tailscale/util/ctxlock/state_test.go
Nick Khyl 64e5da8024
util/ctxlock: rename ctxlock.Context to ctxlock.State
Also add additional tests to verify that the unchecked implementation
is allocation-free.

Updates #12614

Signed-off-by: Nick Khyl <nickk@tailscale.com>
2025-05-02 20:38:18 -05:00

475 lines
12 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package ctxlock
import (
"context"
"sync"
"testing"
"tailscale.com/util/ctxkey"
)
type state interface {
context.Context
Unlock()
}
type impl[T state] struct {
None func() T
FromContext func(context.Context) T
Lock func(T, *sync.Mutex) T
LockCtx func(context.Context, *sync.Mutex) T
}
var (
exportedImpl = impl[State]{
None: None,
FromContext: FromContext,
Lock: Lock[State],
LockCtx: Lock[context.Context],
}
checkedImpl = impl[*checked]{
None: func() *checked { return nil },
FromContext: fromContextChecked,
Lock: lockChecked,
LockCtx: func(ctx context.Context, mu *sync.Mutex) *checked {
return lockChecked(fromContextChecked(ctx), mu)
},
}
uncheckedImpl = impl[unchecked]{
None: func() unchecked { return unchecked{} },
FromContext: fromContextUnchecked,
Lock: lockUnchecked,
LockCtx: func(ctx context.Context, mu *sync.Mutex) unchecked {
return lockUnchecked(fromContextUnchecked(ctx), mu)
},
}
)
// BenchmarkLockUnlock benchmarks the performance of locking and unlocking a mutex.
func BenchmarkLockUnlock(b *testing.B) {
var mu sync.Mutex
b.Run("Exported", func(b *testing.B) {
benchmarkLockUnlock(b, exportedImpl)
})
b.Run("Checked", func(b *testing.B) {
benchmarkLockUnlock(b, checkedImpl)
})
b.Run("Unchecked", func(b *testing.B) {
benchmarkLockUnlock(b, uncheckedImpl)
})
b.Run("Reference", func(b *testing.B) {
for b.Loop() {
mu.Lock()
mu.Unlock()
}
})
}
func benchmarkLockUnlock[T state](b *testing.B, impl impl[T]) {
var mu sync.Mutex
for b.Loop() {
ctx := impl.Lock(impl.None(), &mu)
ctx.Unlock()
}
}
// BenchmarkReentrance benchmarks the performance of reentrant locking and unlocking.
func BenchmarkReentrance(b *testing.B) {
var mu sync.Mutex
b.Run("Exported", func(b *testing.B) {
benchmarkReentrance(b, exportedImpl)
})
b.Run("Checked", func(b *testing.B) {
benchmarkReentrance(b, checkedImpl)
})
b.Run("Unchecked", func(b *testing.B) {
benchmarkReentrance(b, uncheckedImpl)
})
b.Run("Reference", func(b *testing.B) {
for b.Loop() {
mu.Lock()
func(mu *sync.Mutex) {
if mu.TryLock() {
mu.Unlock()
}
}(&mu)
mu.Unlock()
}
})
}
func benchmarkReentrance[T state](b *testing.B, impl impl[T]) {
var mu sync.Mutex
for b.Loop() {
parent := impl.Lock(impl.None(), &mu)
func(ctx T) {
child := impl.Lock(ctx, &mu)
child.Unlock()
}(parent)
parent.Unlock()
}
}
// BenchmarkGenericLock benchmarks the performance of the generic [Lock] function
// that works with both [State] and [context.Context].
func BenchmarkGenericLock(b *testing.B) {
// Does not allocate with --tags=ts_omit_ctxlock_checks.
b.Run("State", func(b *testing.B) {
var mu sync.Mutex
var ctx State
for b.Loop() {
parent := Lock(ctx, &mu)
func(ctx State) {
child := Lock(ctx, &mu)
child.Unlock()
}(parent)
parent.Unlock()
}
})
b.Run("StdContext", func(b *testing.B) {
var mu sync.Mutex
ctx := context.Background()
for b.Loop() {
parent := Lock(ctx, &mu)
func(ctx State) {
child := Lock(ctx, &mu)
child.Unlock()
}(parent)
parent.Unlock()
}
})
}
// TestUncheckedAllocFree tests that the exported implementation of [State] does not allocate memory
// when the ts_omit_ctxlock_checks build tag is set.
func TestUncheckedAllocFree(t *testing.T) {
if Checked {
t.Skip("Exported implementation is not alloc-free (use --tags=ts_omit_ctxlock_checks)")
}
t.Run("Simple/WithState", func(t *testing.T) {
var mu sync.Mutex
mustNotAllocate(t, func() {
ctx := Lock(None(), &mu)
ctx.Unlock()
})
})
t.Run("Simple/WithContext", func(t *testing.T) {
var mu sync.Mutex
ctx := context.Background()
mustNotAllocate(t, func() {
ctx := Lock(ctx, &mu)
ctx.Unlock()
})
})
t.Run("Reentrant/WithState", func(t *testing.T) {
var mu sync.Mutex
mustNotAllocate(t, func() {
parent := Lock(None(), &mu)
func(ctx State) {
child := Lock(parent, &mu)
child.Unlock()
}(parent)
parent.Unlock()
})
})
t.Run("Reentrant/WithContext", func(t *testing.T) {
var mu sync.Mutex
ctx := context.Background()
mustNotAllocate(t, func() {
parent := Lock(ctx, &mu)
func(ctx State) {
child := Lock(ctx, &mu)
child.Unlock()
}(parent)
parent.Unlock()
})
})
}
func TestHappyPath(t *testing.T) {
t.Run("Exported", func(t *testing.T) {
testHappyPath(t, exportedImpl)
})
t.Run("Checked", func(t *testing.T) {
testHappyPath(t, checkedImpl)
})
t.Run("Unchecked", func(t *testing.T) {
testHappyPath(t, uncheckedImpl)
})
}
func testHappyPath[T state](t *testing.T, impl impl[T]) {
var mu sync.Mutex
parent := impl.Lock(impl.None(), &mu)
wantLocked(t, &mu) // mu is locked by parent
child := impl.Lock(parent, &mu)
wantLocked(t, &mu) // mu is still locked by parent
var mu2 sync.Mutex
ls2 := impl.Lock(child, &mu2)
wantLocked(t, &mu2) // mu2 is locked by ls2
ls2.Unlock() // unlocks mu2
wantUnlocked(t, &mu2) // mu2 is now unlocked
child.Unlock() // noop
wantLocked(t, &mu) // mu is still locked by parent
parent.Unlock() // unlocks mu
wantUnlocked(t, &mu) // mu is now unlocked
}
func TestContextWrapping(t *testing.T) {
t.Run("Exported", func(t *testing.T) {
testContextWrapping(t, exportedImpl)
})
t.Run("Checked", func(t *testing.T) {
testContextWrapping(t, checkedImpl)
})
t.Run("Unchecked", func(t *testing.T) {
testContextWrapping(t, uncheckedImpl)
})
}
func testContextWrapping[T state](t *testing.T, impl impl[T]) {
// Create a [context.Context] with a value set in it.
wantValue := "value"
key := ctxkey.New("key", "")
ctxWithValue := key.WithValue(context.Background(), wantValue)
var mu sync.Mutex
parent := impl.LockCtx(ctxWithValue, &mu)
wantLocked(t, &mu) // mu is locked by parent
// Let's assume that we want to call a function that takes a [context.Context].
// [State] is a valid [context.Context], so we can pass it to the function.
ctx := context.Context(parent)
// If / when necessary, we can convert it back to a [State].
// The [State] should carry the same lock state as the parent context.
parentDup := impl.FromContext(ctx)
// We can then create and use a child [State].
child := impl.Lock(parentDup, &mu)
// It still carries all the original context values...
if gotValue := key.Value(child); gotValue != wantValue {
t.Errorf("key.Value() = %s; want %s", gotValue, wantValue)
}
// ... and the lock state.
child.Unlock() // no-op; mu is owned by parent
wantLocked(t, &mu) // mu is still locked by parent
parentDup.Unlock() // no-op; mu is owned by parent
wantLocked(t, &mu) // mu is still locked by parent
parent.Unlock() // unlocks mu
wantUnlocked(t, &mu) // mu is now unlocked
}
func TestNilMutex(t *testing.T) {
impl := checkedImpl
wantPanic(t, "nil *sync.Mutex", func() { impl.Lock(impl.None(), nil) })
}
func TestUseUnlockedParent_Checked(t *testing.T) {
impl := checkedImpl
var mu sync.Mutex
parent := impl.Lock(impl.None(), &mu)
parent.Unlock() // unlocks mu
wantUnlocked(t, &mu) // mu is now unlocked
wantPanic(t, "use after unlock", func() { impl.Lock(parent, &mu) })
}
func TestUseUnlockedMutex_Checked(t *testing.T) {
impl := checkedImpl
var mu sync.Mutex
parent := impl.Lock(impl.None(), &mu)
mu.Unlock() // unlock mu directly without unlocking parent
wantPanic(t, "*sync.Mutex is spuriously unlocked", func() { impl.Lock(parent, &mu) })
}
func TestUnlockParentFirst_Checked(t *testing.T) {
impl := checkedImpl
var mu sync.Mutex
parent := impl.Lock(impl.FromContext(context.Background()), &mu)
child := impl.Lock(parent, &mu)
parent.Unlock() // unlocks mu
wantUnlocked(t, &mu) // mu is now unlocked
wantPanic(t, "parent already unlocked", child.Unlock)
}
func TestUnlockTwice_Checked(t *testing.T) {
impl := checkedImpl
unlockTwice := func(t *testing.T, ctx *checked) {
ctx.Unlock() // unlocks mu
wantPanic(t, "already unlocked", ctx.Unlock)
}
t.Run("Wrapped", func(t *testing.T) {
unlockTwice(t, impl.FromContext(context.Background()))
})
t.Run("Locked", func(t *testing.T) {
var mu sync.Mutex
ctx := impl.Lock(impl.None(), &mu)
unlockTwice(t, ctx)
})
t.Run("Locked/WithReloc", func(t *testing.T) {
var mu sync.Mutex
ctx := impl.Lock(impl.None(), &mu)
ctx.Unlock() // unlocks mu
mu.Lock() // re-locks mu, but not by the state
wantPanic(t, "already unlocked", ctx.Unlock)
})
t.Run("Child", func(t *testing.T) {
var mu sync.Mutex
parent := impl.Lock(impl.None(), &mu)
defer parent.Unlock()
child := impl.Lock(parent, &mu)
unlockTwice(t, child)
})
t.Run("Child/WithReloc", func(t *testing.T) {
var mu sync.Mutex
parent := impl.Lock(impl.None(), &mu)
child := impl.Lock(parent, &mu)
parent.Unlock()
mu.Lock() // re-locks mu, but not the parent state
wantPanic(t, "parent already unlocked", child.Unlock)
})
t.Run("Child/WithManualUnlock", func(t *testing.T) {
var mu sync.Mutex
parent := impl.Lock(impl.None(), &mu)
child := impl.Lock(parent, &mu)
mu.Unlock() // unlocks mu, but not the parent state
wantPanic(t, "mutex is not locked", child.Unlock)
})
t.Run("Grandchild", func(t *testing.T) {
var mu sync.Mutex
parent := impl.Lock(impl.None(), &mu)
defer parent.Unlock()
child := impl.Lock(parent, &mu)
defer child.Unlock()
grandchild := impl.Lock(child, &mu)
unlockTwice(t, grandchild)
})
}
func TestUseUnlocked_Checked(t *testing.T) {
impl := checkedImpl
var mu sync.Mutex
state := lockChecked(impl.None(), &mu)
state.Unlock()
// All of these should panic since the state is already unlocked.
wantPanic(t, "", func() { state.Deadline() })
wantPanic(t, "", func() { state.Done() })
wantPanic(t, "", func() { state.Err() })
wantPanic(t, "", func() { state.Unlock() })
wantPanic(t, "", func() { state.Value("key") })
}
func TestUseZeroState(t *testing.T) {
t.Run("Exported", func(t *testing.T) {
testUseEmptyState(t, exportedImpl.None, exportedImpl)
})
t.Run("Checked", func(t *testing.T) {
testUseEmptyState(t, checkedImpl.None, checkedImpl)
})
t.Run("Unchecked", func(t *testing.T) {
testUseEmptyState(t, uncheckedImpl.None, uncheckedImpl)
})
}
func TestUseWrappedBackground(t *testing.T) {
t.Run("Exported", func(t *testing.T) {
testUseEmptyState(t, getWrappedBackground(t, exportedImpl), exportedImpl)
})
t.Run("Checked", func(t *testing.T) {
testUseEmptyState(t, getWrappedBackground(t, checkedImpl), checkedImpl)
})
t.Run("Unchecked", func(t *testing.T) {
testUseEmptyState(t, getWrappedBackground(t, uncheckedImpl), uncheckedImpl)
})
}
func getWrappedBackground[T state](t *testing.T, impl impl[T]) func() T {
t.Helper()
return func() T {
return impl.FromContext(context.Background())
}
}
func testUseEmptyState[T state](t *testing.T, getCtx func() T, impl impl[T]) {
// Using aan empty [State] must not panic or deadlock.
// It should also behave like [context.Background].
for range 2 {
ctx := getCtx()
if gotDone := ctx.Done(); gotDone != nil {
t.Errorf("ctx.Done() = %v; want nil", gotDone)
}
if gotDeadline, ok := ctx.Deadline(); ok {
t.Errorf("ctx.Deadline() = %v; want !ok", gotDeadline)
}
if gotErr := ctx.Err(); gotErr != nil {
t.Errorf("ctx.Err() = %v; want nil", gotErr)
}
if gotValue := ctx.Value("test-key"); gotValue != nil {
t.Errorf("ctx.Value(test-key) = %v; want nil", gotValue)
}
ctx.Unlock()
}
}
func wantPanic(t *testing.T, wantMsg string, fn func()) {
t.Helper()
defer func() {
if r := recover(); wantMsg != "" {
if gotMsg, ok := r.(string); !ok || gotMsg != wantMsg {
t.Errorf("panic: %v; want %q", r, wantMsg)
}
}
}()
fn()
t.Fatal("failed to panic")
}
func wantLocked(t *testing.T, m *sync.Mutex) {
if m.TryLock() {
m.Unlock()
t.Fatal("mutex is not locked")
}
}
func wantUnlocked(t *testing.T, m *sync.Mutex) {
t.Helper()
if !m.TryLock() {
t.Fatal("mutex is locked")
}
m.Unlock()
}
func mustNotAllocate(t *testing.T, steps func()) {
t.Helper()
const runs = 1000
if allocs := testing.AllocsPerRun(runs, steps); allocs != 0 {
t.Errorf("expected 0 allocs, got %f", allocs)
}
}