tailscale/prober/prober.go
Anton Tolchanov 7083246409 prober: only record latency for successful probes
This will make it easier to track probe latency on a dashboard.

Updates https://github.com/tailscale/corp/issues/9916

Signed-off-by: Anton Tolchanov <anton@tailscale.com>
2023-03-22 09:24:20 +00:00

406 lines
10 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package prober implements a simple blackbox prober. Each probe runs
// in its own goroutine, and run results are recorded as Prometheus
// metrics.
package prober
import (
"context"
"encoding/json"
"errors"
"expvar"
"fmt"
"hash/fnv"
"io"
"log"
"math/rand"
"sort"
"strings"
"sync"
"time"
)
// ProbeFunc is a function that probes something and reports whether
// the probe succeeded. The provided context's deadline must be obeyed
// for correct probe scheduling.
type ProbeFunc func(context.Context) error
// a Prober manages a set of probes and keeps track of their results.
type Prober struct {
// Whether to spread probe execution over time by introducing a
// random delay before the first probe run.
spread bool
// Whether to run all probes once instead of running them in a loop.
once bool
// Time-related functions that get faked out during tests.
now func() time.Time
newTicker func(time.Duration) ticker
mu sync.Mutex // protects all following fields
probes map[string]*Probe
}
// New returns a new Prober.
func New() *Prober {
return newForTest(time.Now, newRealTicker)
}
func newForTest(now func() time.Time, newTicker func(time.Duration) ticker) *Prober {
return &Prober{
now: now,
newTicker: newTicker,
probes: map[string]*Probe{},
}
}
// Expvar returns the metrics for running probes.
func (p *Prober) Expvar() expvar.Var {
return varExporter{p}
}
// ProbeInfo returns information about most recent probe runs.
func (p *Prober) ProbeInfo() map[string]ProbeInfo {
return varExporter{p}.probeInfo()
}
// Run executes fun every interval, and exports probe results under probeName.
//
// Registering a probe under an already-registered name panics.
func (p *Prober) Run(name string, interval time.Duration, labels map[string]string, fun ProbeFunc) *Probe {
p.mu.Lock()
defer p.mu.Unlock()
if _, ok := p.probes[name]; ok {
panic(fmt.Sprintf("probe named %q already registered", name))
}
ctx, cancel := context.WithCancel(context.Background())
probe := &Probe{
prober: p,
ctx: ctx,
cancel: cancel,
stopped: make(chan struct{}),
name: name,
doProbe: fun,
interval: interval,
initialDelay: initialDelay(name, interval),
labels: labels,
}
p.probes[name] = probe
go probe.loop()
return probe
}
func (p *Prober) unregister(probe *Probe) {
p.mu.Lock()
defer p.mu.Unlock()
name := probe.name
delete(p.probes, name)
}
// WithSpread is used to enable random delay before the first run of
// each added probe.
func (p *Prober) WithSpread(s bool) *Prober {
p.spread = s
return p
}
// WithOnce mode can be used if you want to run all configured probes once
// rather than on a schedule.
func (p *Prober) WithOnce(s bool) *Prober {
p.once = s
return p
}
// Wait blocks until all probes have finished execution. It should typically
// be used with the `once` mode to wait for probes to finish before collecting
// their results.
func (p *Prober) Wait() {
for {
chans := make([]chan struct{}, 0)
p.mu.Lock()
for _, p := range p.probes {
chans = append(chans, p.stopped)
}
p.mu.Unlock()
for _, c := range chans {
<-c
}
// Since probes can add other probes, retry if the number of probes has changed.
if p.activeProbes() != len(chans) {
continue
}
return
}
}
// Reports the number of registered probes.
func (p *Prober) activeProbes() int {
p.mu.Lock()
defer p.mu.Unlock()
return len(p.probes)
}
// Probe is a probe that healthchecks something and updates Prometheus
// metrics with the results.
type Probe struct {
prober *Prober
ctx context.Context
cancel context.CancelFunc // run to initiate shutdown
stopped chan struct{} // closed when shutdown is complete
name string
doProbe ProbeFunc
interval time.Duration
initialDelay time.Duration
tick ticker
labels map[string]string
mu sync.Mutex
start time.Time // last time doProbe started
end time.Time // last time doProbe returned
latency time.Duration // last successful probe latency
succeeded bool // whether the last doProbe call succeeded
lastErr error
}
// Close shuts down the Probe and unregisters it from its Prober.
// It is safe to Run a new probe of the same name after Close returns.
func (p *Probe) Close() error {
p.cancel()
<-p.stopped
p.prober.unregister(p)
return nil
}
// probeLoop invokes runProbe on fun every interval. The first probe
// is run after a random delay (if spreading is enabled) or immediately.
func (p *Probe) loop() {
defer close(p.stopped)
if p.prober.spread && p.initialDelay > 0 {
t := p.prober.newTicker(p.initialDelay)
select {
case <-t.Chan():
p.run()
case <-p.ctx.Done():
t.Stop()
return
}
t.Stop()
} else {
p.run()
}
if p.prober.once {
return
}
p.tick = p.prober.newTicker(p.interval)
defer p.tick.Stop()
for {
select {
case <-p.tick.Chan():
p.run()
case <-p.ctx.Done():
return
}
}
}
// run invokes fun and records the results.
//
// fun is invoked with a timeout slightly less than interval, so that
// the probe either succeeds or fails before the next cycle is
// scheduled to start.
func (p *Probe) run() {
start := p.recordStart()
defer func() {
// Prevent a panic within one probe function from killing the
// entire prober, so that a single buggy probe doesn't destroy
// our entire ability to monitor anything. A panic is recorded
// as a probe failure, so panicking probes will trigger an
// alert for debugging.
if r := recover(); r != nil {
log.Printf("probe %s panicked: %v", p.name, r)
p.recordEnd(start, errors.New("panic"))
}
}()
timeout := time.Duration(float64(p.interval) * 0.8)
ctx, cancel := context.WithTimeout(p.ctx, timeout)
defer cancel()
err := p.doProbe(ctx)
p.recordEnd(start, err)
if err != nil {
log.Printf("probe %s: %v", p.name, err)
}
}
func (p *Probe) recordStart() time.Time {
st := p.prober.now()
p.mu.Lock()
defer p.mu.Unlock()
p.start = st
return st
}
func (p *Probe) recordEnd(start time.Time, err error) {
end := p.prober.now()
p.mu.Lock()
defer p.mu.Unlock()
p.end = end
p.succeeded = err == nil
p.lastErr = err
if p.succeeded {
p.latency = end.Sub(p.start)
} else {
p.latency = 0
}
}
type varExporter struct {
p *Prober
}
// ProbeInfo is the state of a Probe. Used in expvar-format debug
// data.
type ProbeInfo struct {
Labels map[string]string
Start time.Time
End time.Time
Latency string // as a string because time.Duration doesn't encode readably to JSON
Result bool
Error string
}
func (v varExporter) probeInfo() map[string]ProbeInfo {
out := map[string]ProbeInfo{}
v.p.mu.Lock()
probes := make([]*Probe, 0, len(v.p.probes))
for _, probe := range v.p.probes {
probes = append(probes, probe)
}
v.p.mu.Unlock()
for _, probe := range probes {
probe.mu.Lock()
inf := ProbeInfo{
Labels: probe.labels,
Start: probe.start,
End: probe.end,
Result: probe.succeeded,
}
if probe.lastErr != nil {
inf.Error = probe.lastErr.Error()
}
if probe.latency > 0 {
inf.Latency = probe.latency.String()
}
out[probe.name] = inf
probe.mu.Unlock()
}
return out
}
// String implements expvar.Var, returning the prober's state as an
// encoded JSON map of probe name to its ProbeInfo.
func (v varExporter) String() string {
bs, err := json.Marshal(v.probeInfo())
if err != nil {
return fmt.Sprintf(`{"error": %q}`, err)
}
return string(bs)
}
// WritePrometheus writes the state of all probes to w.
//
// For each probe, WritePrometheus exports 5 variables:
// - <prefix>_interval_secs, how frequently the probe runs.
// - <prefix>_start_secs, when the probe last started running, in seconds since epoch.
// - <prefix>_end_secs, when the probe last finished running, in seconds since epoch.
// - <prefix>_latency_millis, how long the last probe cycle took, in
// milliseconds. This is just (end_secs-start_secs) in an easier to
// graph form.
// - <prefix>_result, 1 if the last probe succeeded, 0 if it failed.
//
// Each probe has a set of static key/value labels (defined once at
// probe creation), which are added as Prometheus metric labels to
// that probe's variables.
func (v varExporter) WritePrometheus(w io.Writer, prefix string) {
v.p.mu.Lock()
probes := make([]*Probe, 0, len(v.p.probes))
for _, probe := range v.p.probes {
probes = append(probes, probe)
}
v.p.mu.Unlock()
sort.Slice(probes, func(i, j int) bool {
return probes[i].name < probes[j].name
})
for _, probe := range probes {
probe.mu.Lock()
keys := make([]string, 0, len(probe.labels))
for k := range probe.labels {
keys = append(keys, k)
}
sort.Strings(keys)
var sb strings.Builder
fmt.Fprintf(&sb, "name=%q", probe.name)
for _, k := range keys {
fmt.Fprintf(&sb, ",%s=%q", k, probe.labels[k])
}
labels := sb.String()
fmt.Fprintf(w, "%s_interval_secs{%s} %f\n", prefix, labels, probe.interval.Seconds())
if !probe.start.IsZero() {
fmt.Fprintf(w, "%s_start_secs{%s} %d\n", prefix, labels, probe.start.Unix())
}
if !probe.end.IsZero() {
fmt.Fprintf(w, "%s_end_secs{%s} %d\n", prefix, labels, probe.end.Unix())
if probe.latency > 0 {
fmt.Fprintf(w, "%s_latency_millis{%s} %d\n", prefix, labels, probe.latency.Milliseconds())
}
if probe.succeeded {
fmt.Fprintf(w, "%s_result{%s} 1\n", prefix, labels)
} else {
fmt.Fprintf(w, "%s_result{%s} 0\n", prefix, labels)
}
}
probe.mu.Unlock()
}
}
// ticker wraps a time.Ticker in a way that can be faked for tests.
type ticker interface {
Chan() <-chan time.Time
Stop()
}
type realTicker struct {
*time.Ticker
}
func (t *realTicker) Chan() <-chan time.Time {
return t.Ticker.C
}
func newRealTicker(d time.Duration) ticker {
return &realTicker{time.NewTicker(d)}
}
// initialDelay returns a pseudorandom duration in [0, interval) that
// is based on the provided seed string.
func initialDelay(seed string, interval time.Duration) time.Duration {
h := fnv.New64()
fmt.Fprint(h, seed)
r := rand.New(rand.NewSource(int64(h.Sum64()))).Float64()
return time.Duration(float64(interval) * r)
}