tailscale/net/tstun/wrap_test.go
Jordan Whited df6014f1d7
net/tstun,wgengine{/netstack/gro}: refactor and re-enable gVisor GRO for Linux (#13172)
In 2f27319baf we disabled GRO due to a
data race around concurrent calls to tstun.Wrapper.Write(). This commit
refactors GRO to be thread-safe, and re-enables it on Linux.

This refactor now carries a GRO type across tstun and netstack APIs
with a lifetime that is scoped to a single tstun.Wrapper.Write() call.

In 25f0a3fc8f we used build tags to
prevent importation of gVisor's GRO package on iOS as at the time we
believed it was contributing to additional memory usage on that
platform. It wasn't, so this commit simplifies and removes those
build tags.

Updates tailscale/corp#22353
Updates tailscale/corp#22125
Updates #6816

Signed-off-by: Jordan Whited <jordan@tailscale.com>
2024-08-20 15:22:19 -07:00

922 lines
22 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package tstun
import (
"bytes"
"context"
"encoding/binary"
"encoding/hex"
"fmt"
"net/netip"
"reflect"
"strconv"
"strings"
"testing"
"time"
"unicode"
"unsafe"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/tailscale/wireguard-go/tun/tuntest"
"go4.org/mem"
"go4.org/netipx"
"gvisor.dev/gvisor/pkg/buffer"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"tailscale.com/disco"
"tailscale.com/net/connstats"
"tailscale.com/net/netaddr"
"tailscale.com/net/packet"
"tailscale.com/tstest"
"tailscale.com/tstime/mono"
"tailscale.com/types/ipproto"
"tailscale.com/types/key"
"tailscale.com/types/logger"
"tailscale.com/types/netlogtype"
"tailscale.com/types/ptr"
"tailscale.com/types/views"
"tailscale.com/util/must"
"tailscale.com/wgengine/capture"
"tailscale.com/wgengine/filter"
"tailscale.com/wgengine/wgcfg"
)
func udp4(src, dst string, sport, dport uint16) []byte {
sip, err := netip.ParseAddr(src)
if err != nil {
panic(err)
}
dip, err := netip.ParseAddr(dst)
if err != nil {
panic(err)
}
header := &packet.UDP4Header{
IP4Header: packet.IP4Header{
Src: sip,
Dst: dip,
IPID: 0,
},
SrcPort: sport,
DstPort: dport,
}
return packet.Generate(header, []byte("udp_payload"))
}
func tcp4syn(src, dst string, sport, dport uint16) []byte {
sip, err := netip.ParseAddr(src)
if err != nil {
panic(err)
}
dip, err := netip.ParseAddr(dst)
if err != nil {
panic(err)
}
ipHeader := packet.IP4Header{
IPProto: ipproto.TCP,
Src: sip,
Dst: dip,
IPID: 0,
}
tcpHeader := make([]byte, 20)
binary.BigEndian.PutUint16(tcpHeader[0:], sport)
binary.BigEndian.PutUint16(tcpHeader[2:], dport)
tcpHeader[13] |= 2 // SYN
both := packet.Generate(ipHeader, tcpHeader)
// 20 byte IP4 + 20 byte TCP
binary.BigEndian.PutUint16(both[2:4], 40)
return both
}
func nets(nets ...string) (ret []netip.Prefix) {
for _, s := range nets {
if i := strings.IndexByte(s, '/'); i == -1 {
ip, err := netip.ParseAddr(s)
if err != nil {
panic(err)
}
bits := uint8(32)
if ip.Is6() {
bits = 128
}
ret = append(ret, netip.PrefixFrom(ip, int(bits)))
} else {
pfx, err := netip.ParsePrefix(s)
if err != nil {
panic(err)
}
ret = append(ret, pfx)
}
}
return ret
}
func ports(s string) filter.PortRange {
if s == "*" {
return filter.PortRange{First: 0, Last: 65535}
}
var fs, ls string
i := strings.IndexByte(s, '-')
if i == -1 {
fs = s
ls = fs
} else {
fs = s[:i]
ls = s[i+1:]
}
first, err := strconv.ParseInt(fs, 10, 16)
if err != nil {
panic(fmt.Sprintf("invalid NetPortRange %q", s))
}
last, err := strconv.ParseInt(ls, 10, 16)
if err != nil {
panic(fmt.Sprintf("invalid NetPortRange %q", s))
}
return filter.PortRange{First: uint16(first), Last: uint16(last)}
}
func netports(netPorts ...string) (ret []filter.NetPortRange) {
for _, s := range netPorts {
i := strings.LastIndexByte(s, ':')
if i == -1 {
panic(fmt.Sprintf("invalid NetPortRange %q", s))
}
npr := filter.NetPortRange{
Net: nets(s[:i])[0],
Ports: ports(s[i+1:]),
}
ret = append(ret, npr)
}
return ret
}
func setfilter(logf logger.Logf, tun *Wrapper) {
protos := views.SliceOf([]ipproto.Proto{
ipproto.TCP,
ipproto.UDP,
})
matches := []filter.Match{
{IPProto: protos, Srcs: nets("5.6.7.8"), Dsts: netports("1.2.3.4:89-90")},
{IPProto: protos, Srcs: nets("1.2.3.4"), Dsts: netports("5.6.7.8:98")},
}
var sb netipx.IPSetBuilder
sb.AddPrefix(netip.MustParsePrefix("1.2.0.0/16"))
ipSet, _ := sb.IPSet()
tun.SetFilter(filter.New(matches, nil, ipSet, ipSet, nil, logf))
}
func newChannelTUN(logf logger.Logf, secure bool) (*tuntest.ChannelTUN, *Wrapper) {
chtun := tuntest.NewChannelTUN()
tun := Wrap(logf, chtun.TUN())
if secure {
setfilter(logf, tun)
} else {
tun.disableFilter = true
}
tun.Start()
return chtun, tun
}
func newFakeTUN(logf logger.Logf, secure bool) (*fakeTUN, *Wrapper) {
ftun := NewFake()
tun := Wrap(logf, ftun)
if secure {
setfilter(logf, tun)
} else {
tun.disableFilter = true
}
return ftun.(*fakeTUN), tun
}
func TestReadAndInject(t *testing.T) {
chtun, tun := newChannelTUN(t.Logf, false)
defer tun.Close()
const size = 2 // all payloads have this size
written := []string{"w0", "w1"}
injected := []string{"i0", "i1"}
go func() {
for _, packet := range written {
payload := []byte(packet)
chtun.Outbound <- payload
}
}()
for _, packet := range injected {
go func(packet string) {
payload := []byte(packet)
err := tun.InjectOutbound(payload)
if err != nil {
t.Errorf("%s: error: %v", packet, err)
}
}(packet)
}
var buf [MaxPacketSize]byte
var seen = make(map[string]bool)
sizes := make([]int, 1)
// We expect the same packets back, in no particular order.
for i := range len(written) + len(injected) {
packet := buf[:]
buffs := [][]byte{packet}
numPackets, err := tun.Read(buffs, sizes, 0)
if err != nil {
t.Errorf("read %d: error: %v", i, err)
}
if numPackets != 1 {
t.Fatalf("read %d packets, expected %d", numPackets, 1)
}
packet = packet[:sizes[0]]
packetLen := len(packet)
if packetLen != size {
t.Errorf("read %d: got size %d; want %d", i, packetLen, size)
}
got := string(packet)
t.Logf("read %d: got %s", i, got)
seen[got] = true
}
for _, packet := range written {
if !seen[packet] {
t.Errorf("%s not received", packet)
}
}
for _, packet := range injected {
if !seen[packet] {
t.Errorf("%s not received", packet)
}
}
}
func TestWriteAndInject(t *testing.T) {
chtun, tun := newChannelTUN(t.Logf, false)
defer tun.Close()
written := []string{"w0", "w1"}
injected := []string{"i0", "i1"}
go func() {
for _, packet := range written {
payload := []byte(packet)
_, err := tun.Write([][]byte{payload}, 0)
if err != nil {
t.Errorf("%s: error: %v", packet, err)
}
}
}()
for _, packet := range injected {
go func(packet string) {
payload := []byte(packet)
err := tun.InjectInboundCopy(payload)
if err != nil {
t.Errorf("%s: error: %v", packet, err)
}
}(packet)
}
seen := make(map[string]bool)
// We expect the same packets back, in no particular order.
for i := range len(written) + len(injected) {
packet := <-chtun.Inbound
got := string(packet)
t.Logf("read %d: got %s", i, got)
seen[got] = true
}
for _, packet := range written {
if !seen[packet] {
t.Errorf("%s not received", packet)
}
}
for _, packet := range injected {
if !seen[packet] {
t.Errorf("%s not received", packet)
}
}
}
// mustHexDecode is like hex.DecodeString, but panics on error
// and ignores whitespace in s.
func mustHexDecode(s string) []byte {
return must.Get(hex.DecodeString(strings.Map(func(r rune) rune {
if unicode.IsSpace(r) {
return -1
}
return r
}, s)))
}
func TestFilter(t *testing.T) {
chtun, tun := newChannelTUN(t.Logf, true)
defer tun.Close()
type direction int
const (
in direction = iota
out
)
tests := []struct {
name string
dir direction
drop bool
data []byte
}{
{"short_in", in, true, []byte("\x45xxx")},
{"short_out", out, true, []byte("\x45xxx")},
{"ip97_out", out, false, mustHexDecode("4500 0019 d186 4000 4061 751d 644a 4603 6449 e549 6865 6c6c 6f")},
{"bad_port_in", in, true, udp4("5.6.7.8", "1.2.3.4", 22, 22)},
{"bad_port_out", out, false, udp4("1.2.3.4", "5.6.7.8", 22, 22)},
{"bad_ip_in", in, true, udp4("8.1.1.1", "1.2.3.4", 89, 89)},
{"bad_ip_out", out, false, udp4("1.2.3.4", "8.1.1.1", 98, 98)},
{"good_packet_in", in, false, udp4("5.6.7.8", "1.2.3.4", 89, 89)},
{"good_packet_out", out, false, udp4("1.2.3.4", "5.6.7.8", 98, 98)},
}
// A reader on the other end of the tun.
go func() {
var recvbuf []byte
for {
select {
case <-tun.closed:
return
case recvbuf = <-chtun.Inbound:
// continue
}
for _, tt := range tests {
if tt.drop && bytes.Equal(recvbuf, tt.data) {
t.Errorf("did not drop %s", tt.name)
}
}
}
}()
var buf [MaxPacketSize]byte
stats := connstats.NewStatistics(0, 0, nil)
defer stats.Shutdown(context.Background())
tun.SetStatistics(stats)
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
var n int
var err error
var filtered bool
sizes := make([]int, 1)
tunStats, _ := stats.TestExtract()
if len(tunStats) > 0 {
t.Errorf("connstats.Statistics.Extract = %v, want {}", stats)
}
if tt.dir == in {
// Use the side effect of updating the last
// activity atomic to determine whether the
// data was actually filtered.
// If it stays zero, nothing made it through
// to the wrapped TUN.
tun.lastActivityAtomic.StoreAtomic(0)
_, err = tun.Write([][]byte{tt.data}, 0)
filtered = tun.lastActivityAtomic.LoadAtomic() == 0
} else {
chtun.Outbound <- tt.data
n, err = tun.Read([][]byte{buf[:]}, sizes, 0)
// In the read direction, errors are fatal, so we return n = 0 instead.
filtered = (n == 0)
}
if err != nil {
t.Errorf("got err %v; want nil", err)
}
if filtered {
if !tt.drop {
t.Errorf("got drop; want accept")
}
} else {
if tt.drop {
t.Errorf("got accept; want drop")
}
}
got, _ := stats.TestExtract()
want := map[netlogtype.Connection]netlogtype.Counts{}
var wasUDP bool
if !tt.drop {
var p packet.Parsed
p.Decode(tt.data)
wasUDP = p.IPProto == ipproto.UDP
switch tt.dir {
case in:
conn := netlogtype.Connection{Proto: ipproto.UDP, Src: p.Dst, Dst: p.Src}
want[conn] = netlogtype.Counts{RxPackets: 1, RxBytes: uint64(len(tt.data))}
case out:
conn := netlogtype.Connection{Proto: ipproto.UDP, Src: p.Src, Dst: p.Dst}
want[conn] = netlogtype.Counts{TxPackets: 1, TxBytes: uint64(len(tt.data))}
}
}
if wasUDP {
if diff := cmp.Diff(got, want, cmpopts.EquateEmpty()); diff != "" {
t.Errorf("stats.TestExtract (-got +want):\n%s", diff)
}
}
})
}
}
func TestAllocs(t *testing.T) {
ftun, tun := newFakeTUN(t.Logf, false)
defer tun.Close()
buf := [][]byte{{0x00}}
err := tstest.MinAllocsPerRun(t, 0, func() {
_, err := ftun.Write(buf, 0)
if err != nil {
t.Errorf("write: error: %v", err)
return
}
})
if err != nil {
t.Error(err)
}
}
func TestClose(t *testing.T) {
ftun, tun := newFakeTUN(t.Logf, false)
data := [][]byte{udp4("1.2.3.4", "5.6.7.8", 98, 98)}
_, err := ftun.Write(data, 0)
if err != nil {
t.Error(err)
}
tun.Close()
_, err = ftun.Write(data, 0)
if err == nil {
t.Error("Expected error from ftun.Write() after Close()")
}
}
func BenchmarkWrite(b *testing.B) {
b.ReportAllocs()
ftun, tun := newFakeTUN(b.Logf, true)
defer tun.Close()
packet := [][]byte{udp4("5.6.7.8", "1.2.3.4", 89, 89)}
for range b.N {
_, err := ftun.Write(packet, 0)
if err != nil {
b.Errorf("err = %v; want nil", err)
}
}
}
func TestAtomic64Alignment(t *testing.T) {
off := unsafe.Offsetof(Wrapper{}.lastActivityAtomic)
if off%8 != 0 {
t.Errorf("offset %v not 8-byte aligned", off)
}
c := new(Wrapper)
c.lastActivityAtomic.StoreAtomic(mono.Now())
}
func TestPeerAPIBypass(t *testing.T) {
wrapperWithPeerAPI := &Wrapper{
PeerAPIPort: func(ip netip.Addr) (port uint16, ok bool) {
if ip == netip.MustParseAddr("100.64.1.2") {
return 60000, true
}
return
},
}
tests := []struct {
name string
w *Wrapper
filter *filter.Filter
pkt []byte
want filter.Response
}{
{
name: "reject_nil_filter",
w: &Wrapper{
PeerAPIPort: func(netip.Addr) (port uint16, ok bool) {
return 60000, true
},
},
pkt: tcp4syn("1.2.3.4", "100.64.1.2", 1234, 60000),
want: filter.Drop,
},
{
name: "reject_with_filter",
w: &Wrapper{},
filter: filter.NewAllowNone(logger.Discard, new(netipx.IPSet)),
pkt: tcp4syn("1.2.3.4", "100.64.1.2", 1234, 60000),
want: filter.Drop,
},
{
name: "peerapi_bypass_filter",
w: wrapperWithPeerAPI,
filter: filter.NewAllowNone(logger.Discard, new(netipx.IPSet)),
pkt: tcp4syn("1.2.3.4", "100.64.1.2", 1234, 60000),
want: filter.Accept,
},
{
name: "peerapi_dont_bypass_filter_wrong_port",
w: wrapperWithPeerAPI,
filter: filter.NewAllowNone(logger.Discard, new(netipx.IPSet)),
pkt: tcp4syn("1.2.3.4", "100.64.1.2", 1234, 60001),
want: filter.Drop,
},
{
name: "peerapi_dont_bypass_filter_wrong_dst_ip",
w: wrapperWithPeerAPI,
filter: filter.NewAllowNone(logger.Discard, new(netipx.IPSet)),
pkt: tcp4syn("1.2.3.4", "100.64.1.3", 1234, 60000),
want: filter.Drop,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
p := new(packet.Parsed)
p.Decode(tt.pkt)
tt.w.SetFilter(tt.filter)
tt.w.disableTSMPRejected = true
tt.w.logf = t.Logf
if got, _ := tt.w.filterPacketInboundFromWireGuard(p, nil, nil, nil); got != tt.want {
t.Errorf("got = %v; want %v", got, tt.want)
}
})
}
}
// Issue 1526: drop disco frames from ourselves.
func TestFilterDiscoLoop(t *testing.T) {
var memLog tstest.MemLogger
discoPub := key.DiscoPublicFromRaw32(mem.B([]byte{1: 1, 2: 2, 31: 0}))
tw := &Wrapper{logf: memLog.Logf, limitedLogf: memLog.Logf}
tw.SetDiscoKey(discoPub)
uh := packet.UDP4Header{
IP4Header: packet.IP4Header{
IPProto: ipproto.UDP,
Src: netaddr.IPv4(1, 2, 3, 4),
Dst: netaddr.IPv4(5, 6, 7, 8),
},
SrcPort: 9,
DstPort: 10,
}
discobs := discoPub.Raw32()
discoPayload := fmt.Sprintf("%s%s%s", disco.Magic, discobs[:], [disco.NonceLen]byte{})
pkt := make([]byte, uh.Len()+len(discoPayload))
uh.Marshal(pkt)
copy(pkt[uh.Len():], discoPayload)
p := new(packet.Parsed)
p.Decode(pkt)
got, _ := tw.filterPacketInboundFromWireGuard(p, nil, nil, nil)
if got != filter.DropSilently {
t.Errorf("got %v; want DropSilently", got)
}
if got, want := memLog.String(), "[unexpected] received self disco in packet over tstun; dropping\n"; got != want {
t.Errorf("log output mismatch\n got: %q\nwant: %q\n", got, want)
}
memLog.Reset()
pp := new(packet.Parsed)
pp.Decode(pkt)
got = tw.filterPacketOutboundToWireGuard(pp, nil)
if got != filter.DropSilently {
t.Errorf("got %v; want DropSilently", got)
}
if got, want := memLog.String(), "[unexpected] received self disco out packet over tstun; dropping\n"; got != want {
t.Errorf("log output mismatch\n got: %q\nwant: %q\n", got, want)
}
}
// TODO(andrew-d): refactor this test to no longer use addrFam, after #11945
// removed it in peerConfigFromWGConfig
func TestPeerCfg_NAT(t *testing.T) {
node := func(ip, masqIP netip.Addr, otherAllowedIPs ...netip.Prefix) wgcfg.Peer {
p := wgcfg.Peer{
PublicKey: key.NewNode().Public(),
AllowedIPs: []netip.Prefix{
netip.PrefixFrom(ip, ip.BitLen()),
},
}
if masqIP.Is4() {
p.V4MasqAddr = ptr.To(masqIP)
} else {
p.V6MasqAddr = ptr.To(masqIP)
}
p.AllowedIPs = append(p.AllowedIPs, otherAllowedIPs...)
return p
}
test := func(addrFam ipproto.Version) {
var (
noIP netip.Addr
selfNativeIP = netip.MustParseAddr("100.64.0.1")
selfEIP1 = netip.MustParseAddr("100.64.1.1")
selfEIP2 = netip.MustParseAddr("100.64.1.2")
selfAddrs = []netip.Prefix{netip.PrefixFrom(selfNativeIP, selfNativeIP.BitLen())}
peer1IP = netip.MustParseAddr("100.64.0.2")
peer2IP = netip.MustParseAddr("100.64.0.3")
subnet = netip.MustParsePrefix("192.168.0.0/24")
subnetIP = netip.MustParseAddr("192.168.0.1")
exitRoute = netip.MustParsePrefix("0.0.0.0/0")
publicIP = netip.MustParseAddr("8.8.8.8")
)
if addrFam == ipproto.Version6 {
selfNativeIP = netip.MustParseAddr("fd7a:115c:a1e0::a")
selfEIP1 = netip.MustParseAddr("fd7a:115c:a1e0::1a")
selfEIP2 = netip.MustParseAddr("fd7a:115c:a1e0::1b")
selfAddrs = []netip.Prefix{netip.PrefixFrom(selfNativeIP, selfNativeIP.BitLen())}
peer1IP = netip.MustParseAddr("fd7a:115c:a1e0::b")
peer2IP = netip.MustParseAddr("fd7a:115c:a1e0::c")
subnet = netip.MustParsePrefix("2001:db8::/32")
subnetIP = netip.MustParseAddr("2001:db8::FFFF")
exitRoute = netip.MustParsePrefix("::/0")
publicIP = netip.MustParseAddr("2001:4860:4860::8888")
}
type dnatTest struct {
src netip.Addr
dst netip.Addr
want netip.Addr // new destination after DNAT
}
tests := []struct {
name string
wcfg *wgcfg.Config
snatMap map[netip.Addr]netip.Addr // dst -> src
dnat []dnatTest
}{
{
name: "no-cfg",
wcfg: nil,
snatMap: map[netip.Addr]netip.Addr{
peer1IP: selfNativeIP,
peer2IP: selfNativeIP,
subnetIP: selfNativeIP,
},
dnat: []dnatTest{
{selfNativeIP, selfNativeIP, selfNativeIP},
{peer1IP, selfEIP1, selfEIP1},
{peer2IP, selfEIP2, selfEIP2},
},
},
{
name: "single-peer-requires-nat",
wcfg: &wgcfg.Config{
Addresses: selfAddrs,
Peers: []wgcfg.Peer{
node(peer1IP, noIP),
node(peer2IP, selfEIP2),
},
},
snatMap: map[netip.Addr]netip.Addr{
peer1IP: selfNativeIP,
peer2IP: selfEIP2,
subnetIP: selfNativeIP,
},
dnat: []dnatTest{
{selfNativeIP, selfNativeIP, selfNativeIP},
{peer1IP, selfEIP1, selfEIP1},
{peer2IP, selfEIP2, selfNativeIP}, // NATed
{peer2IP, subnetIP, subnetIP},
},
},
{
name: "multiple-peers-require-nat",
wcfg: &wgcfg.Config{
Addresses: selfAddrs,
Peers: []wgcfg.Peer{
node(peer1IP, selfEIP1),
node(peer2IP, selfEIP2),
},
},
snatMap: map[netip.Addr]netip.Addr{
peer1IP: selfEIP1,
peer2IP: selfEIP2,
subnetIP: selfNativeIP,
},
dnat: []dnatTest{
{selfNativeIP, selfNativeIP, selfNativeIP},
{peer1IP, selfEIP1, selfNativeIP},
{peer2IP, selfEIP2, selfNativeIP},
{peer2IP, subnetIP, subnetIP},
},
},
{
name: "multiple-peers-require-nat-with-subnet",
wcfg: &wgcfg.Config{
Addresses: selfAddrs,
Peers: []wgcfg.Peer{
node(peer1IP, selfEIP1),
node(peer2IP, selfEIP2, subnet),
},
},
snatMap: map[netip.Addr]netip.Addr{
peer1IP: selfEIP1,
peer2IP: selfEIP2,
subnetIP: selfEIP2,
},
dnat: []dnatTest{
{selfNativeIP, selfNativeIP, selfNativeIP},
{peer1IP, selfEIP1, selfNativeIP},
{peer2IP, selfEIP2, selfNativeIP},
{peer2IP, subnetIP, subnetIP},
},
},
{
name: "multiple-peers-require-nat-with-default-route",
wcfg: &wgcfg.Config{
Addresses: selfAddrs,
Peers: []wgcfg.Peer{
node(peer1IP, selfEIP1),
node(peer2IP, selfEIP2, exitRoute),
},
},
snatMap: map[netip.Addr]netip.Addr{
peer1IP: selfEIP1,
peer2IP: selfEIP2,
publicIP: selfEIP2,
},
dnat: []dnatTest{
{selfNativeIP, selfNativeIP, selfNativeIP},
{peer1IP, selfEIP1, selfNativeIP},
{peer2IP, selfEIP2, selfNativeIP},
{peer2IP, subnetIP, subnetIP},
},
},
{
name: "no-nat",
wcfg: &wgcfg.Config{
Addresses: selfAddrs,
Peers: []wgcfg.Peer{
node(peer1IP, noIP),
node(peer2IP, noIP),
},
},
snatMap: map[netip.Addr]netip.Addr{
peer1IP: selfNativeIP,
peer2IP: selfNativeIP,
subnetIP: selfNativeIP,
},
dnat: []dnatTest{
{selfNativeIP, selfNativeIP, selfNativeIP},
{peer1IP, selfEIP1, selfEIP1},
{peer2IP, selfEIP2, selfEIP2},
{peer2IP, subnetIP, subnetIP},
},
},
{
name: "exit-node-require-nat-peer-doesnt",
wcfg: &wgcfg.Config{
Addresses: selfAddrs,
Peers: []wgcfg.Peer{
node(peer1IP, noIP),
node(peer2IP, selfEIP2, exitRoute),
},
},
snatMap: map[netip.Addr]netip.Addr{
peer1IP: selfNativeIP,
peer2IP: selfEIP2,
publicIP: selfEIP2,
},
dnat: []dnatTest{
{selfNativeIP, selfNativeIP, selfNativeIP},
{peer2IP, selfEIP2, selfNativeIP},
{peer2IP, subnetIP, subnetIP},
},
},
}
for _, tc := range tests {
t.Run(fmt.Sprintf("%v/%v", addrFam, tc.name), func(t *testing.T) {
pcfg := peerConfigTableFromWGConfig(tc.wcfg)
for peer, want := range tc.snatMap {
if got := pcfg.selectSrcIP(selfNativeIP, peer); got != want {
t.Errorf("selectSrcIP[%v]: got %v; want %v", peer, got, want)
}
}
for i, dt := range tc.dnat {
if got := pcfg.mapDstIP(dt.src, dt.dst); got != dt.want {
t.Errorf("dnat[%d]: mapDstIP[%v, %v]: got %v; want %v", i, dt.src, dt.dst, got, dt.want)
}
}
if t.Failed() {
t.Logf("%v", pcfg)
}
})
}
}
test(ipproto.Version4)
test(ipproto.Version6)
}
// TestCaptureHook verifies that the Wrapper.captureHook callback is called
// with the correct parameters when various packet operations are performed.
func TestCaptureHook(t *testing.T) {
type captureRecord struct {
path capture.Path
now time.Time
pkt []byte
meta packet.CaptureMeta
}
var captured []captureRecord
hook := func(path capture.Path, now time.Time, pkt []byte, meta packet.CaptureMeta) {
captured = append(captured, captureRecord{
path: path,
now: now,
pkt: pkt,
meta: meta,
})
}
now := time.Unix(1682085856, 0)
_, w := newFakeTUN(t.Logf, true)
w.timeNow = func() time.Time {
return now
}
w.InstallCaptureHook(hook)
defer w.Close()
// Loop reading and discarding packets; this ensures that we don't have
// packets stuck in vectorOutbound
go func() {
var (
buf [MaxPacketSize]byte
sizes = make([]int, 1)
)
for {
_, err := w.Read([][]byte{buf[:]}, sizes, 0)
if err != nil {
return
}
}
}()
// Do operations that should result in a packet being captured.
w.Write([][]byte{
[]byte("Write1"),
[]byte("Write2"),
}, 0)
packetBuf := stack.NewPacketBuffer(stack.PacketBufferOptions{
Payload: buffer.MakeWithData([]byte("InjectInboundPacketBuffer")),
})
w.InjectInboundPacketBuffer(packetBuf)
packetBuf = stack.NewPacketBuffer(stack.PacketBufferOptions{
Payload: buffer.MakeWithData([]byte("InjectOutboundPacketBuffer")),
})
w.InjectOutboundPacketBuffer(packetBuf)
// TODO: test Read
// TODO: determine if we want InjectOutbound to log
// Assert that the right packets are captured.
want := []captureRecord{
{
path: capture.FromPeer,
pkt: []byte("Write1"),
},
{
path: capture.FromPeer,
pkt: []byte("Write2"),
},
{
path: capture.SynthesizedToLocal,
pkt: []byte("InjectInboundPacketBuffer"),
},
{
path: capture.SynthesizedToPeer,
pkt: []byte("InjectOutboundPacketBuffer"),
},
}
for i := range len(want) {
want[i].now = now
}
if !reflect.DeepEqual(captured, want) {
t.Errorf("mismatch between captured and expected packets\ngot: %+v\nwant: %+v",
captured, want)
}
}