mirror of
https://github.com/tailscale/tailscale.git
synced 2024-11-26 03:25:35 +00:00
d145c594ad
The previous algorithm used a map of all visited pointers. The strength of this approach is that it quickly prunes any nodes that we have ever visited before. The detriment of the approach is that pruning is heavily dependent on the order that pointers were visited. This is especially relevant for hashing a map where map entries are visited in a non-deterministic manner, which would cause the map hash to be non-deterministic (which defeats the point of a hash). This new algorithm uses a stack of all visited pointers, similar to how github.com/google/go-cmp performs cycle detection. When we visit a pointer, we push it onto the stack, and when we leave a pointer, we pop it from the stack. Before visiting a pointer, we first check whether the pointer exists anywhere in the stack. If yes, then we prune the node. The detriment of this approach is that we may hash a node more often than before since we do not prune as aggressively. The set of visited pointers up until any node is only the path of nodes up to that node and not any other pointers that may have been visited elsewhere. This provides us deterministic hashing regardless of visit order. We can now delete hashMapFallback and associated complexity, which only exists because the previous approach was non-deterministic in the presence of cycles. This fixes a failure of the old algorithm where obviously different values are treated as equal because the pruning was too aggresive. See https://github.com/tailscale/tailscale/issues/2443#issuecomment-883653534 The new algorithm is slightly slower since it prunes less aggresively: name old time/op new time/op delta Hash-8 66.1µs ± 1% 68.8µs ± 1% +4.09% (p=0.000 n=19+19) HashMapAcyclic-8 63.0µs ± 1% 62.5µs ± 1% -0.76% (p=0.000 n=18+19) TailcfgNode-8 9.79µs ± 2% 9.88µs ± 1% +0.95% (p=0.000 n=19+17) HashArray-8 643ns ± 1% 653ns ± 1% +1.64% (p=0.000 n=19+19) However, a slower but more correct algorithm seems more favorable than a faster but incorrect algorithm. Signed-off-by: Joe Tsai <joetsai@digital-static.net>
366 lines
9.3 KiB
Go
366 lines
9.3 KiB
Go
// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package deephash hashes a Go value recursively, in a predictable order,
|
|
// without looping. The hash is only valid within the lifetime of a program.
|
|
// Users should not store the hash on disk or send it over the network.
|
|
// The hash is sufficiently strong and unique such that
|
|
// Hash(x) == Hash(y) is an appropriate replacement for x == y.
|
|
//
|
|
// This package, like most of the tailscale.com Go module, should be
|
|
// considered Tailscale-internal; we make no API promises.
|
|
package deephash
|
|
|
|
import (
|
|
"bufio"
|
|
"crypto/sha256"
|
|
"encoding/binary"
|
|
"encoding/hex"
|
|
"fmt"
|
|
"hash"
|
|
"math"
|
|
"reflect"
|
|
"strconv"
|
|
"sync"
|
|
"time"
|
|
"unsafe"
|
|
)
|
|
|
|
const scratchSize = 128
|
|
|
|
// hasher is reusable state for hashing a value.
|
|
// Get one via hasherPool.
|
|
type hasher struct {
|
|
h hash.Hash
|
|
bw *bufio.Writer
|
|
scratch [scratchSize]byte
|
|
visitStack visitStack
|
|
}
|
|
|
|
// newHasher initializes a new hasher, for use by hasherPool.
|
|
func newHasher() *hasher {
|
|
h := &hasher{h: sha256.New()}
|
|
h.bw = bufio.NewWriterSize(h.h, h.h.BlockSize())
|
|
return h
|
|
}
|
|
|
|
// setBufioWriter switches the bufio writer to w after flushing
|
|
// any output to the old one. It then also returns the old one, so
|
|
// the caller can switch back to it.
|
|
func (h *hasher) setBufioWriter(w *bufio.Writer) (old *bufio.Writer) {
|
|
old = h.bw
|
|
old.Flush()
|
|
h.bw = w
|
|
return old
|
|
}
|
|
|
|
// Sum is an opaque checksum type that is comparable.
|
|
type Sum struct {
|
|
sum [sha256.Size]byte
|
|
}
|
|
|
|
func (s Sum) String() string {
|
|
return hex.EncodeToString(s.sum[:])
|
|
}
|
|
|
|
var (
|
|
once sync.Once
|
|
seed uint64
|
|
)
|
|
|
|
// Hash returns the hash of v.
|
|
func (h *hasher) Hash(v interface{}) (hash Sum) {
|
|
h.bw.Flush()
|
|
h.h.Reset()
|
|
once.Do(func() {
|
|
seed = uint64(time.Now().UnixNano())
|
|
})
|
|
h.uint(seed)
|
|
h.print(reflect.ValueOf(v))
|
|
h.bw.Flush()
|
|
// Sum into scratch & copy out, as hash.Hash is an interface
|
|
// so the slice necessarily escapes, and there's no sha256
|
|
// concrete type exported and we don't want the 'hash' result
|
|
// parameter to escape to the heap:
|
|
h.h.Sum(h.scratch[:0])
|
|
copy(hash.sum[:], h.scratch[:])
|
|
return
|
|
}
|
|
|
|
var hasherPool = &sync.Pool{
|
|
New: func() interface{} { return newHasher() },
|
|
}
|
|
|
|
// Hash returns the hash of v.
|
|
func Hash(v interface{}) Sum {
|
|
h := hasherPool.Get().(*hasher)
|
|
defer hasherPool.Put(h)
|
|
return h.Hash(v)
|
|
}
|
|
|
|
// Update sets last to the hash of v and reports whether its value changed.
|
|
func Update(last *Sum, v ...interface{}) (changed bool) {
|
|
sum := Hash(v)
|
|
if sum == *last {
|
|
// unchanged.
|
|
return false
|
|
}
|
|
*last = sum
|
|
return true
|
|
}
|
|
|
|
var appenderToType = reflect.TypeOf((*appenderTo)(nil)).Elem()
|
|
|
|
type appenderTo interface {
|
|
AppendTo([]byte) []byte
|
|
}
|
|
|
|
func (h *hasher) uint(i uint64) {
|
|
binary.BigEndian.PutUint64(h.scratch[:8], i)
|
|
h.bw.Write(h.scratch[:8])
|
|
}
|
|
|
|
func (h *hasher) int(i int) {
|
|
binary.BigEndian.PutUint64(h.scratch[:8], uint64(i))
|
|
h.bw.Write(h.scratch[:8])
|
|
}
|
|
|
|
var uint8Type = reflect.TypeOf(byte(0))
|
|
|
|
func (h *hasher) print(v reflect.Value) {
|
|
if !v.IsValid() {
|
|
return
|
|
}
|
|
|
|
w := h.bw
|
|
|
|
if v.CanInterface() {
|
|
// Use AppendTo methods, if available and cheap.
|
|
if v.CanAddr() && v.Type().Implements(appenderToType) {
|
|
a := v.Addr().Interface().(appenderTo)
|
|
size := h.scratch[:8]
|
|
record := a.AppendTo(size)
|
|
binary.LittleEndian.PutUint64(record, uint64(len(record)-len(size)))
|
|
w.Write(record)
|
|
return
|
|
}
|
|
}
|
|
|
|
// TODO(dsnet): Avoid cycle detection for types that cannot have cycles.
|
|
|
|
// Generic handling.
|
|
switch v.Kind() {
|
|
default:
|
|
panic(fmt.Sprintf("unhandled kind %v for type %v", v.Kind(), v.Type()))
|
|
case reflect.Ptr:
|
|
if v.IsNil() {
|
|
w.WriteByte(0) // indicates nil
|
|
return
|
|
}
|
|
|
|
// Check for cycle.
|
|
ptr := pointerOf(v)
|
|
if idx, ok := h.visitStack.seen(ptr); ok {
|
|
w.WriteByte(2) // indicates cycle
|
|
h.uint(uint64(idx))
|
|
return
|
|
}
|
|
h.visitStack.push(ptr)
|
|
defer h.visitStack.pop(ptr)
|
|
|
|
w.WriteByte(1) // indicates visiting a pointer
|
|
h.print(v.Elem())
|
|
case reflect.Struct:
|
|
w.WriteString("struct")
|
|
h.int(v.NumField())
|
|
for i, n := 0, v.NumField(); i < n; i++ {
|
|
h.int(i)
|
|
h.print(v.Field(i))
|
|
}
|
|
case reflect.Slice, reflect.Array:
|
|
vLen := v.Len()
|
|
if v.Kind() == reflect.Slice {
|
|
h.int(vLen)
|
|
}
|
|
if v.Type().Elem() == uint8Type && v.CanInterface() {
|
|
if vLen > 0 && vLen <= scratchSize {
|
|
// If it fits in scratch, avoid the Interface allocation.
|
|
// It seems tempting to do this for all sizes, doing
|
|
// scratchSize bytes at a time, but reflect.Slice seems
|
|
// to allocate, so it's not a win.
|
|
n := reflect.Copy(reflect.ValueOf(&h.scratch).Elem(), v)
|
|
w.Write(h.scratch[:n])
|
|
return
|
|
}
|
|
fmt.Fprintf(w, "%s", v.Interface())
|
|
return
|
|
}
|
|
for i := 0; i < vLen; i++ {
|
|
// TODO(dsnet): Perform cycle detection for slices,
|
|
// which is functionally a list of pointers.
|
|
// See https://github.com/google/go-cmp/blob/402949e8139bb890c71a707b6faf6dd05c92f4e5/cmp/compare.go#L438-L450
|
|
h.int(i)
|
|
h.print(v.Index(i))
|
|
}
|
|
case reflect.Interface:
|
|
if v.IsNil() {
|
|
w.WriteByte(0) // indicates nil
|
|
return
|
|
}
|
|
v = v.Elem()
|
|
|
|
w.WriteByte(1) // indicates visiting interface value
|
|
h.hashType(v.Type())
|
|
h.print(v)
|
|
case reflect.Map:
|
|
// Check for cycle.
|
|
ptr := pointerOf(v)
|
|
if idx, ok := h.visitStack.seen(ptr); ok {
|
|
w.WriteByte(2) // indicates cycle
|
|
h.uint(uint64(idx))
|
|
return
|
|
}
|
|
h.visitStack.push(ptr)
|
|
defer h.visitStack.pop(ptr)
|
|
|
|
w.WriteByte(1) // indicates visiting a map
|
|
h.hashMap(v)
|
|
case reflect.String:
|
|
h.int(v.Len())
|
|
w.WriteString(v.String())
|
|
case reflect.Bool:
|
|
w.Write(strconv.AppendBool(h.scratch[:0], v.Bool()))
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
w.Write(strconv.AppendInt(h.scratch[:0], v.Int(), 10))
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
h.uint(v.Uint())
|
|
case reflect.Float32, reflect.Float64:
|
|
w.Write(strconv.AppendUint(h.scratch[:0], math.Float64bits(v.Float()), 10))
|
|
case reflect.Complex64, reflect.Complex128:
|
|
fmt.Fprintf(w, "%v", v.Complex())
|
|
}
|
|
}
|
|
|
|
type mapHasher struct {
|
|
xbuf [sha256.Size]byte // XOR'ed accumulated buffer
|
|
ebuf [sha256.Size]byte // scratch buffer
|
|
s256 hash.Hash // sha256 hash.Hash
|
|
bw *bufio.Writer // to hasher into ebuf
|
|
val valueCache // re-usable values for map iteration
|
|
iter *reflect.MapIter // re-usable map iterator
|
|
}
|
|
|
|
func (mh *mapHasher) Reset() {
|
|
for i := range mh.xbuf {
|
|
mh.xbuf[i] = 0
|
|
}
|
|
}
|
|
|
|
func (mh *mapHasher) startEntry() {
|
|
for i := range mh.ebuf {
|
|
mh.ebuf[i] = 0
|
|
}
|
|
mh.bw.Flush()
|
|
mh.s256.Reset()
|
|
}
|
|
|
|
func (mh *mapHasher) endEntry() {
|
|
mh.bw.Flush()
|
|
for i, b := range mh.s256.Sum(mh.ebuf[:0]) {
|
|
mh.xbuf[i] ^= b
|
|
}
|
|
}
|
|
|
|
var mapHasherPool = &sync.Pool{
|
|
New: func() interface{} {
|
|
mh := new(mapHasher)
|
|
mh.s256 = sha256.New()
|
|
mh.bw = bufio.NewWriter(mh.s256)
|
|
mh.val = make(valueCache)
|
|
mh.iter = new(reflect.MapIter)
|
|
return mh
|
|
},
|
|
}
|
|
|
|
type valueCache map[reflect.Type]reflect.Value
|
|
|
|
func (c valueCache) get(t reflect.Type) reflect.Value {
|
|
v, ok := c[t]
|
|
if !ok {
|
|
v = reflect.New(t).Elem()
|
|
c[t] = v
|
|
}
|
|
return v
|
|
}
|
|
|
|
// hashMap hashes a map in a sort-free manner.
|
|
// It relies on a map being a functionally an unordered set of KV entries.
|
|
// So long as we hash each KV entry together, we can XOR all
|
|
// of the individual hashes to produce a unique hash for the entire map.
|
|
func (h *hasher) hashMap(v reflect.Value) {
|
|
mh := mapHasherPool.Get().(*mapHasher)
|
|
defer mapHasherPool.Put(mh)
|
|
mh.Reset()
|
|
iter := mapIter(mh.iter, v)
|
|
defer mapIter(mh.iter, reflect.Value{}) // avoid pinning v from mh.iter when we return
|
|
|
|
// Temporarily switch to the map hasher's bufio.Writer.
|
|
oldw := h.setBufioWriter(mh.bw)
|
|
defer h.setBufioWriter(oldw)
|
|
|
|
k := mh.val.get(v.Type().Key())
|
|
e := mh.val.get(v.Type().Elem())
|
|
for iter.Next() {
|
|
key := iterKey(iter, k)
|
|
val := iterVal(iter, e)
|
|
mh.startEntry()
|
|
h.print(key)
|
|
h.print(val)
|
|
mh.endEntry()
|
|
}
|
|
oldw.Write(mh.xbuf[:])
|
|
}
|
|
|
|
// visitStack is a stack of pointers visited.
|
|
// Pointers are pushed onto the stack when visited, and popped when leaving.
|
|
// The integer value is the depth at which the pointer was visited.
|
|
// The length of this stack should be zero after every hashing operation.
|
|
type visitStack map[pointer]int
|
|
|
|
func (v visitStack) seen(p pointer) (int, bool) {
|
|
idx, ok := v[p]
|
|
return idx, ok
|
|
}
|
|
|
|
func (v *visitStack) push(p pointer) {
|
|
if *v == nil {
|
|
*v = make(map[pointer]int)
|
|
}
|
|
(*v)[p] = len(*v)
|
|
}
|
|
|
|
func (v visitStack) pop(p pointer) {
|
|
delete(v, p)
|
|
}
|
|
|
|
// pointer is a thin wrapper over unsafe.Pointer.
|
|
// We only rely on comparability of pointers; we cannot rely on uintptr since
|
|
// that would break if Go ever switched to a moving GC.
|
|
type pointer struct{ p unsafe.Pointer }
|
|
|
|
func pointerOf(v reflect.Value) pointer {
|
|
return pointer{unsafe.Pointer(v.Pointer())}
|
|
}
|
|
|
|
// hashType hashes a reflect.Type.
|
|
// The hash is only consistent within the lifetime of a program.
|
|
func (h *hasher) hashType(t reflect.Type) {
|
|
// This approach relies on reflect.Type always being backed by a unique
|
|
// *reflect.rtype pointer. A safer approach is to use a global sync.Map
|
|
// that maps reflect.Type to some arbitrary and unique index.
|
|
// While safer, it requires global state with memory that can never be GC'd.
|
|
rtypeAddr := reflect.ValueOf(t).Pointer() // address of *reflect.rtype
|
|
h.uint(uint64(rtypeAddr))
|
|
}
|