}
var unknownProtoStringCache sync.Map // ipproto.Proto -> string
func unknownProtoString(proto ipproto.Proto) string {
if v, ok := unknownProtoStringCache.Load(proto); ok {
return v.(string)
}
s := fmt.Sprintf("unknown-protocol-%d", proto)
unknownProtoStringCache.Store(proto, s)
return s
}
func (f *Filter) runIn4(q *packet.Parsed) (r Response, why string) {
// A compromised peer could try to send us packets for
// destinations we didn't explicitly advertise. This check is to
// prevent that.
if !f.local.Contains(q.Dst.Addr()) {
return Drop, "destination not allowed"
}
switch q.IPProto {
case ipproto.ICMPv4:
if q.IsEchoResponse() || q.IsError() {
// ICMP responses are allowed.
// TODO(apenwarr): consider using conntrack state.
// We could choose to reject all packets that aren't
// related to an existing ICMP-Echo, TCP, or UDP
// session.
return Accept, "icmp response ok"
} else if f.matches4.matchIPsOnly(q) {
// If any port is open to an IP, allow ICMP to it.
return Accept, "icmp ok"
}
case ipproto.TCP:
// For TCP, we want to allow *outgoing* connections,
// which means we want to allow return packets on those
// connections. To make this restriction work, we need to
// allow non-SYN packets (continuation of an existing session)
// to arrive. This should be okay since a new incoming session
// can't be initiated without first sending a SYN.
// It happens to also be much faster.
// TODO(apenwarr): Skip the rest of decoding in this path?
if !q.IsTCPSyn() {
return Accept, "tcp non-syn"
}
if f.matches4.match(q) {
return Accept, "tcp ok"
}
case ipproto.UDP, ipproto.SCTP:
t := flowtrack.Tuple{Proto: q.IPProto, Src: q.Src, Dst: q.Dst}
f.state.mu.Lock()
_, ok := f.state.lru.Get(t)
f.state.mu.Unlock()
if ok {
return Accept, "cached"
}
if f.matches4.match(q) {
return Accept, "ok"
}
case ipproto.TSMP:
return Accept, "tsmp ok"
default:
if f.matches4.matchProtoAndIPsOnlyIfAllPorts(q) {
return Accept, "other-portless ok"
}
return Drop, unknownProtoString(q.IPProto)
}
return Drop, "no rules matched"
}
func (f *Filter) runIn6(q *packet.Parsed) (r Response, why string) {
// A compromised peer could try to send us packets for
// destinations we didn't explicitly advertise. This check is to
// prevent that.
if !f.local.Contains(q.Dst.Addr()) {
return Drop, "destination not allowed"
}
switch q.IPProto {
case ipproto.ICMPv6:
if q.IsEchoResponse() || q.IsError() {
// ICMP responses are allowed.
// TODO(apenwarr): consider using conntrack state.
// We could choose to reject all packets that aren't
// related to an existing ICMP-Echo, TCP, or UDP
// session.
return Accept, "icmp response ok"
} else if f.matches6.matchIPsOnly(q) {
// If any port is open to an IP, allow ICMP to it.
return Accept, "icmp ok"
}
case ipproto.TCP:
// For TCP, we want to allow *outgoing* connections,
// which means we want to allow return packets on those
// connections. To make this restriction work, we need to
// allow non-SYN packets (continuation of an existing session)
// to arrive. This should be okay since a new incoming session
// can't be initiated without first sending a SYN.
// It happens to also be much faster.
// TODO(apenwarr): Skip the rest of decoding in this path?
if q.IPProto == ipproto.TCP && !q.IsTCPSyn() {
return Accept, "tcp non-syn"
}
if f.matches6.match(q) {
return Accept, "tcp ok"
}
case ipproto.UDP, ipproto.SCTP:
t := flowtrack.Tuple{Proto: q.IPProto, Src: q.Src, Dst: q.Dst}
f.state.mu.Lock()
_, ok := f.state.lru.Get(t)
f.state.mu.Unlock()
if ok {
return Accept, "cached"
}
if f.matches6.match(q) {
return Accept, "ok"
}
case ipproto.TSMP:
return Accept, "tsmp ok"
default:
if f.matches6.matchProtoAndIPsOnlyIfAllPorts(q) {
return Accept, "other-portless ok"
}
return Drop, unknownProtoString(q.IPProto)
}
return Drop, "no rules matched"
}
// runIn runs the output-specific part of the filter logic.
func (f *Filter) runOut(q *packet.Parsed) (r Response, why string) {
switch q.IPProto {
case ipproto.UDP, ipproto.SCTP:
tuple := flowtrack.Tuple{
Proto: q.IPProto,
Src: q.Dst, Dst: q.Src, // src/dst reversed
}
f.state.mu.Lock()
f.state.lru.Add(tuple, struct{}{})
f.state.mu.Unlock()
}
return Accept, "ok out"
}
// direction is whether a packet was flowing into this machine, or
// flowing out.
type direction int
const (
in direction = iota // from Tailscale peer to local machine
out // from local machine to Tailscale peer
)
func (d direction) String() string {
switch d {
case in:
return "in"
case out:
return "out"
default:
return fmt.Sprintf("[??dir=%d]", int(d))
}
}
var gcpDNSAddr = netaddr.IPv4(169, 254, 169, 254)
// pre runs the direction-agnostic filter logic. dir is only used for
// logging.
func (f *Filter) pre(q *packet.Parsed, rf RunFlags, dir direction) Response {
if len(q.Buffer()) == 0 {
// wireguard keepalive packet, always permit.
return Accept
}
if len(q.Buffer()) < 20 {
f.logRateLimit(rf, q, dir, Drop, "too short")
return Drop
}
if q.Dst.Addr().IsMulticast() {
f.logRateLimit(rf, q, dir, Drop, "multicast")
return Drop
}
if q.Dst.Addr().IsLinkLocalUnicast() && q.Dst.Addr() != gcpDNSAddr {
f.logRateLimit(rf, q, dir, Drop, "link-local-unicast")
return Drop
}
if q.IPProto == ipproto.Fragment {
// Fragments after the first always need to be passed through.
// Very small fragments are considered Junk by Parsed.
f.logRateLimit(rf, q, dir, Accept, "fragment")
return Accept
}
return noVerdict
}
// loggingAllowed reports whether p can appear in logs at all.
func (f *Filter) loggingAllowed(p *packet.Parsed) bool {
return f.logIPs.Contains(p.Src.Addr()) && f.logIPs.Contains(p.Dst.Addr())
}
// omitDropLogging reports whether packet p, which has already been
// deemed a packet to Drop, should bypass the [rate-limited] logging.
// We don't want to log scary & spammy reject warnings for packets
// that are totally normal, like IPv6 route announcements.
func omitDropLogging(p *packet.Parsed, dir direction) bool {
if dir != out {
return false
}
return p.Dst.Addr().IsMulticast() || (p.Dst.Addr().IsLinkLocalUnicast() && p.Dst.Addr() != gcpDNSAddr) || p.IPProto == ipproto.IGMP
}