tailscale/wgengine/magicsock/magicsock_test.go
Brad Fitzpatrick bc0eb6b914 all: import x/exp/maps as xmaps to distinguish from Go 1.21 "maps"
Updates #8419

Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
2023-08-17 09:54:18 -07:00

2767 lines
70 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package magicsock
import (
"bytes"
"context"
crand "crypto/rand"
"crypto/tls"
"encoding/binary"
"errors"
"fmt"
"io"
"math/rand"
"net"
"net/http"
"net/http/httptest"
"net/netip"
"os"
"runtime"
"strconv"
"strings"
"sync"
"sync/atomic"
"testing"
"time"
"unsafe"
wgconn "github.com/tailscale/wireguard-go/conn"
"github.com/tailscale/wireguard-go/device"
"github.com/tailscale/wireguard-go/tun/tuntest"
"go4.org/mem"
xmaps "golang.org/x/exp/maps"
"golang.org/x/net/icmp"
"golang.org/x/net/ipv4"
"golang.org/x/net/ipv6"
"tailscale.com/cmd/testwrapper/flakytest"
"tailscale.com/derp"
"tailscale.com/derp/derphttp"
"tailscale.com/disco"
"tailscale.com/ipn/ipnstate"
"tailscale.com/net/connstats"
"tailscale.com/net/netaddr"
"tailscale.com/net/packet"
"tailscale.com/net/ping"
"tailscale.com/net/stun/stuntest"
"tailscale.com/net/tstun"
"tailscale.com/tailcfg"
"tailscale.com/tstest"
"tailscale.com/tstest/natlab"
"tailscale.com/tstime/mono"
"tailscale.com/types/key"
"tailscale.com/types/logger"
"tailscale.com/types/netlogtype"
"tailscale.com/types/netmap"
"tailscale.com/types/nettype"
"tailscale.com/types/ptr"
"tailscale.com/util/cibuild"
"tailscale.com/util/racebuild"
"tailscale.com/wgengine/filter"
"tailscale.com/wgengine/wgcfg"
"tailscale.com/wgengine/wgcfg/nmcfg"
"tailscale.com/wgengine/wglog"
)
func init() {
os.Setenv("IN_TS_TEST", "1")
// Some of these tests lose a disco pong before establishing a
// direct connection, so instead of waiting 5 seconds in the
// test, reduce the wait period.
// (In particular, TestActiveDiscovery.)
discoPingInterval = 100 * time.Millisecond
pingTimeoutDuration = 100 * time.Millisecond
}
// WaitReady waits until the magicsock is entirely initialized and connected
// to its home DERP server. This is normally not necessary, since magicsock
// is intended to be entirely asynchronous, but it helps eliminate race
// conditions in tests. In particular, you can't expect two test magicsocks
// to be able to connect to each other through a test DERP unless they are
// both fully initialized before you try.
func (c *Conn) WaitReady(t testing.TB) {
t.Helper()
timer := time.NewTimer(10 * time.Second)
defer timer.Stop()
select {
case <-c.derpStarted:
return
case <-c.connCtx.Done():
t.Fatalf("magicsock.Conn closed while waiting for readiness")
case <-timer.C:
t.Fatalf("timeout waiting for readiness")
}
}
func runDERPAndStun(t *testing.T, logf logger.Logf, l nettype.PacketListener, stunIP netip.Addr) (derpMap *tailcfg.DERPMap, cleanup func()) {
d := derp.NewServer(key.NewNode(), logf)
httpsrv := httptest.NewUnstartedServer(derphttp.Handler(d))
httpsrv.Config.ErrorLog = logger.StdLogger(logf)
httpsrv.Config.TLSNextProto = make(map[string]func(*http.Server, *tls.Conn, http.Handler))
httpsrv.StartTLS()
stunAddr, stunCleanup := stuntest.ServeWithPacketListener(t, l)
m := &tailcfg.DERPMap{
Regions: map[int]*tailcfg.DERPRegion{
1: {
RegionID: 1,
RegionCode: "test",
Nodes: []*tailcfg.DERPNode{
{
Name: "t1",
RegionID: 1,
HostName: "test-node.unused",
IPv4: "127.0.0.1",
IPv6: "none",
STUNPort: stunAddr.Port,
DERPPort: httpsrv.Listener.Addr().(*net.TCPAddr).Port,
InsecureForTests: true,
STUNTestIP: stunIP.String(),
},
},
},
},
}
cleanup = func() {
httpsrv.CloseClientConnections()
httpsrv.Close()
d.Close()
stunCleanup()
}
return m, cleanup
}
// magicStack is a magicsock, plus all the stuff around it that's
// necessary to send and receive packets to test e2e wireguard
// happiness.
type magicStack struct {
privateKey key.NodePrivate
epCh chan []tailcfg.Endpoint // endpoint updates produced by this peer
stats *connstats.Statistics // per-connection statistics
conn *Conn // the magicsock itself
tun *tuntest.ChannelTUN // TUN device to send/receive packets
tsTun *tstun.Wrapper // wrapped tun that implements filtering and wgengine hooks
dev *device.Device // the wireguard-go Device that connects the previous things
wgLogger *wglog.Logger // wireguard-go log wrapper
}
// newMagicStack builds and initializes an idle magicsock and
// friends. You need to call conn.SetNetworkMap and dev.Reconfig
// before anything interesting happens.
func newMagicStack(t testing.TB, logf logger.Logf, l nettype.PacketListener, derpMap *tailcfg.DERPMap) *magicStack {
privateKey := key.NewNode()
return newMagicStackWithKey(t, logf, l, derpMap, privateKey)
}
func newMagicStackWithKey(t testing.TB, logf logger.Logf, l nettype.PacketListener, derpMap *tailcfg.DERPMap, privateKey key.NodePrivate) *magicStack {
t.Helper()
epCh := make(chan []tailcfg.Endpoint, 100) // arbitrary
conn, err := NewConn(Options{
Logf: logf,
TestOnlyPacketListener: l,
EndpointsFunc: func(eps []tailcfg.Endpoint) {
epCh <- eps
},
})
if err != nil {
t.Fatalf("constructing magicsock: %v", err)
}
conn.SetDERPMap(derpMap)
if err := conn.SetPrivateKey(privateKey); err != nil {
t.Fatalf("setting private key in magicsock: %v", err)
}
tun := tuntest.NewChannelTUN()
tsTun := tstun.Wrap(logf, tun.TUN())
tsTun.SetFilter(filter.NewAllowAllForTest(logf))
wgLogger := wglog.NewLogger(logf)
dev := wgcfg.NewDevice(tsTun, conn.Bind(), wgLogger.DeviceLogger)
dev.Up()
// Wait for magicsock to connect up to DERP.
conn.WaitReady(t)
// Wait for first endpoint update to be available
deadline := time.Now().Add(2 * time.Second)
for len(epCh) == 0 && time.Now().Before(deadline) {
time.Sleep(100 * time.Millisecond)
}
return &magicStack{
privateKey: privateKey,
epCh: epCh,
conn: conn,
tun: tun,
tsTun: tsTun,
dev: dev,
wgLogger: wgLogger,
}
}
func (s *magicStack) Reconfig(cfg *wgcfg.Config) error {
s.tsTun.SetWGConfig(cfg)
s.wgLogger.SetPeers(cfg.Peers)
return wgcfg.ReconfigDevice(s.dev, cfg, s.conn.logf)
}
func (s *magicStack) String() string {
pub := s.Public()
return pub.ShortString()
}
func (s *magicStack) Close() {
s.dev.Close()
s.conn.Close()
}
func (s *magicStack) Public() key.NodePublic {
return s.privateKey.Public()
}
func (s *magicStack) Status() *ipnstate.Status {
var sb ipnstate.StatusBuilder
sb.WantPeers = true
s.conn.UpdateStatus(&sb)
return sb.Status()
}
// IP returns the Tailscale IP address assigned to this magicStack.
//
// Something external needs to provide a NetworkMap and WireGuard
// configs to the magicStack in order for it to acquire an IP
// address. See meshStacks for one possible source of netmaps and IPs.
func (s *magicStack) IP() netip.Addr {
for deadline := time.Now().Add(5 * time.Second); time.Now().Before(deadline); time.Sleep(10 * time.Millisecond) {
st := s.Status()
if len(st.TailscaleIPs) > 0 {
return st.TailscaleIPs[0]
}
}
panic("timed out waiting for magicstack to get an IP assigned")
}
// meshStacks monitors epCh on all given ms, and plumbs network maps
// and WireGuard configs into everyone to form a full mesh that has up
// to date endpoint info. Think of it as an extremely stripped down
// and purpose-built Tailscale control plane.
func meshStacks(logf logger.Logf, mutateNetmap func(idx int, nm *netmap.NetworkMap), ms ...*magicStack) (cleanup func()) {
ctx, cancel := context.WithCancel(context.Background())
// Serialize all reconfigurations globally, just to keep things
// simpler.
var (
mu sync.Mutex
eps = make([][]tailcfg.Endpoint, len(ms))
)
buildNetmapLocked := func(myIdx int) *netmap.NetworkMap {
me := ms[myIdx]
nm := &netmap.NetworkMap{
PrivateKey: me.privateKey,
NodeKey: me.privateKey.Public(),
Addresses: []netip.Prefix{netip.PrefixFrom(netaddr.IPv4(1, 0, 0, byte(myIdx+1)), 32)},
}
for i, peer := range ms {
if i == myIdx {
continue
}
addrs := []netip.Prefix{netip.PrefixFrom(netaddr.IPv4(1, 0, 0, byte(i+1)), 32)}
peer := &tailcfg.Node{
ID: tailcfg.NodeID(i + 1),
Name: fmt.Sprintf("node%d", i+1),
Key: peer.privateKey.Public(),
DiscoKey: peer.conn.DiscoPublicKey(),
Addresses: addrs,
AllowedIPs: addrs,
Endpoints: epStrings(eps[i]),
DERP: "127.3.3.40:1",
}
nm.Peers = append(nm.Peers, peer)
}
if mutateNetmap != nil {
mutateNetmap(myIdx, nm)
}
return nm
}
updateEps := func(idx int, newEps []tailcfg.Endpoint) {
mu.Lock()
defer mu.Unlock()
eps[idx] = newEps
for i, m := range ms {
nm := buildNetmapLocked(i)
m.conn.SetNetworkMap(nm)
peerSet := make(map[key.NodePublic]struct{}, len(nm.Peers))
for _, peer := range nm.Peers {
peerSet[peer.Key] = struct{}{}
}
m.conn.UpdatePeers(peerSet)
wg, err := nmcfg.WGCfg(nm, logf, netmap.AllowSingleHosts, "")
if err != nil {
// We're too far from the *testing.T to be graceful,
// blow up. Shouldn't happen anyway.
panic(fmt.Sprintf("failed to construct wgcfg from netmap: %v", err))
}
if err := m.Reconfig(wg); err != nil {
if ctx.Err() != nil || errors.Is(err, errConnClosed) {
// shutdown race, don't care.
return
}
panic(fmt.Sprintf("device reconfig failed: %v", err))
}
}
}
var wg sync.WaitGroup
wg.Add(len(ms))
for i := range ms {
go func(myIdx int) {
defer wg.Done()
for {
select {
case <-ctx.Done():
return
case eps := <-ms[myIdx].epCh:
logf("conn%d endpoints update", myIdx+1)
updateEps(myIdx, eps)
}
}
}(i)
}
return func() {
cancel()
wg.Wait()
}
}
func TestNewConn(t *testing.T) {
tstest.PanicOnLog()
tstest.ResourceCheck(t)
epCh := make(chan string, 16)
epFunc := func(endpoints []tailcfg.Endpoint) {
for _, ep := range endpoints {
epCh <- ep.Addr.String()
}
}
stunAddr, stunCleanupFn := stuntest.Serve(t)
defer stunCleanupFn()
port := pickPort(t)
conn, err := NewConn(Options{
Port: port,
EndpointsFunc: epFunc,
Logf: t.Logf,
})
if err != nil {
t.Fatal(err)
}
defer conn.Close()
conn.SetDERPMap(stuntest.DERPMapOf(stunAddr.String()))
conn.SetPrivateKey(key.NewNode())
go func() {
pkts := make([][]byte, 1)
sizes := make([]int, 1)
eps := make([]wgconn.Endpoint, 1)
pkts[0] = make([]byte, 64<<10)
receiveIPv4 := conn.receiveIPv4()
for {
_, err := receiveIPv4(pkts, sizes, eps)
if err != nil {
return
}
}
}()
timeout := time.After(10 * time.Second)
var endpoints []string
suffix := fmt.Sprintf(":%d", port)
collectEndpoints:
for {
select {
case ep := <-epCh:
t.Logf("TestNewConn: got endpoint: %v", ep)
endpoints = append(endpoints, ep)
if strings.HasSuffix(ep, suffix) {
break collectEndpoints
}
case <-timeout:
t.Fatalf("timeout with endpoints: %v", endpoints)
}
}
}
func pickPort(t testing.TB) uint16 {
t.Helper()
conn, err := net.ListenPacket("udp4", "127.0.0.1:0")
if err != nil {
t.Fatal(err)
}
defer conn.Close()
return uint16(conn.LocalAddr().(*net.UDPAddr).Port)
}
func TestPickDERPFallback(t *testing.T) {
tstest.PanicOnLog()
tstest.ResourceCheck(t)
c := newConn()
dm := &tailcfg.DERPMap{
Regions: map[int]*tailcfg.DERPRegion{
1: {},
2: {},
3: {},
4: {},
5: {},
6: {},
7: {},
8: {},
},
}
c.derpMap = dm
a := c.pickDERPFallback()
if a == 0 {
t.Fatalf("pickDERPFallback returned 0")
}
// Test that it's consistent.
for i := 0; i < 50; i++ {
b := c.pickDERPFallback()
if a != b {
t.Fatalf("got inconsistent %d vs %d values", a, b)
}
}
// Test that that the pointer value of c is blended in and
// distribution over nodes works.
got := map[int]int{}
for i := 0; i < 50; i++ {
c = newConn()
c.derpMap = dm
got[c.pickDERPFallback()]++
}
t.Logf("distribution: %v", got)
if len(got) < 2 {
t.Errorf("expected more than 1 node; got %v", got)
}
// Test that stickiness works.
const someNode = 123456
c.myDerp = someNode
if got := c.pickDERPFallback(); got != someNode {
t.Errorf("not sticky: got %v; want %v", got, someNode)
}
// TODO: test that disco-based clients changing to a new DERP
// region causes this fallback to also move, once disco clients
// have fixed DERP fallback logic.
}
// TestDeviceStartStop exercises the startup and shutdown logic of
// wireguard-go, which is intimately intertwined with magicsock's own
// lifecycle. We seem to be good at generating deadlocks here, so if
// this test fails you should suspect a deadlock somewhere in startup
// or shutdown. It may be an infrequent flake, so run with
// -count=10000 to be sure.
func TestDeviceStartStop(t *testing.T) {
tstest.PanicOnLog()
tstest.ResourceCheck(t)
conn, err := NewConn(Options{
EndpointsFunc: func(eps []tailcfg.Endpoint) {},
Logf: t.Logf,
})
if err != nil {
t.Fatal(err)
}
defer conn.Close()
tun := tuntest.NewChannelTUN()
wgLogger := wglog.NewLogger(t.Logf)
dev := wgcfg.NewDevice(tun.TUN(), conn.Bind(), wgLogger.DeviceLogger)
dev.Up()
dev.Close()
}
// Exercise a code path in sendDiscoMessage if the connection has been closed.
func TestConnClosed(t *testing.T) {
mstun := &natlab.Machine{Name: "stun"}
m1 := &natlab.Machine{Name: "m1"}
m2 := &natlab.Machine{Name: "m2"}
inet := natlab.NewInternet()
sif := mstun.Attach("eth0", inet)
m1if := m1.Attach("eth0", inet)
m2if := m2.Attach("eth0", inet)
d := &devices{
m1: m1,
m1IP: m1if.V4(),
m2: m2,
m2IP: m2if.V4(),
stun: mstun,
stunIP: sif.V4(),
}
logf, closeLogf := logger.LogfCloser(t.Logf)
defer closeLogf()
derpMap, cleanup := runDERPAndStun(t, logf, d.stun, d.stunIP)
defer cleanup()
ms1 := newMagicStack(t, logger.WithPrefix(logf, "conn1: "), d.m1, derpMap)
defer ms1.Close()
ms2 := newMagicStack(t, logger.WithPrefix(logf, "conn2: "), d.m2, derpMap)
defer ms2.Close()
cleanup = meshStacks(t.Logf, nil, ms1, ms2)
defer cleanup()
pkt := tuntest.Ping(ms2.IP(), ms1.IP())
if len(ms1.conn.activeDerp) == 0 {
t.Errorf("unexpected DERP empty got: %v want: >0", len(ms1.conn.activeDerp))
}
ms1.conn.Close()
ms2.conn.Close()
// This should hit a c.closed conditional in sendDiscoMessage() and return immediately.
ms1.tun.Outbound <- pkt
select {
case <-ms2.tun.Inbound:
t.Error("unexpected response with connection closed")
case <-time.After(100 * time.Millisecond):
}
if len(ms1.conn.activeDerp) > 0 {
t.Errorf("unexpected DERP active got: %v want:0", len(ms1.conn.activeDerp))
}
}
func makeNestable(t *testing.T) (logf logger.Logf, setT func(t *testing.T)) {
var mu sync.RWMutex
cur := t
setT = func(t *testing.T) {
mu.Lock()
cur = t
mu.Unlock()
}
logf = func(s string, args ...any) {
mu.RLock()
t := cur
t.Helper()
t.Logf(s, args...)
mu.RUnlock()
}
return logf, setT
}
// localhostOnlyListener is a nettype.PacketListener that listens on
// localhost (127.0.0.1 or ::1, depending on the requested network)
// when asked to listen on the unspecified address.
//
// It's used in tests where we set up localhost-to-localhost
// communication, because if you listen on the unspecified address on
// macOS and Windows, you get an interactive firewall consent prompt
// to allow the binding, which breaks our CIs.
type localhostListener struct{}
func (localhostListener) ListenPacket(ctx context.Context, network, address string) (net.PacketConn, error) {
host, port, err := net.SplitHostPort(address)
if err != nil {
return nil, err
}
switch network {
case "udp4":
switch host {
case "", "0.0.0.0":
host = "127.0.0.1"
case "127.0.0.1":
default:
return nil, fmt.Errorf("localhostListener cannot be asked to listen on %q", address)
}
case "udp6":
switch host {
case "", "::":
host = "::1"
case "::1":
default:
return nil, fmt.Errorf("localhostListener cannot be asked to listen on %q", address)
}
}
var conf net.ListenConfig
return conf.ListenPacket(ctx, network, net.JoinHostPort(host, port))
}
func TestTwoDevicePing(t *testing.T) {
flakytest.Mark(t, "https://github.com/tailscale/tailscale/issues/1277")
l, ip := localhostListener{}, netaddr.IPv4(127, 0, 0, 1)
n := &devices{
m1: l,
m1IP: ip,
m2: l,
m2IP: ip,
stun: l,
stunIP: ip,
}
testTwoDevicePing(t, n)
}
func TestDiscokeyChange(t *testing.T) {
tstest.PanicOnLog()
tstest.ResourceCheck(t)
derpMap, cleanup := runDERPAndStun(t, t.Logf, localhostListener{}, netaddr.IPv4(127, 0, 0, 1))
defer cleanup()
m1Key := key.NewNode()
m1 := newMagicStackWithKey(t, t.Logf, localhostListener{}, derpMap, m1Key)
defer m1.Close()
m2 := newMagicStack(t, t.Logf, localhostListener{}, derpMap)
defer m2.Close()
var (
mu sync.Mutex
// Start with some random discoKey that isn't actually m1's key,
// to simulate m2 coming up with knowledge of an old, expired
// discokey. We'll switch to the correct one later in the test.
m1DiscoKey = key.NewDisco().Public()
)
setm1Key := func(idx int, nm *netmap.NetworkMap) {
if idx != 1 {
// only mutate m2's netmap
return
}
if len(nm.Peers) != 1 {
// m1 not in netmap yet.
return
}
mu.Lock()
defer mu.Unlock()
nm.Peers[0].DiscoKey = m1DiscoKey
}
cleanupMesh := meshStacks(t.Logf, setm1Key, m1, m2)
defer cleanupMesh()
// Wait for both peers to know about each other.
for {
if s1 := m1.Status(); len(s1.Peer) != 1 {
time.Sleep(10 * time.Millisecond)
continue
}
if s2 := m2.Status(); len(s2.Peer) != 1 {
time.Sleep(10 * time.Millisecond)
continue
}
break
}
mu.Lock()
m1DiscoKey = m1.conn.DiscoPublicKey()
mu.Unlock()
// Manually trigger an endpoint update to meshStacks, so it hands
// m2 a new netmap.
m1.conn.mu.Lock()
m1.epCh <- m1.conn.lastEndpoints
m1.conn.mu.Unlock()
cleanup = newPinger(t, t.Logf, m1, m2)
defer cleanup()
mustDirect(t, t.Logf, m1, m2)
mustDirect(t, t.Logf, m2, m1)
}
func TestActiveDiscovery(t *testing.T) {
t.Run("simple_internet", func(t *testing.T) {
t.Parallel()
mstun := &natlab.Machine{Name: "stun"}
m1 := &natlab.Machine{Name: "m1"}
m2 := &natlab.Machine{Name: "m2"}
inet := natlab.NewInternet()
sif := mstun.Attach("eth0", inet)
m1if := m1.Attach("eth0", inet)
m2if := m2.Attach("eth0", inet)
n := &devices{
m1: m1,
m1IP: m1if.V4(),
m2: m2,
m2IP: m2if.V4(),
stun: mstun,
stunIP: sif.V4(),
}
testActiveDiscovery(t, n)
})
t.Run("facing_easy_firewalls", func(t *testing.T) {
mstun := &natlab.Machine{Name: "stun"}
m1 := &natlab.Machine{
Name: "m1",
PacketHandler: &natlab.Firewall{},
}
m2 := &natlab.Machine{
Name: "m2",
PacketHandler: &natlab.Firewall{},
}
inet := natlab.NewInternet()
sif := mstun.Attach("eth0", inet)
m1if := m1.Attach("eth0", inet)
m2if := m2.Attach("eth0", inet)
n := &devices{
m1: m1,
m1IP: m1if.V4(),
m2: m2,
m2IP: m2if.V4(),
stun: mstun,
stunIP: sif.V4(),
}
testActiveDiscovery(t, n)
})
t.Run("facing_nats", func(t *testing.T) {
mstun := &natlab.Machine{Name: "stun"}
m1 := &natlab.Machine{
Name: "m1",
PacketHandler: &natlab.Firewall{},
}
nat1 := &natlab.Machine{
Name: "nat1",
}
m2 := &natlab.Machine{
Name: "m2",
PacketHandler: &natlab.Firewall{},
}
nat2 := &natlab.Machine{
Name: "nat2",
}
inet := natlab.NewInternet()
lan1 := &natlab.Network{
Name: "lan1",
Prefix4: netip.MustParsePrefix("192.168.0.0/24"),
}
lan2 := &natlab.Network{
Name: "lan2",
Prefix4: netip.MustParsePrefix("192.168.1.0/24"),
}
sif := mstun.Attach("eth0", inet)
nat1WAN := nat1.Attach("wan", inet)
nat1LAN := nat1.Attach("lan1", lan1)
nat2WAN := nat2.Attach("wan", inet)
nat2LAN := nat2.Attach("lan2", lan2)
m1if := m1.Attach("eth0", lan1)
m2if := m2.Attach("eth0", lan2)
lan1.SetDefaultGateway(nat1LAN)
lan2.SetDefaultGateway(nat2LAN)
nat1.PacketHandler = &natlab.SNAT44{
Machine: nat1,
ExternalInterface: nat1WAN,
Firewall: &natlab.Firewall{
TrustedInterface: nat1LAN,
},
}
nat2.PacketHandler = &natlab.SNAT44{
Machine: nat2,
ExternalInterface: nat2WAN,
Firewall: &natlab.Firewall{
TrustedInterface: nat2LAN,
},
}
n := &devices{
m1: m1,
m1IP: m1if.V4(),
m2: m2,
m2IP: m2if.V4(),
stun: mstun,
stunIP: sif.V4(),
}
testActiveDiscovery(t, n)
})
}
type devices struct {
m1 nettype.PacketListener
m1IP netip.Addr
m2 nettype.PacketListener
m2IP netip.Addr
stun nettype.PacketListener
stunIP netip.Addr
}
// newPinger starts continuously sending test packets from srcM to
// dstM, until cleanup is invoked to stop it. Each ping has 1 second
// to transit the network. It is a test failure to lose a ping.
func newPinger(t *testing.T, logf logger.Logf, src, dst *magicStack) (cleanup func()) {
ctx, cancel := context.WithCancel(context.Background())
done := make(chan struct{})
one := func() bool {
// TODO(danderson): requiring exactly zero packet loss
// will probably be too strict for some tests we'd like to
// run (e.g. discovery switching to a new path on
// failure). Figure out what kind of thing would be
// acceptable to test instead of "every ping must
// transit".
pkt := tuntest.Ping(dst.IP(), src.IP())
select {
case src.tun.Outbound <- pkt:
case <-ctx.Done():
return false
}
select {
case <-dst.tun.Inbound:
return true
case <-time.After(10 * time.Second):
// Very generous timeout here because depending on
// magicsock setup races, the first handshake might get
// eaten by the receiving end (if wireguard-go hasn't been
// configured quite yet), so we have to wait for at least
// the first retransmit from wireguard before we declare
// failure.
t.Errorf("timed out waiting for ping to transit")
return true
case <-ctx.Done():
// Try a little bit longer to consume the packet we're
// waiting for. This is to deal with shutdown races, where
// natlab may still be delivering a packet to us from a
// goroutine.
select {
case <-dst.tun.Inbound:
case <-time.After(time.Second):
}
return false
}
}
cleanup = func() {
cancel()
<-done
}
// Synchronously transit one ping to get things started. This is
// nice because it means that newPinger returning means we've
// worked through initial connectivity.
if !one() {
cleanup()
return
}
go func() {
logf("sending ping stream from %s (%s) to %s (%s)", src, src.IP(), dst, dst.IP())
defer close(done)
for one() {
}
}()
return cleanup
}
// testActiveDiscovery verifies that two magicStacks tied to the given
// devices can establish a direct p2p connection with each other. See
// TestActiveDiscovery for the various configurations of devices that
// get exercised.
func testActiveDiscovery(t *testing.T, d *devices) {
tstest.PanicOnLog()
tstest.ResourceCheck(t)
tlogf, setT := makeNestable(t)
setT(t)
start := time.Now()
wlogf := func(msg string, args ...any) {
t.Helper()
msg = fmt.Sprintf("%s: %s", time.Since(start).Truncate(time.Microsecond), msg)
tlogf(msg, args...)
}
logf, closeLogf := logger.LogfCloser(wlogf)
defer closeLogf()
derpMap, cleanup := runDERPAndStun(t, logf, d.stun, d.stunIP)
defer cleanup()
m1 := newMagicStack(t, logger.WithPrefix(logf, "conn1: "), d.m1, derpMap)
defer m1.Close()
m2 := newMagicStack(t, logger.WithPrefix(logf, "conn2: "), d.m2, derpMap)
defer m2.Close()
cleanup = meshStacks(logf, nil, m1, m2)
defer cleanup()
m1IP := m1.IP()
m2IP := m2.IP()
logf("IPs: %s %s", m1IP, m2IP)
cleanup = newPinger(t, logf, m1, m2)
defer cleanup()
// Everything is now up and running, active discovery should find
// a direct path between our peers. Wait for it to switch away
// from DERP.
mustDirect(t, logf, m1, m2)
mustDirect(t, logf, m2, m1)
logf("starting cleanup")
}
func mustDirect(t *testing.T, logf logger.Logf, m1, m2 *magicStack) {
lastLog := time.Now().Add(-time.Minute)
// See https://github.com/tailscale/tailscale/issues/654
// and https://github.com/tailscale/tailscale/issues/3247 for discussions of this deadline.
for deadline := time.Now().Add(30 * time.Second); time.Now().Before(deadline); time.Sleep(10 * time.Millisecond) {
pst := m1.Status().Peer[m2.Public()]
if pst.CurAddr != "" {
logf("direct link %s->%s found with addr %s", m1, m2, pst.CurAddr)
return
}
if now := time.Now(); now.Sub(lastLog) > time.Second {
logf("no direct path %s->%s yet, addrs %v", m1, m2, pst.Addrs)
lastLog = now
}
}
t.Errorf("magicsock did not find a direct path from %s to %s", m1, m2)
}
func testTwoDevicePing(t *testing.T, d *devices) {
tstest.PanicOnLog()
tstest.ResourceCheck(t)
// This gets reassigned inside every test, so that the connections
// all log using the "current" t.Logf function. Sigh.
nestedLogf, setT := makeNestable(t)
logf, closeLogf := logger.LogfCloser(nestedLogf)
defer closeLogf()
derpMap, cleanup := runDERPAndStun(t, logf, d.stun, d.stunIP)
defer cleanup()
m1 := newMagicStack(t, logf, d.m1, derpMap)
defer m1.Close()
m2 := newMagicStack(t, logf, d.m2, derpMap)
defer m2.Close()
cleanupMesh := meshStacks(logf, nil, m1, m2)
defer cleanupMesh()
// Wait for magicsock to be told about peers from meshStacks.
tstest.WaitFor(10*time.Second, func() error {
if p := m1.Status().Peer[m2.Public()]; p == nil || !p.InMagicSock {
return errors.New("m1 not ready")
}
if p := m2.Status().Peer[m1.Public()]; p == nil || !p.InMagicSock {
return errors.New("m2 not ready")
}
return nil
})
m1cfg := &wgcfg.Config{
Name: "peer1",
PrivateKey: m1.privateKey,
Addresses: []netip.Prefix{netip.MustParsePrefix("1.0.0.1/32")},
Peers: []wgcfg.Peer{
{
PublicKey: m2.privateKey.Public(),
DiscoKey: m2.conn.DiscoPublicKey(),
AllowedIPs: []netip.Prefix{netip.MustParsePrefix("1.0.0.2/32")},
},
},
}
m2cfg := &wgcfg.Config{
Name: "peer2",
PrivateKey: m2.privateKey,
Addresses: []netip.Prefix{netip.MustParsePrefix("1.0.0.2/32")},
Peers: []wgcfg.Peer{
{
PublicKey: m1.privateKey.Public(),
DiscoKey: m1.conn.DiscoPublicKey(),
AllowedIPs: []netip.Prefix{netip.MustParsePrefix("1.0.0.1/32")},
},
},
}
if err := m1.Reconfig(m1cfg); err != nil {
t.Fatal(err)
}
if err := m2.Reconfig(m2cfg); err != nil {
t.Fatal(err)
}
// In the normal case, pings succeed immediately.
// However, in the case of a handshake race, we need to retry.
// With very bad luck, we can need to retry multiple times.
allowedRetries := 3
if cibuild.On() {
// Allow extra retries on small/flaky/loaded CI machines.
allowedRetries *= 2
}
// Retries take 5s each. Add 1s for some processing time.
pingTimeout := 5*time.Second*time.Duration(allowedRetries) + time.Second
// sendWithTimeout sends msg using send, checking that it is received unchanged from in.
// It resends once per second until the send succeeds, or pingTimeout time has elapsed.
sendWithTimeout := func(msg []byte, in chan []byte, send func()) error {
start := time.Now()
for time.Since(start) < pingTimeout {
send()
select {
case recv := <-in:
if !bytes.Equal(msg, recv) {
return errors.New("ping did not transit correctly")
}
return nil
case <-time.After(time.Second):
// try again
}
}
return errors.New("ping timed out")
}
ping1 := func(t *testing.T) {
msg2to1 := tuntest.Ping(netip.MustParseAddr("1.0.0.1"), netip.MustParseAddr("1.0.0.2"))
send := func() {
m2.tun.Outbound <- msg2to1
t.Log("ping1 sent")
}
in := m1.tun.Inbound
if err := sendWithTimeout(msg2to1, in, send); err != nil {
t.Error(err)
}
}
ping2 := func(t *testing.T) {
msg1to2 := tuntest.Ping(netip.MustParseAddr("1.0.0.2"), netip.MustParseAddr("1.0.0.1"))
send := func() {
m1.tun.Outbound <- msg1to2
t.Log("ping2 sent")
}
in := m2.tun.Inbound
if err := sendWithTimeout(msg1to2, in, send); err != nil {
t.Error(err)
}
}
m1.stats = connstats.NewStatistics(0, 0, nil)
defer m1.stats.Shutdown(context.Background())
m1.conn.SetStatistics(m1.stats)
m2.stats = connstats.NewStatistics(0, 0, nil)
defer m2.stats.Shutdown(context.Background())
m2.conn.SetStatistics(m2.stats)
checkStats := func(t *testing.T, m *magicStack, wantConns []netlogtype.Connection) {
_, stats := m.stats.TestExtract()
for _, conn := range wantConns {
if _, ok := stats[conn]; ok {
return
}
}
t.Helper()
t.Errorf("missing any connection to %s from %s", wantConns, xmaps.Keys(stats))
}
addrPort := netip.MustParseAddrPort
m1Conns := []netlogtype.Connection{
{Src: addrPort("1.0.0.2:0"), Dst: m2.conn.pconn4.LocalAddr().AddrPort()},
{Src: addrPort("1.0.0.2:0"), Dst: addrPort("127.3.3.40:1")},
}
m2Conns := []netlogtype.Connection{
{Src: addrPort("1.0.0.1:0"), Dst: m1.conn.pconn4.LocalAddr().AddrPort()},
{Src: addrPort("1.0.0.1:0"), Dst: addrPort("127.3.3.40:1")},
}
outerT := t
t.Run("ping 1.0.0.1", func(t *testing.T) {
setT(t)
defer setT(outerT)
ping1(t)
checkStats(t, m1, m1Conns)
checkStats(t, m2, m2Conns)
})
t.Run("ping 1.0.0.2", func(t *testing.T) {
setT(t)
defer setT(outerT)
ping2(t)
checkStats(t, m1, m1Conns)
checkStats(t, m2, m2Conns)
})
t.Run("ping 1.0.0.2 via SendPacket", func(t *testing.T) {
setT(t)
defer setT(outerT)
msg1to2 := tuntest.Ping(netip.MustParseAddr("1.0.0.2"), netip.MustParseAddr("1.0.0.1"))
send := func() {
if err := m1.tsTun.InjectOutbound(msg1to2); err != nil {
t.Fatal(err)
}
t.Log("SendPacket sent")
}
in := m2.tun.Inbound
if err := sendWithTimeout(msg1to2, in, send); err != nil {
t.Error(err)
}
checkStats(t, m1, m1Conns)
checkStats(t, m2, m2Conns)
})
t.Run("no-op dev1 reconfig", func(t *testing.T) {
setT(t)
defer setT(outerT)
if err := m1.Reconfig(m1cfg); err != nil {
t.Fatal(err)
}
ping1(t)
ping2(t)
checkStats(t, m1, m1Conns)
checkStats(t, m2, m2Conns)
})
}
func TestDiscoMessage(t *testing.T) {
c := newConn()
c.logf = t.Logf
c.privateKey = key.NewNode()
peer1Pub := c.DiscoPublicKey()
peer1Priv := c.discoPrivate
n := &tailcfg.Node{
Key: key.NewNode().Public(),
DiscoKey: peer1Pub,
}
ep := &endpoint{
publicKey: n.Key,
}
ep.disco.Store(&endpointDisco{
key: n.DiscoKey,
short: n.DiscoKey.ShortString(),
})
c.peerMap.upsertEndpoint(ep, key.DiscoPublic{})
const payload = "why hello"
var nonce [24]byte
crand.Read(nonce[:])
pkt := peer1Pub.AppendTo([]byte("TS💬"))
box := peer1Priv.Shared(c.discoPrivate.Public()).Seal([]byte(payload))
pkt = append(pkt, box...)
got := c.handleDiscoMessage(pkt, netip.AddrPort{}, key.NodePublic{}, discoRXPathUDP)
if !got {
t.Error("failed to open it")
}
}
// tests that having a endpoint.String prevents wireguard-go's
// log.Printf("%v") of its conn.Endpoint values from using reflect to
// walk into read mutex while they're being used and then causing data
// races.
func TestDiscoStringLogRace(t *testing.T) {
de := new(endpoint)
var wg sync.WaitGroup
wg.Add(2)
go func() {
defer wg.Done()
fmt.Fprintf(io.Discard, "%v", de)
}()
go func() {
defer wg.Done()
de.mu.Lock()
}()
wg.Wait()
}
func Test32bitAlignment(t *testing.T) {
// Need an associated conn with non-nil noteRecvActivity to
// trigger interesting work on the atomics in endpoint.
called := 0
de := endpoint{
c: &Conn{
noteRecvActivity: func(key.NodePublic) { called++ },
},
}
if off := unsafe.Offsetof(de.lastRecv); off%8 != 0 {
t.Fatalf("endpoint.lastRecv is not 8-byte aligned")
}
de.noteRecvActivity() // verify this doesn't panic on 32-bit
if called != 1 {
t.Fatal("expected call to noteRecvActivity")
}
de.noteRecvActivity()
if called != 1 {
t.Error("expected no second call to noteRecvActivity")
}
}
// newTestConn returns a new Conn.
func newTestConn(t testing.TB) *Conn {
t.Helper()
port := pickPort(t)
conn, err := NewConn(Options{
Logf: t.Logf,
Port: port,
TestOnlyPacketListener: localhostListener{},
EndpointsFunc: func(eps []tailcfg.Endpoint) {
t.Logf("endpoints: %q", eps)
},
})
if err != nil {
t.Fatal(err)
}
return conn
}
// addTestEndpoint sets conn's network map to a single peer expected
// to receive packets from sendConn (or DERP), and returns that peer's
// nodekey and discokey.
func addTestEndpoint(tb testing.TB, conn *Conn, sendConn net.PacketConn) (key.NodePublic, key.DiscoPublic) {
// Give conn just enough state that it'll recognize sendConn as a
// valid peer and not fall through to the legacy magicsock
// codepath.
discoKey := key.DiscoPublicFromRaw32(mem.B([]byte{31: 1}))
nodeKey := key.NodePublicFromRaw32(mem.B([]byte{0: 'N', 1: 'K', 31: 0}))
conn.SetNetworkMap(&netmap.NetworkMap{
Peers: []*tailcfg.Node{
{
Key: nodeKey,
DiscoKey: discoKey,
Endpoints: []string{sendConn.LocalAddr().String()},
},
},
})
conn.SetPrivateKey(key.NodePrivateFromRaw32(mem.B([]byte{0: 1, 31: 0})))
_, err := conn.ParseEndpoint(nodeKey.UntypedHexString())
if err != nil {
tb.Fatal(err)
}
conn.addValidDiscoPathForTest(nodeKey, netip.MustParseAddrPort(sendConn.LocalAddr().String()))
return nodeKey, discoKey
}
func setUpReceiveFrom(tb testing.TB) (roundTrip func()) {
if b, ok := tb.(*testing.B); ok {
b.ReportAllocs()
}
conn := newTestConn(tb)
tb.Cleanup(func() { conn.Close() })
conn.logf = logger.Discard
sendConn, err := net.ListenPacket("udp4", "127.0.0.1:0")
if err != nil {
tb.Fatal(err)
}
tb.Cleanup(func() { sendConn.Close() })
addTestEndpoint(tb, conn, sendConn)
var dstAddr net.Addr = conn.pconn4.LocalAddr()
sendBuf := make([]byte, 1<<10)
for i := range sendBuf {
sendBuf[i] = 'x'
}
buffs := make([][]byte, 1)
buffs[0] = make([]byte, 2<<10)
sizes := make([]int, 1)
eps := make([]wgconn.Endpoint, 1)
receiveIPv4 := conn.receiveIPv4()
return func() {
if _, err := sendConn.WriteTo(sendBuf, dstAddr); err != nil {
tb.Fatalf("WriteTo: %v", err)
}
n, err := receiveIPv4(buffs, sizes, eps)
if err != nil {
tb.Fatal(err)
}
_ = n
_ = eps
}
}
// goMajorVersion reports the major Go version and whether it is a Tailscale fork.
// If parsing fails, goMajorVersion returns 0, false.
func goMajorVersion(s string) (version int, isTS bool) {
if !strings.HasPrefix(s, "go1.") {
return 0, false
}
mm := s[len("go1."):]
var major, rest string
for _, sep := range []string{".", "rc", "beta", "-"} {
i := strings.Index(mm, sep)
if i > 0 {
major, rest = mm[:i], mm[i:]
break
}
}
if major == "" {
major = mm
}
n, err := strconv.Atoi(major)
if err != nil {
return 0, false
}
return n, strings.Contains(rest, "ts")
}
func TestGoMajorVersion(t *testing.T) {
tests := []struct {
version string
wantN int
wantTS bool
}{
{"go1.15.8", 15, false},
{"go1.16rc1", 16, false},
{"go1.16rc1", 16, false},
{"go1.15.5-ts3bd89195a3", 15, true},
{"go1.15", 15, false},
{"go1.18-ts0d07ed810a", 18, true},
}
for _, tt := range tests {
n, ts := goMajorVersion(tt.version)
if tt.wantN != n || tt.wantTS != ts {
t.Errorf("goMajorVersion(%s) = %v, %v, want %v, %v", tt.version, n, ts, tt.wantN, tt.wantTS)
}
}
// Ensure that the current Go version is parseable.
n, _ := goMajorVersion(runtime.Version())
if n == 0 {
t.Fatalf("unable to parse %v", runtime.Version())
}
}
func TestReceiveFromAllocs(t *testing.T) {
// TODO(jwhited): we are back to nonzero alloc due to our use of x/net until
// https://github.com/golang/go/issues/45886 is implemented.
t.Skip("alloc tests are skipped until https://github.com/golang/go/issues/45886 is implemented and plumbed.")
if racebuild.On {
t.Skip("alloc tests are unreliable with -race")
}
// Go 1.16 and before: allow 3 allocs.
// Go 1.17: allow 2 allocs.
// Go 1.17, Tailscale fork: allow 1 alloc.
// Go 1.18+: allow 0 allocs.
// Go 2.0: allow -1 allocs (projected).
major, ts := goMajorVersion(runtime.Version())
maxAllocs := 3
switch {
case major == 17 && !ts:
maxAllocs = 2
case major == 17 && ts:
maxAllocs = 1
case major >= 18:
maxAllocs = 0
}
t.Logf("allowing %d allocs for Go version %q", maxAllocs, runtime.Version())
roundTrip := setUpReceiveFrom(t)
err := tstest.MinAllocsPerRun(t, uint64(maxAllocs), roundTrip)
if err != nil {
t.Fatal(err)
}
}
func BenchmarkReceiveFrom(b *testing.B) {
roundTrip := setUpReceiveFrom(b)
for i := 0; i < b.N; i++ {
roundTrip()
}
}
func BenchmarkReceiveFrom_Native(b *testing.B) {
b.ReportAllocs()
recvConn, err := net.ListenPacket("udp4", "127.0.0.1:0")
if err != nil {
b.Fatal(err)
}
defer recvConn.Close()
recvConnUDP := recvConn.(*net.UDPConn)
sendConn, err := net.ListenPacket("udp4", "127.0.0.1:0")
if err != nil {
b.Fatal(err)
}
defer sendConn.Close()
var dstAddr net.Addr = recvConn.LocalAddr()
sendBuf := make([]byte, 1<<10)
for i := range sendBuf {
sendBuf[i] = 'x'
}
buf := make([]byte, 2<<10)
for i := 0; i < b.N; i++ {
if _, err := sendConn.WriteTo(sendBuf, dstAddr); err != nil {
b.Fatalf("WriteTo: %v", err)
}
if _, _, err := recvConnUDP.ReadFromUDP(buf); err != nil {
b.Fatalf("ReadFromUDP: %v", err)
}
}
}
// Test that a netmap update where node changes its node key but
// doesn't change its disco key doesn't result in a broken state.
//
// https://github.com/tailscale/tailscale/issues/1391
func TestSetNetworkMapChangingNodeKey(t *testing.T) {
conn := newTestConn(t)
t.Cleanup(func() { conn.Close() })
var buf tstest.MemLogger
conn.logf = buf.Logf
conn.SetPrivateKey(key.NodePrivateFromRaw32(mem.B([]byte{0: 1, 31: 0})))
discoKey := key.DiscoPublicFromRaw32(mem.B([]byte{31: 1}))
nodeKey1 := key.NodePublicFromRaw32(mem.B([]byte{0: 'N', 1: 'K', 2: '1', 31: 0}))
nodeKey2 := key.NodePublicFromRaw32(mem.B([]byte{0: 'N', 1: 'K', 2: '2', 31: 0}))
conn.SetNetworkMap(&netmap.NetworkMap{
Peers: []*tailcfg.Node{
{
Key: nodeKey1,
DiscoKey: discoKey,
Endpoints: []string{"192.168.1.2:345"},
},
},
})
_, err := conn.ParseEndpoint(nodeKey1.UntypedHexString())
if err != nil {
t.Fatal(err)
}
for i := 0; i < 3; i++ {
conn.SetNetworkMap(&netmap.NetworkMap{
Peers: []*tailcfg.Node{
{
Key: nodeKey2,
DiscoKey: discoKey,
Endpoints: []string{"192.168.1.2:345"},
},
},
})
}
de, ok := conn.peerMap.endpointForNodeKey(nodeKey2)
if ok && de.publicKey != nodeKey2 {
t.Fatalf("discoEndpoint public key = %q; want %q", de.publicKey, nodeKey2)
}
deDisco := de.disco.Load()
if deDisco == nil {
t.Fatalf("discoEndpoint disco is nil")
}
if deDisco.key != discoKey {
t.Errorf("discoKey = %v; want %v", deDisco.key, discoKey)
}
if _, ok := conn.peerMap.endpointForNodeKey(nodeKey1); ok {
t.Errorf("didn't expect to find node for key1")
}
log := buf.String()
wantSub := map[string]int{
"magicsock: got updated network map; 1 peers": 2,
}
for sub, want := range wantSub {
got := strings.Count(log, sub)
if got != want {
t.Errorf("in log, count of substring %q = %v; want %v", sub, got, want)
}
}
if t.Failed() {
t.Logf("log output: %s", log)
}
}
func TestRebindStress(t *testing.T) {
conn := newTestConn(t)
var buf tstest.MemLogger
conn.logf = buf.Logf
closed := false
t.Cleanup(func() {
if !closed {
conn.Close()
}
})
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
errc := make(chan error, 1)
go func() {
buffs := make([][]byte, 1)
sizes := make([]int, 1)
eps := make([]wgconn.Endpoint, 1)
buffs[0] = make([]byte, 1500)
receiveIPv4 := conn.receiveIPv4()
for {
_, err := receiveIPv4(buffs, sizes, eps)
if ctx.Err() != nil {
errc <- nil
return
}
if err != nil {
errc <- err
return
}
}
}()
var wg sync.WaitGroup
wg.Add(2)
go func() {
defer wg.Done()
for i := 0; i < 2000; i++ {
conn.Rebind()
}
}()
go func() {
defer wg.Done()
for i := 0; i < 2000; i++ {
conn.Rebind()
}
}()
wg.Wait()
cancel()
if err := conn.Close(); err != nil {
t.Fatal(err)
}
closed = true
err := <-errc
if err != nil {
t.Fatalf("Got ReceiveIPv4 error: %v (is closed = %v). Log:\n%s", err, errors.Is(err, net.ErrClosed), buf.String())
}
}
func TestEndpointSetsEqual(t *testing.T) {
s := func(ports ...uint16) (ret []tailcfg.Endpoint) {
for _, port := range ports {
ret = append(ret, tailcfg.Endpoint{
Addr: netip.AddrPortFrom(netip.Addr{}, port),
})
}
return
}
tests := []struct {
a, b []tailcfg.Endpoint
want bool
}{
{
want: true,
},
{
a: s(1, 2, 3),
b: s(1, 2, 3),
want: true,
},
{
a: s(1, 2),
b: s(2, 1),
want: true,
},
{
a: s(1, 2),
b: s(2, 1, 1),
want: true,
},
{
a: s(1, 2, 2),
b: s(2, 1),
want: true,
},
{
a: s(1, 2, 2),
b: s(2, 1, 1),
want: true,
},
{
a: s(1, 2, 2, 3),
b: s(2, 1, 1),
want: false,
},
{
a: s(1, 2, 2),
b: s(2, 1, 1, 3),
want: false,
},
}
for _, tt := range tests {
if got := endpointSetsEqual(tt.a, tt.b); got != tt.want {
t.Errorf("%q vs %q = %v; want %v", tt.a, tt.b, got, tt.want)
}
}
}
func TestBetterAddr(t *testing.T) {
const ms = time.Millisecond
al := func(ipps string, d time.Duration) addrLatency {
return addrLatency{netip.MustParseAddrPort(ipps), d}
}
zero := addrLatency{}
const (
publicV4 = "1.2.3.4:555"
publicV4_2 = "5.6.7.8:999"
publicV6 = "[2001::5]:123"
privateV4 = "10.0.0.2:123"
)
tests := []struct {
a, b addrLatency
want bool // whether a is better than b
}{
{a: zero, b: zero, want: false},
{a: al(publicV4, 5*ms), b: zero, want: true},
{a: zero, b: al(publicV4, 5*ms), want: false},
{a: al(publicV4, 5*ms), b: al(publicV4_2, 10*ms), want: true},
{a: al(publicV4, 5*ms), b: al(publicV4, 10*ms), want: false}, // same IPPort
// Don't prefer b to a if it's not substantially better.
{a: al(publicV4, 100*ms), b: al(publicV4_2, 100*ms), want: false},
{a: al(publicV4, 100*ms), b: al(publicV4_2, 101*ms), want: false},
{a: al(publicV4, 100*ms), b: al(publicV4_2, 103*ms), want: true},
// Latencies of zero don't result in a divide-by-zero
{a: al(publicV4, 0), b: al(publicV4_2, 0), want: false},
// Prefer private IPs to public IPs if roughly equivalent...
{
a: al(privateV4, 100*ms),
b: al(publicV4, 91*ms),
want: true,
},
{
a: al(publicV4, 91*ms),
b: al(privateV4, 100*ms),
want: false,
},
// ... but not if the private IP is slower.
{
a: al(privateV4, 100*ms),
b: al(publicV4, 30*ms),
want: false,
},
{
a: al(publicV4, 30*ms),
b: al(privateV4, 100*ms),
want: true,
},
// Prefer IPv6 if roughly equivalent:
{
a: al(publicV6, 100*ms),
b: al(publicV4, 91*ms),
want: true,
},
{
a: al(publicV4, 91*ms),
b: al(publicV6, 100*ms),
want: false,
},
// But not if IPv4 is much faster:
{
a: al(publicV6, 100*ms),
b: al(publicV4, 30*ms),
want: false,
},
{
a: al(publicV4, 30*ms),
b: al(publicV6, 100*ms),
want: true,
},
// Private IPs are preferred over public IPs even if the public
// IP is IPv6.
{
a: al("192.168.0.1:555", 100*ms),
b: al("[2001::5]:123", 101*ms),
want: true,
},
{
a: al("[2001::5]:123", 101*ms),
b: al("192.168.0.1:555", 100*ms),
want: false,
},
}
for i, tt := range tests {
got := betterAddr(tt.a, tt.b)
if got != tt.want {
t.Errorf("[%d] betterAddr(%+v, %+v) = %v; want %v", i, tt.a, tt.b, got, tt.want)
continue
}
gotBack := betterAddr(tt.b, tt.a)
if got && gotBack {
t.Errorf("[%d] betterAddr(%+v, %+v) and betterAddr(%+v, %+v) both unexpectedly true", i, tt.a, tt.b, tt.b, tt.a)
}
}
}
func epStrings(eps []tailcfg.Endpoint) (ret []string) {
for _, ep := range eps {
ret = append(ret, ep.Addr.String())
}
return
}
func TestStressSetNetworkMap(t *testing.T) {
t.Parallel()
conn := newTestConn(t)
t.Cleanup(func() { conn.Close() })
var buf tstest.MemLogger
conn.logf = buf.Logf
conn.SetPrivateKey(key.NewNode())
const npeers = 5
present := make([]bool, npeers)
allPeers := make([]*tailcfg.Node, npeers)
for i := range allPeers {
present[i] = true
allPeers[i] = &tailcfg.Node{
DiscoKey: randDiscoKey(),
Key: randNodeKey(),
Endpoints: []string{fmt.Sprintf("192.168.1.2:%d", i)},
}
}
// Get a PRNG seed. If not provided, generate a new one to get extra coverage.
seed, err := strconv.ParseUint(os.Getenv("TS_STRESS_SET_NETWORK_MAP_SEED"), 10, 64)
if err != nil {
var buf [8]byte
crand.Read(buf[:])
seed = binary.LittleEndian.Uint64(buf[:])
}
t.Logf("TS_STRESS_SET_NETWORK_MAP_SEED=%d", seed)
prng := rand.New(rand.NewSource(int64(seed)))
const iters = 1000 // approx 0.5s on an m1 mac
for i := 0; i < iters; i++ {
for j := 0; j < npeers; j++ {
// Randomize which peers are present.
if prng.Int()&1 == 0 {
present[j] = !present[j]
}
// Randomize some peer disco keys and node keys.
if prng.Int()&1 == 0 {
allPeers[j].DiscoKey = randDiscoKey()
}
if prng.Int()&1 == 0 {
allPeers[j].Key = randNodeKey()
}
}
// Clone existing peers into a new netmap.
peers := make([]*tailcfg.Node, 0, len(allPeers))
for peerIdx, p := range allPeers {
if present[peerIdx] {
peers = append(peers, p.Clone())
}
}
// Set the netmap.
conn.SetNetworkMap(&netmap.NetworkMap{
Peers: peers,
})
// Check invariants.
if err := conn.peerMap.validate(); err != nil {
t.Error(err)
}
}
}
func randDiscoKey() (k key.DiscoPublic) { return key.NewDisco().Public() }
func randNodeKey() (k key.NodePublic) { return key.NewNode().Public() }
// validate checks m for internal consistency and reports the first error encountered.
// It is used in tests only, so it doesn't need to be efficient.
func (m *peerMap) validate() error {
seenEps := make(map[*endpoint]bool)
for pub, pi := range m.byNodeKey {
if got := pi.ep.publicKey; got != pub {
return fmt.Errorf("byNodeKey[%v].publicKey = %v", pub, got)
}
if _, ok := seenEps[pi.ep]; ok {
return fmt.Errorf("duplicate endpoint present: %v", pi.ep.publicKey)
}
seenEps[pi.ep] = true
for ipp, v := range pi.ipPorts {
if !v {
return fmt.Errorf("m.byIPPort[%v] is false, expected map to be set-like", ipp)
}
if got := m.byIPPort[ipp]; got != pi {
return fmt.Errorf("m.byIPPort[%v] = %v, want %v", ipp, got, pi)
}
}
}
for ipp, pi := range m.byIPPort {
if !pi.ipPorts[ipp] {
return fmt.Errorf("ipPorts[%v] for %v is false", ipp, pi.ep.publicKey)
}
pi2 := m.byNodeKey[pi.ep.publicKey]
if pi != pi2 {
return fmt.Errorf("byNodeKey[%v]=%p doesn't match byIPPort[%v]=%p", pi, pi, pi.ep.publicKey, pi2)
}
}
publicToDisco := make(map[key.NodePublic]key.DiscoPublic)
for disco, nodes := range m.nodesOfDisco {
for pub, v := range nodes {
if !v {
return fmt.Errorf("m.nodeOfDisco[%v][%v] is false, expected map to be set-like", disco, pub)
}
if _, ok := m.byNodeKey[pub]; !ok {
return fmt.Errorf("nodesOfDisco refers to public key %v, which is not present in byNodeKey", pub)
}
if _, ok := publicToDisco[pub]; ok {
return fmt.Errorf("publicKey %v refers to multiple disco keys", pub)
}
publicToDisco[pub] = disco
}
}
return nil
}
func TestBlockForeverConnUnblocks(t *testing.T) {
c := newBlockForeverConn()
done := make(chan error, 1)
go func() {
defer close(done)
_, _, err := c.ReadFromUDPAddrPort(make([]byte, 1))
done <- err
}()
time.Sleep(50 * time.Millisecond) // give ReadFrom time to get blocked
if err := c.Close(); err != nil {
t.Fatal(err)
}
timer := time.NewTimer(5 * time.Second)
defer timer.Stop()
select {
case err := <-done:
if err != net.ErrClosed {
t.Errorf("got %v; want net.ErrClosed", err)
}
case <-timer.C:
t.Fatal("timeout")
}
}
func TestDiscoMagicMatches(t *testing.T) {
// Convert our disco magic number into a uint32 and uint16 to test
// against. We panic on an incorrect length here rather than try to be
// generic with our BPF instructions below.
//
// Note that BPF uses network byte order (big-endian) when loading data
// from a packet, so that is what we use to generate our magic numbers.
if len(disco.Magic) != 6 {
t.Fatalf("expected disco.Magic to be of length 6")
}
if m1 := binary.BigEndian.Uint32([]byte(disco.Magic[:4])); m1 != discoMagic1 {
t.Errorf("first 4 bytes of disco magic don't match, got %v want %v", discoMagic1, m1)
}
if m2 := binary.BigEndian.Uint16([]byte(disco.Magic[4:6])); m2 != discoMagic2 {
t.Errorf("last 2 bytes of disco magic don't match, got %v want %v", discoMagic2, m2)
}
}
func TestRebindingUDPConn(t *testing.T) {
// Test that RebindingUDPConn can be re-bound to different connection
// types.
c := RebindingUDPConn{}
realConn, err := net.ListenPacket("udp4", "127.0.0.1:0")
if err != nil {
t.Fatal(err)
}
defer realConn.Close()
c.setConnLocked(realConn.(nettype.PacketConn), "udp4", 1)
c.setConnLocked(newBlockForeverConn(), "", 1)
}
// https://github.com/tailscale/tailscale/issues/6680: don't ignore
// SetNetworkMap calls when there are no peers. (A too aggressive fast path was
// previously bailing out early, thinking there were no changes since all zero
// peers didn't change, but the netmap has non-peer info in it too we shouldn't discard)
func TestSetNetworkMapWithNoPeers(t *testing.T) {
var c Conn
c.logf = logger.Discard
for i := 1; i <= 3; i++ {
nm := &netmap.NetworkMap{}
c.SetNetworkMap(nm)
t.Logf("ptr %d: %p", i, nm)
if c.netMap != nm {
t.Fatalf("call %d: didn't store netmap", i)
}
}
}
func TestBufferedDerpWritesBeforeDrop(t *testing.T) {
vv := bufferedDerpWritesBeforeDrop()
if vv < 32 {
t.Fatalf("got bufferedDerpWritesBeforeDrop=%d, which is < 32", vv)
}
t.Logf("bufferedDerpWritesBeforeDrop = %d", vv)
}
func setGSOSize(control *[]byte, gsoSize uint16) {
*control = (*control)[:cap(*control)]
binary.LittleEndian.PutUint16(*control, gsoSize)
}
func getGSOSize(control []byte) (int, error) {
if len(control) < 2 {
return 0, nil
}
return int(binary.LittleEndian.Uint16(control)), nil
}
func Test_batchingUDPConn_splitCoalescedMessages(t *testing.T) {
c := &batchingUDPConn{
setGSOSizeInControl: setGSOSize,
getGSOSizeFromControl: getGSOSize,
}
newMsg := func(n, gso int) ipv6.Message {
msg := ipv6.Message{
Buffers: [][]byte{make([]byte, 1024)},
N: n,
OOB: make([]byte, 2),
}
binary.LittleEndian.PutUint16(msg.OOB, uint16(gso))
if gso > 0 {
msg.NN = 2
}
return msg
}
cases := []struct {
name string
msgs []ipv6.Message
firstMsgAt int
wantNumEval int
wantMsgLens []int
wantErr bool
}{
{
name: "second last split last empty",
msgs: []ipv6.Message{
newMsg(0, 0),
newMsg(0, 0),
newMsg(3, 1),
newMsg(0, 0),
},
firstMsgAt: 2,
wantNumEval: 3,
wantMsgLens: []int{1, 1, 1, 0},
wantErr: false,
},
{
name: "second last no split last empty",
msgs: []ipv6.Message{
newMsg(0, 0),
newMsg(0, 0),
newMsg(1, 0),
newMsg(0, 0),
},
firstMsgAt: 2,
wantNumEval: 1,
wantMsgLens: []int{1, 0, 0, 0},
wantErr: false,
},
{
name: "second last no split last no split",
msgs: []ipv6.Message{
newMsg(0, 0),
newMsg(0, 0),
newMsg(1, 0),
newMsg(1, 0),
},
firstMsgAt: 2,
wantNumEval: 2,
wantMsgLens: []int{1, 1, 0, 0},
wantErr: false,
},
{
name: "second last no split last split",
msgs: []ipv6.Message{
newMsg(0, 0),
newMsg(0, 0),
newMsg(1, 0),
newMsg(3, 1),
},
firstMsgAt: 2,
wantNumEval: 4,
wantMsgLens: []int{1, 1, 1, 1},
wantErr: false,
},
{
name: "second last split last split",
msgs: []ipv6.Message{
newMsg(0, 0),
newMsg(0, 0),
newMsg(2, 1),
newMsg(2, 1),
},
firstMsgAt: 2,
wantNumEval: 4,
wantMsgLens: []int{1, 1, 1, 1},
wantErr: false,
},
{
name: "second last no split last split overflow",
msgs: []ipv6.Message{
newMsg(0, 0),
newMsg(0, 0),
newMsg(1, 0),
newMsg(4, 1),
},
firstMsgAt: 2,
wantNumEval: 4,
wantMsgLens: []int{1, 1, 1, 1},
wantErr: true,
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
got, err := c.splitCoalescedMessages(tt.msgs, 2)
if err != nil && !tt.wantErr {
t.Fatalf("err: %v", err)
}
if got != tt.wantNumEval {
t.Fatalf("got to eval: %d want: %d", got, tt.wantNumEval)
}
for i, msg := range tt.msgs {
if msg.N != tt.wantMsgLens[i] {
t.Fatalf("msg[%d].N: %d want: %d", i, msg.N, tt.wantMsgLens[i])
}
}
})
}
}
func Test_batchingUDPConn_coalesceMessages(t *testing.T) {
c := &batchingUDPConn{
setGSOSizeInControl: setGSOSize,
getGSOSizeFromControl: getGSOSize,
}
cases := []struct {
name string
buffs [][]byte
wantLens []int
wantGSO []int
}{
{
name: "one message no coalesce",
buffs: [][]byte{
make([]byte, 1, 1),
},
wantLens: []int{1},
wantGSO: []int{0},
},
{
name: "two messages equal len coalesce",
buffs: [][]byte{
make([]byte, 1, 2),
make([]byte, 1, 1),
},
wantLens: []int{2},
wantGSO: []int{1},
},
{
name: "two messages unequal len coalesce",
buffs: [][]byte{
make([]byte, 2, 3),
make([]byte, 1, 1),
},
wantLens: []int{3},
wantGSO: []int{2},
},
{
name: "three messages second unequal len coalesce",
buffs: [][]byte{
make([]byte, 2, 3),
make([]byte, 1, 1),
make([]byte, 2, 2),
},
wantLens: []int{3, 2},
wantGSO: []int{2, 0},
},
{
name: "three messages limited cap coalesce",
buffs: [][]byte{
make([]byte, 2, 4),
make([]byte, 2, 2),
make([]byte, 2, 2),
},
wantLens: []int{4, 2},
wantGSO: []int{2, 0},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
addr := &net.UDPAddr{
IP: net.ParseIP("127.0.0.1"),
Port: 1,
}
msgs := make([]ipv6.Message, len(tt.buffs))
for i := range msgs {
msgs[i].Buffers = make([][]byte, 1)
msgs[i].OOB = make([]byte, 0, 2)
}
got := c.coalesceMessages(addr, tt.buffs, msgs)
if got != len(tt.wantLens) {
t.Fatalf("got len %d want: %d", got, len(tt.wantLens))
}
for i := 0; i < got; i++ {
if msgs[i].Addr != addr {
t.Errorf("msgs[%d].Addr != passed addr", i)
}
gotLen := len(msgs[i].Buffers[0])
if gotLen != tt.wantLens[i] {
t.Errorf("len(msgs[%d].Buffers[0]) %d != %d", i, gotLen, tt.wantLens[i])
}
gotGSO, err := getGSOSize(msgs[i].OOB)
if err != nil {
t.Fatalf("msgs[%d] getGSOSize err: %v", i, err)
}
if gotGSO != tt.wantGSO[i] {
t.Errorf("msgs[%d] gsoSize %d != %d", i, gotGSO, tt.wantGSO[i])
}
}
})
}
}
// newWireguard starts up a new wireguard-go device attached to a test tun, and
// returns the device, tun and endpoint port. To add peers call device.IpcSet with UAPI instructions.
func newWireguard(t *testing.T, uapi string, aips []netip.Prefix) (*device.Device, *tuntest.ChannelTUN, uint16) {
wgtun := tuntest.NewChannelTUN()
wglogf := func(f string, args ...any) {
t.Logf("wg-go: "+f, args...)
}
wglog := device.Logger{
Verbosef: func(string, ...any) {},
Errorf: wglogf,
}
wgdev := wgcfg.NewDevice(wgtun.TUN(), wgconn.NewDefaultBind(), &wglog)
if err := wgdev.IpcSet(uapi); err != nil {
t.Fatal(err)
}
if err := wgdev.Up(); err != nil {
t.Fatal(err)
}
var port uint16
s, err := wgdev.IpcGet()
if err != nil {
t.Fatal(err)
}
for _, line := range strings.Split(s, "\n") {
line = strings.TrimSpace(line)
if len(line) == 0 {
continue
}
k, v, _ := strings.Cut(line, "=")
if k == "listen_port" {
p, err := strconv.ParseUint(v, 10, 16)
if err != nil {
panic(err)
}
port = uint16(p)
break
}
}
return wgdev, wgtun, port
}
func TestIsWireGuardOnlyPeer(t *testing.T) {
derpMap, cleanup := runDERPAndStun(t, t.Logf, localhostListener{}, netaddr.IPv4(127, 0, 0, 1))
defer cleanup()
tskey := key.NewNode()
tsaip := netip.MustParsePrefix("100.111.222.111/32")
wgkey := key.NewNode()
wgaip := netip.MustParsePrefix("100.222.111.222/32")
uapi := fmt.Sprintf("private_key=%s\npublic_key=%s\nallowed_ip=%s\n\n",
wgkey.UntypedHexString(), tskey.Public().UntypedHexString(), tsaip.String())
wgdev, wgtun, port := newWireguard(t, uapi, []netip.Prefix{wgaip})
defer wgdev.Close()
wgEp := netip.AddrPortFrom(netip.MustParseAddr("127.0.0.1"), port)
m := newMagicStackWithKey(t, t.Logf, localhostListener{}, derpMap, tskey)
defer m.Close()
nm := &netmap.NetworkMap{
Name: "ts",
PrivateKey: m.privateKey,
NodeKey: m.privateKey.Public(),
Addresses: []netip.Prefix{tsaip},
Peers: []*tailcfg.Node{
{
Key: wgkey.Public(),
Endpoints: []string{wgEp.String()},
IsWireGuardOnly: true,
Addresses: []netip.Prefix{wgaip},
AllowedIPs: []netip.Prefix{wgaip},
},
},
}
m.conn.SetNetworkMap(nm)
cfg, err := nmcfg.WGCfg(nm, t.Logf, netmap.AllowSingleHosts|netmap.AllowSubnetRoutes, "")
if err != nil {
t.Fatal(err)
}
m.Reconfig(cfg)
pbuf := tuntest.Ping(wgaip.Addr(), tsaip.Addr())
m.tun.Outbound <- pbuf
select {
case p := <-wgtun.Inbound:
if !bytes.Equal(p, pbuf) {
t.Errorf("got unexpected packet: %x", p)
}
case <-time.After(time.Second):
t.Fatal("no packet after 1s")
}
}
func TestIsWireGuardOnlyPeerWithMasquerade(t *testing.T) {
derpMap, cleanup := runDERPAndStun(t, t.Logf, localhostListener{}, netaddr.IPv4(127, 0, 0, 1))
defer cleanup()
tskey := key.NewNode()
tsaip := netip.MustParsePrefix("100.111.222.111/32")
wgkey := key.NewNode()
wgaip := netip.MustParsePrefix("10.64.0.1/32")
// the ip that the wireguard peer has in allowed ips and expects as a masq source
masqip := netip.MustParsePrefix("10.64.0.2/32")
uapi := fmt.Sprintf("private_key=%s\npublic_key=%s\nallowed_ip=%s\n\n",
wgkey.UntypedHexString(), tskey.Public().UntypedHexString(), masqip.String())
wgdev, wgtun, port := newWireguard(t, uapi, []netip.Prefix{wgaip})
defer wgdev.Close()
wgEp := netip.AddrPortFrom(netip.MustParseAddr("127.0.0.1"), port)
m := newMagicStackWithKey(t, t.Logf, localhostListener{}, derpMap, tskey)
defer m.Close()
nm := &netmap.NetworkMap{
Name: "ts",
PrivateKey: m.privateKey,
NodeKey: m.privateKey.Public(),
Addresses: []netip.Prefix{tsaip},
Peers: []*tailcfg.Node{
{
Key: wgkey.Public(),
Endpoints: []string{wgEp.String()},
IsWireGuardOnly: true,
Addresses: []netip.Prefix{wgaip},
AllowedIPs: []netip.Prefix{wgaip},
SelfNodeV4MasqAddrForThisPeer: ptr.To(masqip.Addr()),
},
},
}
m.conn.SetNetworkMap(nm)
cfg, err := nmcfg.WGCfg(nm, t.Logf, netmap.AllowSingleHosts|netmap.AllowSubnetRoutes, "")
if err != nil {
t.Fatal(err)
}
m.Reconfig(cfg)
pbuf := tuntest.Ping(wgaip.Addr(), tsaip.Addr())
m.tun.Outbound <- pbuf
select {
case p := <-wgtun.Inbound:
// TODO(raggi): move to a bytes.Equal based test later, once
// tuntest.Ping produces correct checksums!
var pkt packet.Parsed
pkt.Decode(p)
if pkt.ICMP4Header().Type != packet.ICMP4EchoRequest {
t.Fatalf("unexpected packet: %x", p)
}
if pkt.Src.Addr() != masqip.Addr() {
t.Fatalf("bad source IP, got %s, want %s", pkt.Src.Addr(), masqip.Addr())
}
if pkt.Dst.Addr() != wgaip.Addr() {
t.Fatalf("bad source IP, got %s, want %s", pkt.Src.Addr(), masqip.Addr())
}
case <-time.After(time.Second):
t.Fatal("no packet after 1s")
}
}
// applyNetworkMap is a test helper that sets the network map and
// configures WG.
func applyNetworkMap(t *testing.T, m *magicStack, nm *netmap.NetworkMap) {
t.Helper()
m.conn.SetNetworkMap(nm)
// Make sure we can't use v6 to avoid test failures.
m.conn.noV6.Store(true)
// Turn the network map into a wireguard config (for the tailscale internal wireguard device).
cfg, err := nmcfg.WGCfg(nm, t.Logf, netmap.AllowSingleHosts|netmap.AllowSubnetRoutes, "")
if err != nil {
t.Fatal(err)
}
// Apply the wireguard config to the tailscale internal wireguard device.
if err := m.Reconfig(cfg); err != nil {
t.Fatal(err)
}
}
func TestIsWireGuardOnlyPickEndpointByPing(t *testing.T) {
t.Skip("This test is flaky; see https://github.com/tailscale/tailscale/issues/8037")
clock := &tstest.Clock{}
derpMap, cleanup := runDERPAndStun(t, t.Logf, localhostListener{}, netaddr.IPv4(127, 0, 0, 1))
defer cleanup()
// Create a TS client.
tskey := key.NewNode()
tsaip := netip.MustParsePrefix("100.111.222.111/32")
// Create a WireGuard only client.
wgkey := key.NewNode()
wgaip := netip.MustParsePrefix("100.222.111.222/32")
uapi := fmt.Sprintf("private_key=%s\npublic_key=%s\nallowed_ip=%s\n\n",
wgkey.UntypedHexString(), tskey.Public().UntypedHexString(), tsaip.String())
wgdev, wgtun, port := newWireguard(t, uapi, []netip.Prefix{wgaip})
defer wgdev.Close()
wgEp := netip.AddrPortFrom(netip.MustParseAddr("127.0.0.1"), port)
wgEp2 := netip.AddrPortFrom(netip.MustParseAddr("127.0.0.2"), port)
m := newMagicStackWithKey(t, t.Logf, localhostListener{}, derpMap, tskey)
defer m.Close()
pr := newPingResponder(t)
// Get a destination address which includes a port, so that UDP packets flow
// to the correct place, the mockPinger will use this to direct port-less
// pings to this place.
pingDest := pr.LocalAddr()
// Create and start the pinger that is used for the
// wireguard only endpoint pings
p, closeP := mockPinger(t, clock, pingDest)
defer closeP()
m.conn.wgPinger.Set(p)
// Create an IPv6 endpoint which should not receive any traffic.
v6, err := net.ListenUDP("udp6", &net.UDPAddr{IP: net.ParseIP("::"), Port: 0})
if err != nil {
t.Fatal(err)
}
badEpRecv := make(chan []byte)
go func() {
defer v6.Close()
for {
b := make([]byte, 1500)
n, _, err := v6.ReadFrom(b)
if err != nil {
close(badEpRecv)
return
}
badEpRecv <- b[:n]
}
}()
wgEpV6 := netip.MustParseAddrPort(v6.LocalAddr().String())
nm := &netmap.NetworkMap{
Name: "ts",
PrivateKey: m.privateKey,
NodeKey: m.privateKey.Public(),
Addresses: []netip.Prefix{tsaip},
Peers: []*tailcfg.Node{
{
Key: wgkey.Public(),
Endpoints: []string{wgEp.String(), wgEp2.String(), wgEpV6.String()},
IsWireGuardOnly: true,
Addresses: []netip.Prefix{wgaip},
AllowedIPs: []netip.Prefix{wgaip},
},
},
}
applyNetworkMap(t, m, nm)
buf := tuntest.Ping(wgaip.Addr(), tsaip.Addr())
m.tun.Outbound <- buf
select {
case p := <-wgtun.Inbound:
if !bytes.Equal(p, buf) {
t.Errorf("got unexpected packet: %x", p)
}
case <-badEpRecv:
t.Fatal("got packet on bad endpoint")
case <-time.After(5 * time.Second):
t.Fatal("no packet after 1s")
}
pi, ok := m.conn.peerMap.byNodeKey[wgkey.Public()]
if !ok {
t.Fatal("wgkey doesn't exist in peer map")
}
// Check that we got a valid address set on the first send - this
// will be randomly selected, but because we have noV6 set to true,
// it will be the IPv4 address.
if !pi.ep.bestAddr.Addr().IsValid() {
t.Fatal("bestaddr was nil")
}
if pi.ep.trustBestAddrUntil.Before(mono.Now().Add(14 * time.Second)) {
t.Errorf("trustBestAddrUntil time wasn't set to 15 seconds in the future: got %v", pi.ep.trustBestAddrUntil)
}
for ipp, state := range pi.ep.endpointState {
if ipp == wgEp {
if len(state.recentPongs) != 1 {
t.Errorf("IPv4 address did not have a recentPong entry: got %v, want %v", len(state.recentPongs), 1)
}
// Set the latency extremely low so we choose this endpoint during the next
// addrForSendLocked call.
state.recentPongs[state.recentPong].latency = time.Nanosecond
}
if ipp == wgEp2 {
if len(state.recentPongs) != 1 {
t.Errorf("IPv4 address did not have a recentPong entry: got %v, want %v", len(state.recentPongs), 1)
}
// Set the latency extremely high so we dont choose endpoint during the next
// addrForSendLocked call.
state.recentPongs[state.recentPong].latency = time.Second
}
if ipp == wgEpV6 && len(state.recentPongs) != 0 {
t.Fatal("IPv6 should not have recentPong: IPv6 is not useable")
}
}
// Set trustBestAddrUnitl to now, so addrForSendLocked goes through the
// latency selection flow.
pi.ep.trustBestAddrUntil = mono.Now().Add(-time.Second)
buf = tuntest.Ping(wgaip.Addr(), tsaip.Addr())
m.tun.Outbound <- buf
select {
case p := <-wgtun.Inbound:
if !bytes.Equal(p, buf) {
t.Errorf("got unexpected packet: %x", p)
}
case <-badEpRecv:
t.Fatal("got packet on bad endpoint")
case <-time.After(5 * time.Second):
t.Fatal("no packet after 1s")
}
// Check that we have responded to a WireGuard only ping twice.
if pr.responseCount != 2 {
t.Fatal("pingresponder response count was not 2", pr.responseCount)
}
pi, ok = m.conn.peerMap.byNodeKey[wgkey.Public()]
if !ok {
t.Fatal("wgkey doesn't exist in peer map")
}
if !pi.ep.bestAddr.Addr().IsValid() {
t.Error("no bestAddr address was set")
}
if pi.ep.bestAddr.Addr() != wgEp.Addr() {
t.Errorf("bestAddr was not set to the expected IPv4 address: got %v, want %v", pi.ep.bestAddr.Addr().String(), wgEp.Addr())
}
if pi.ep.trustBestAddrUntil.IsZero() {
t.Fatal("trustBestAddrUntil was not set")
}
if pi.ep.trustBestAddrUntil.Before(mono.Now().Add(55 * time.Minute)) {
// Set to 55 minutes incase of sloooow tests.
t.Errorf("trustBestAddrUntil time wasn't set to an hour in the future: got %v", pi.ep.trustBestAddrUntil)
}
}
// udpingPacketConn will convert potentially ICMP destination addrs to UDP
// destination addrs in WriteTo so that a test that is intending to send ICMP
// traffic will instead send UDP traffic, without the higher level Pinger being
// aware of this difference.
type udpingPacketConn struct {
net.PacketConn
// destPort will be configured by the test to be the peer expected to respond to a ping.
destPort uint16
}
func (u *udpingPacketConn) WriteTo(body []byte, dest net.Addr) (int, error) {
switch d := dest.(type) {
case *net.IPAddr:
udpAddr := &net.UDPAddr{
IP: d.IP,
Port: int(u.destPort),
Zone: d.Zone,
}
return u.PacketConn.WriteTo(body, udpAddr)
}
return 0, fmt.Errorf("unimplemented udpingPacketConn for %T", dest)
}
type mockListenPacketer struct {
conn4 net.PacketConn
conn6 net.PacketConn
}
func (mlp *mockListenPacketer) ListenPacket(ctx context.Context, typ string, addr string) (net.PacketConn, error) {
switch typ {
case "ip4:icmp":
return mlp.conn4, nil
case "ip6:icmp":
return mlp.conn6, nil
}
return nil, fmt.Errorf("unimplemented ListenPacketForTesting for %s", typ)
}
func mockPinger(t *testing.T, clock *tstest.Clock, dest net.Addr) (*ping.Pinger, func()) {
ctx := context.Background()
dIPP := netip.MustParseAddrPort(dest.String())
// In tests, we use UDP so that we can test without being root; this
// doesn't matter because we mock out the ICMP reply below to be a real
// ICMP echo reply packet.
conn4, err := net.ListenPacket("udp4", "127.0.0.1:0")
if err != nil {
t.Fatalf("net.ListenPacket: %v", err)
}
conn6, err := net.ListenPacket("udp6", "[::]:0")
if err != nil {
t.Fatalf("net.ListenPacket: %v", err)
}
conn4 = &udpingPacketConn{
PacketConn: conn4,
destPort: dIPP.Port(),
}
conn6 = &udpingPacketConn{
PacketConn: conn6,
destPort: dIPP.Port(),
}
p := ping.New(ctx, t.Logf, &mockListenPacketer{conn4: conn4, conn6: conn6})
done := func() {
if err := p.Close(); err != nil {
t.Errorf("error on close: %v", err)
}
}
return p, done
}
type pingResponder struct {
net.PacketConn
running atomic.Bool
responseCount int
}
func (p *pingResponder) start() {
buf := make([]byte, 1500)
for p.running.Load() {
n, addr, err := p.PacketConn.ReadFrom(buf)
if err != nil {
return
}
m, err := icmp.ParseMessage(1, buf[:n])
if err != nil {
panic("got a non-ICMP message:" + fmt.Sprintf("%x", m))
}
r := icmp.Message{
Type: ipv4.ICMPTypeEchoReply,
Code: m.Code,
Body: m.Body,
}
b, err := r.Marshal(nil)
if err != nil {
panic(err)
}
if _, err := p.PacketConn.WriteTo(b, addr); err != nil {
panic(err)
}
p.responseCount++
}
}
func (p *pingResponder) stop() {
p.running.Store(false)
p.Close()
}
func newPingResponder(t *testing.T) *pingResponder {
t.Helper()
// global binds should be both IPv4 and IPv6 (if our test platforms don't,
// we might need to bind two sockets instead)
conn, err := net.ListenPacket("udp", ":")
if err != nil {
t.Fatal(err)
}
pr := &pingResponder{PacketConn: conn}
pr.running.Store(true)
go pr.start()
t.Cleanup(pr.stop)
return pr
}
func TestAddrForSendLockedForWireGuardOnly(t *testing.T) {
testTime := mono.Now()
type endpointDetails struct {
addrPort netip.AddrPort
latency time.Duration
}
wgTests := []struct {
name string
noV4 bool
noV6 bool
sendWGPing bool
ep []endpointDetails
want netip.AddrPort
}{
{
name: "choose lowest latency for useable IPv4 and IPv6",
sendWGPing: true,
ep: []endpointDetails{
{
addrPort: netip.MustParseAddrPort("1.1.1.1:111"),
latency: 100 * time.Millisecond,
},
{
addrPort: netip.MustParseAddrPort("[2345:0425:2CA1:0000:0000:0567:5673:23b5]:222"),
latency: 10 * time.Millisecond,
},
},
want: netip.MustParseAddrPort("[2345:0425:2CA1:0000:0000:0567:5673:23b5]:222"),
},
{
name: "choose IPv6 address when latency is the same for v4 and v6",
sendWGPing: true,
ep: []endpointDetails{
{
addrPort: netip.MustParseAddrPort("1.1.1.1:111"),
latency: 100 * time.Millisecond,
},
{
addrPort: netip.MustParseAddrPort("[1::1]:567"),
latency: 100 * time.Millisecond,
},
},
want: netip.MustParseAddrPort("[1::1]:567"),
},
}
for _, test := range wgTests {
endpoint := &endpoint{
isWireguardOnly: true,
endpointState: map[netip.AddrPort]*endpointState{},
c: &Conn{
noV4: atomic.Bool{},
noV6: atomic.Bool{},
},
}
for _, epd := range test.ep {
endpoint.endpointState[epd.addrPort] = &endpointState{}
}
udpAddr, _, shouldPing := endpoint.addrForSendLocked(testTime)
if !udpAddr.IsValid() {
t.Error("udpAddr returned is not valid")
}
if shouldPing != test.sendWGPing {
t.Errorf("addrForSendLocked did not indiciate correct ping state; got %v, want %v", shouldPing, test.sendWGPing)
}
for _, epd := range test.ep {
state, ok := endpoint.endpointState[epd.addrPort]
if !ok {
t.Errorf("addr does not exist in endpoint state map")
}
latency, ok := state.latencyLocked()
if ok {
t.Errorf("latency was set for %v: %v", epd.addrPort, latency)
}
state.recentPongs = append(state.recentPongs, pongReply{
latency: epd.latency,
})
state.recentPong = 0
}
udpAddr, _, shouldPing = endpoint.addrForSendLocked(testTime.Add(2 * time.Minute))
if udpAddr != test.want {
t.Errorf("udpAddr returned is not expected: got %v, want %v", udpAddr, test.want)
}
if shouldPing {
t.Error("addrForSendLocked should not indicate ping is required")
}
if endpoint.bestAddr.AddrPort != test.want {
t.Errorf("bestAddr.AddrPort is not as expected: got %v, want %v", endpoint.bestAddr.AddrPort, test.want)
}
}
}