mirror of
https://github.com/tailscale/tailscale.git
synced 2024-12-05 07:55:36 +00:00
0ff474ff37
In prep for updating to new staticcheck required for Go 1.23. Updates #12912 Change-Id: If77892a023b79c6fa798f936fc80428fd4ce0673 Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
1219 lines
33 KiB
Go
1219 lines
33 KiB
Go
// Copyright (c) Tailscale Inc & AUTHORS
|
|
// SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
package art
|
|
|
|
import (
|
|
crand "crypto/rand"
|
|
"fmt"
|
|
"math/rand"
|
|
"net/netip"
|
|
"runtime"
|
|
"strconv"
|
|
"testing"
|
|
"time"
|
|
)
|
|
|
|
func TestRegression(t *testing.T) {
|
|
// These tests are specific triggers for subtle correctness issues
|
|
// that came up during initial implementation. Even if they seem
|
|
// arbitrary, please do not clean them up. They are checking edge
|
|
// cases that are very easy to get wrong, and quite difficult for
|
|
// the other statistical tests to trigger promptly.
|
|
|
|
t.Run("prefixes_aligned_on_stride_boundary", func(t *testing.T) {
|
|
// Regression test for computePrefixSplit called with equal
|
|
// arguments.
|
|
tbl := &Table[int]{}
|
|
slow := slowPrefixTable[int]{}
|
|
p := netip.MustParsePrefix
|
|
|
|
tbl.Insert(p("226.205.197.0/24"), 1)
|
|
slow.insert(p("226.205.197.0/24"), 1)
|
|
tbl.Insert(p("226.205.0.0/16"), 2)
|
|
slow.insert(p("226.205.0.0/16"), 2)
|
|
|
|
probe := netip.MustParseAddr("226.205.121.152")
|
|
got, gotOK := tbl.Get(probe)
|
|
want, wantOK := slow.get(probe)
|
|
if !getsEqual(got, gotOK, want, wantOK) {
|
|
t.Fatalf("got (%v, %v), want (%v, %v)", got, gotOK, want, wantOK)
|
|
}
|
|
})
|
|
|
|
t.Run("parent_prefix_inserted_in_different_orders", func(t *testing.T) {
|
|
// Regression test for the off-by-one correction applied
|
|
// within computePrefixSplit.
|
|
t1, t2 := &Table[int]{}, &Table[int]{}
|
|
p := netip.MustParsePrefix
|
|
|
|
t1.Insert(p("136.20.0.0/16"), 1)
|
|
t1.Insert(p("136.20.201.62/32"), 2)
|
|
|
|
t2.Insert(p("136.20.201.62/32"), 2)
|
|
t2.Insert(p("136.20.0.0/16"), 1)
|
|
|
|
a := netip.MustParseAddr("136.20.54.139")
|
|
got1, ok1 := t1.Get(a)
|
|
got2, ok2 := t2.Get(a)
|
|
if !getsEqual(got1, ok1, got2, ok2) {
|
|
t.Errorf("Get(%q) is insertion order dependent: t1=(%v, %v), t2=(%v, %v)", a, got1, ok1, got2, ok2)
|
|
}
|
|
})
|
|
}
|
|
|
|
func TestComputePrefixSplit(t *testing.T) {
|
|
// These tests are partially redundant with other tests. Please
|
|
// keep them anyway. computePrefixSplit's behavior is remarkably
|
|
// subtle, and all the test cases listed below come from
|
|
// hard-earned debugging of malformed route tables.
|
|
|
|
var tests = []struct {
|
|
// prefixA can be a /8, /16 or /24 (v4).
|
|
// prefixB can be anything /9 or more specific.
|
|
prefixA, prefixB string
|
|
lastCommon string
|
|
aStride, bStride uint8
|
|
}{
|
|
{"192.168.1.0/24", "192.168.5.5/32", "192.168.0.0/16", 1, 5},
|
|
{"192.168.129.0/24", "192.168.128.0/17", "192.168.0.0/16", 129, 128},
|
|
{"192.168.5.0/24", "192.168.0.0/16", "192.0.0.0/8", 168, 168},
|
|
{"192.168.0.0/16", "192.168.0.0/16", "192.0.0.0/8", 168, 168},
|
|
{"ff:aaaa:aaaa::1/128", "ff:aaaa::/120", "ff:aaaa::/32", 170, 0},
|
|
}
|
|
|
|
for _, test := range tests {
|
|
a, b := netip.MustParsePrefix(test.prefixA), netip.MustParsePrefix(test.prefixB)
|
|
gotLastCommon, gotAStride, gotBStride := computePrefixSplit(a, b)
|
|
if want := netip.MustParsePrefix(test.lastCommon); gotLastCommon != want || gotAStride != test.aStride || gotBStride != test.bStride {
|
|
t.Errorf("computePrefixSplit(%q, %q) = %s, %d, %d; want %s, %d, %d", a, b, gotLastCommon, gotAStride, gotBStride, want, test.aStride, test.bStride)
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestInsert(t *testing.T) {
|
|
tbl := &Table[int]{}
|
|
p := netip.MustParsePrefix
|
|
|
|
// Create a new leaf strideTable, with compressed path
|
|
tbl.Insert(p("192.168.0.1/32"), 1)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.168.0.2", -1},
|
|
{"192.168.0.3", -1},
|
|
{"192.168.0.255", -1},
|
|
{"192.168.1.1", -1},
|
|
{"192.170.1.1", -1},
|
|
{"192.180.0.1", -1},
|
|
{"192.180.3.5", -1},
|
|
{"10.0.0.5", -1},
|
|
{"10.0.0.15", -1},
|
|
})
|
|
|
|
// Insert into previous leaf, no tree changes
|
|
tbl.Insert(p("192.168.0.2/32"), 2)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.168.0.2", 2},
|
|
{"192.168.0.3", -1},
|
|
{"192.168.0.255", -1},
|
|
{"192.168.1.1", -1},
|
|
{"192.170.1.1", -1},
|
|
{"192.180.0.1", -1},
|
|
{"192.180.3.5", -1},
|
|
{"10.0.0.5", -1},
|
|
{"10.0.0.15", -1},
|
|
})
|
|
|
|
// Insert into previous leaf, unaligned prefix covering the /32s
|
|
tbl.Insert(p("192.168.0.0/26"), 7)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.168.0.2", 2},
|
|
{"192.168.0.3", 7},
|
|
{"192.168.0.255", -1},
|
|
{"192.168.1.1", -1},
|
|
{"192.170.1.1", -1},
|
|
{"192.180.0.1", -1},
|
|
{"192.180.3.5", -1},
|
|
{"10.0.0.5", -1},
|
|
{"10.0.0.15", -1},
|
|
})
|
|
|
|
// Create a different leaf elsewhere
|
|
tbl.Insert(p("10.0.0.0/27"), 3)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.168.0.2", 2},
|
|
{"192.168.0.3", 7},
|
|
{"192.168.0.255", -1},
|
|
{"192.168.1.1", -1},
|
|
{"192.170.1.1", -1},
|
|
{"192.180.0.1", -1},
|
|
{"192.180.3.5", -1},
|
|
{"10.0.0.5", 3},
|
|
{"10.0.0.15", 3},
|
|
})
|
|
|
|
// Insert that creates a new intermediate table and a new child
|
|
tbl.Insert(p("192.168.1.1/32"), 4)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.168.0.2", 2},
|
|
{"192.168.0.3", 7},
|
|
{"192.168.0.255", -1},
|
|
{"192.168.1.1", 4},
|
|
{"192.170.1.1", -1},
|
|
{"192.180.0.1", -1},
|
|
{"192.180.3.5", -1},
|
|
{"10.0.0.5", 3},
|
|
{"10.0.0.15", 3},
|
|
})
|
|
|
|
// Insert that creates a new intermediate table but no new child
|
|
tbl.Insert(p("192.170.0.0/16"), 5)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.168.0.2", 2},
|
|
{"192.168.0.3", 7},
|
|
{"192.168.0.255", -1},
|
|
{"192.168.1.1", 4},
|
|
{"192.170.1.1", 5},
|
|
{"192.180.0.1", -1},
|
|
{"192.180.3.5", -1},
|
|
{"10.0.0.5", 3},
|
|
{"10.0.0.15", 3},
|
|
})
|
|
|
|
// New leaf in a different subtree, so the next insert can test a
|
|
// variant of decompression.
|
|
tbl.Insert(p("192.180.0.1/32"), 8)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.168.0.2", 2},
|
|
{"192.168.0.3", 7},
|
|
{"192.168.0.255", -1},
|
|
{"192.168.1.1", 4},
|
|
{"192.170.1.1", 5},
|
|
{"192.180.0.1", 8},
|
|
{"192.180.3.5", -1},
|
|
{"10.0.0.5", 3},
|
|
{"10.0.0.15", 3},
|
|
})
|
|
|
|
// Insert that creates a new intermediate table but no new child,
|
|
// with an unaligned intermediate
|
|
tbl.Insert(p("192.180.0.0/21"), 9)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.168.0.2", 2},
|
|
{"192.168.0.3", 7},
|
|
{"192.168.0.255", -1},
|
|
{"192.168.1.1", 4},
|
|
{"192.170.1.1", 5},
|
|
{"192.180.0.1", 8},
|
|
{"192.180.3.5", 9},
|
|
{"10.0.0.5", 3},
|
|
{"10.0.0.15", 3},
|
|
})
|
|
|
|
// Insert a default route, those have their own codepath.
|
|
tbl.Insert(p("0.0.0.0/0"), 6)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.168.0.2", 2},
|
|
{"192.168.0.3", 7},
|
|
{"192.168.0.255", 6},
|
|
{"192.168.1.1", 4},
|
|
{"192.170.1.1", 5},
|
|
{"192.180.0.1", 8},
|
|
{"192.180.3.5", 9},
|
|
{"10.0.0.5", 3},
|
|
{"10.0.0.15", 3},
|
|
})
|
|
|
|
// Now all of the above again, but for IPv6.
|
|
|
|
// Create a new leaf strideTable, with compressed path
|
|
tbl.Insert(p("ff:aaaa::1/128"), 1)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"ff:aaaa::1", 1},
|
|
{"ff:aaaa::2", -1},
|
|
{"ff:aaaa::3", -1},
|
|
{"ff:aaaa::255", -1},
|
|
{"ff:aaaa:aaaa::1", -1},
|
|
{"ff:aaaa:aaaa:bbbb::1", -1},
|
|
{"ff:cccc::1", -1},
|
|
{"ff:cccc::ff", -1},
|
|
{"ffff:bbbb::5", -1},
|
|
{"ffff:bbbb::15", -1},
|
|
})
|
|
|
|
// Insert into previous leaf, no tree changes
|
|
tbl.Insert(p("ff:aaaa::2/128"), 2)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"ff:aaaa::1", 1},
|
|
{"ff:aaaa::2", 2},
|
|
{"ff:aaaa::3", -1},
|
|
{"ff:aaaa::255", -1},
|
|
{"ff:aaaa:aaaa::1", -1},
|
|
{"ff:aaaa:aaaa:bbbb::1", -1},
|
|
{"ff:cccc::1", -1},
|
|
{"ff:cccc::ff", -1},
|
|
{"ffff:bbbb::5", -1},
|
|
{"ffff:bbbb::15", -1},
|
|
})
|
|
|
|
// Insert into previous leaf, unaligned prefix covering the /128s
|
|
tbl.Insert(p("ff:aaaa::/125"), 7)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"ff:aaaa::1", 1},
|
|
{"ff:aaaa::2", 2},
|
|
{"ff:aaaa::3", 7},
|
|
{"ff:aaaa::255", -1},
|
|
{"ff:aaaa:aaaa::1", -1},
|
|
{"ff:aaaa:aaaa:bbbb::1", -1},
|
|
{"ff:cccc::1", -1},
|
|
{"ff:cccc::ff", -1},
|
|
{"ffff:bbbb::5", -1},
|
|
{"ffff:bbbb::15", -1},
|
|
})
|
|
|
|
// Create a different leaf elsewhere
|
|
tbl.Insert(p("ffff:bbbb::/120"), 3)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"ff:aaaa::1", 1},
|
|
{"ff:aaaa::2", 2},
|
|
{"ff:aaaa::3", 7},
|
|
{"ff:aaaa::255", -1},
|
|
{"ff:aaaa:aaaa::1", -1},
|
|
{"ff:aaaa:aaaa:bbbb::1", -1},
|
|
{"ff:cccc::1", -1},
|
|
{"ff:cccc::ff", -1},
|
|
{"ffff:bbbb::5", 3},
|
|
{"ffff:bbbb::15", 3},
|
|
})
|
|
|
|
// Insert that creates a new intermediate table and a new child
|
|
tbl.Insert(p("ff:aaaa:aaaa::1/128"), 4)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"ff:aaaa::1", 1},
|
|
{"ff:aaaa::2", 2},
|
|
{"ff:aaaa::3", 7},
|
|
{"ff:aaaa::255", -1},
|
|
{"ff:aaaa:aaaa::1", 4},
|
|
{"ff:aaaa:aaaa:bbbb::1", -1},
|
|
{"ff:cccc::1", -1},
|
|
{"ff:cccc::ff", -1},
|
|
{"ffff:bbbb::5", 3},
|
|
{"ffff:bbbb::15", 3},
|
|
})
|
|
|
|
// Insert that creates a new intermediate table but no new child
|
|
tbl.Insert(p("ff:aaaa:aaaa:bb00::/56"), 5)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"ff:aaaa::1", 1},
|
|
{"ff:aaaa::2", 2},
|
|
{"ff:aaaa::3", 7},
|
|
{"ff:aaaa::255", -1},
|
|
{"ff:aaaa:aaaa::1", 4},
|
|
{"ff:aaaa:aaaa:bbbb::1", 5},
|
|
{"ff:cccc::1", -1},
|
|
{"ff:cccc::ff", -1},
|
|
{"ffff:bbbb::5", 3},
|
|
{"ffff:bbbb::15", 3},
|
|
})
|
|
|
|
// New leaf in a different subtree, so the next insert can test a
|
|
// variant of decompression.
|
|
tbl.Insert(p("ff:cccc::1/128"), 8)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"ff:aaaa::1", 1},
|
|
{"ff:aaaa::2", 2},
|
|
{"ff:aaaa::3", 7},
|
|
{"ff:aaaa::255", -1},
|
|
{"ff:aaaa:aaaa::1", 4},
|
|
{"ff:aaaa:aaaa:bbbb::1", 5},
|
|
{"ff:cccc::1", 8},
|
|
{"ff:cccc::ff", -1},
|
|
{"ffff:bbbb::5", 3},
|
|
{"ffff:bbbb::15", 3},
|
|
})
|
|
|
|
// Insert that creates a new intermediate table but no new child,
|
|
// with an unaligned intermediate
|
|
tbl.Insert(p("ff:cccc::/37"), 9)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"ff:aaaa::1", 1},
|
|
{"ff:aaaa::2", 2},
|
|
{"ff:aaaa::3", 7},
|
|
{"ff:aaaa::255", -1},
|
|
{"ff:aaaa:aaaa::1", 4},
|
|
{"ff:aaaa:aaaa:bbbb::1", 5},
|
|
{"ff:cccc::1", 8},
|
|
{"ff:cccc::ff", 9},
|
|
{"ffff:bbbb::5", 3},
|
|
{"ffff:bbbb::15", 3},
|
|
})
|
|
|
|
// Insert a default route, those have their own codepath.
|
|
tbl.Insert(p("::/0"), 6)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"ff:aaaa::1", 1},
|
|
{"ff:aaaa::2", 2},
|
|
{"ff:aaaa::3", 7},
|
|
{"ff:aaaa::255", 6},
|
|
{"ff:aaaa:aaaa::1", 4},
|
|
{"ff:aaaa:aaaa:bbbb::1", 5},
|
|
{"ff:cccc::1", 8},
|
|
{"ff:cccc::ff", 9},
|
|
{"ffff:bbbb::5", 3},
|
|
{"ffff:bbbb::15", 3},
|
|
})
|
|
}
|
|
|
|
func TestDelete(t *testing.T) {
|
|
t.Parallel()
|
|
p := netip.MustParsePrefix
|
|
|
|
t.Run("prefix_in_root", func(t *testing.T) {
|
|
// Add/remove prefix from root table.
|
|
tbl := &Table[int]{}
|
|
checkSize(t, tbl, 2)
|
|
|
|
tbl.Insert(p("10.0.0.0/8"), 1)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"10.0.0.1", 1},
|
|
{"255.255.255.255", -1},
|
|
})
|
|
checkSize(t, tbl, 2)
|
|
tbl.Delete(p("10.0.0.0/8"))
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"10.0.0.1", -1},
|
|
{"255.255.255.255", -1},
|
|
})
|
|
checkSize(t, tbl, 2)
|
|
})
|
|
|
|
t.Run("prefix_in_leaf", func(t *testing.T) {
|
|
// Create, then delete a single leaf table.
|
|
tbl := &Table[int]{}
|
|
checkSize(t, tbl, 2)
|
|
|
|
tbl.Insert(p("192.168.0.1/32"), 1)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"255.255.255.255", -1},
|
|
})
|
|
checkSize(t, tbl, 3)
|
|
tbl.Delete(p("192.168.0.1/32"))
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", -1},
|
|
{"255.255.255.255", -1},
|
|
})
|
|
checkSize(t, tbl, 2)
|
|
})
|
|
|
|
t.Run("intermediate_no_routes", func(t *testing.T) {
|
|
// Create an intermediate with 2 children, then delete one leaf.
|
|
tbl := &Table[int]{}
|
|
checkSize(t, tbl, 2)
|
|
tbl.Insert(p("192.168.0.1/32"), 1)
|
|
tbl.Insert(p("192.180.0.1/32"), 2)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.180.0.1", 2},
|
|
{"192.40.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 5) // 2 roots, 1 intermediate, 2 leaves
|
|
tbl.Delete(p("192.180.0.1/32"))
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.180.0.1", -1},
|
|
{"192.40.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 3) // 2 roots, 1 leaf
|
|
})
|
|
|
|
t.Run("intermediate_with_route", func(t *testing.T) {
|
|
// Same, but the intermediate carries a route as well.
|
|
tbl := &Table[int]{}
|
|
checkSize(t, tbl, 2)
|
|
tbl.Insert(p("192.168.0.1/32"), 1)
|
|
tbl.Insert(p("192.180.0.1/32"), 2)
|
|
tbl.Insert(p("192.0.0.0/10"), 3)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.180.0.1", 2},
|
|
{"192.40.0.1", 3},
|
|
{"192.255.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 5) // 2 roots, 1 intermediate, 2 leaves
|
|
tbl.Delete(p("192.180.0.1/32"))
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.180.0.1", -1},
|
|
{"192.40.0.1", 3},
|
|
{"192.255.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 4) // 2 roots, 1 intermediate w/route, 1 leaf
|
|
})
|
|
|
|
t.Run("intermediate_many_leaves", func(t *testing.T) {
|
|
// Intermediate with 3 leaves, then delete one leaf.
|
|
tbl := &Table[int]{}
|
|
checkSize(t, tbl, 2)
|
|
tbl.Insert(p("192.168.0.1/32"), 1)
|
|
tbl.Insert(p("192.180.0.1/32"), 2)
|
|
tbl.Insert(p("192.200.0.1/32"), 3)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.180.0.1", 2},
|
|
{"192.200.0.1", 3},
|
|
{"192.255.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 6) // 2 roots, 1 intermediate, 3 leaves
|
|
tbl.Delete(p("192.180.0.1/32"))
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.180.0.1", -1},
|
|
{"192.200.0.1", 3},
|
|
{"192.255.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 5) // 2 roots, 1 intermediate, 2 leaves
|
|
})
|
|
|
|
t.Run("nosuchprefix_missing_child", func(t *testing.T) {
|
|
// Delete non-existent prefix, missing strideTable path.
|
|
tbl := &Table[int]{}
|
|
checkSize(t, tbl, 2)
|
|
tbl.Insert(p("192.168.0.1/32"), 1)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.255.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 3) // 2 roots, 1 leaf
|
|
tbl.Delete(p("200.0.0.0/32")) // lookup miss in root
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.255.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 3) // 2 roots, 1 leaf
|
|
})
|
|
|
|
t.Run("nosuchprefix_wrong_turn", func(t *testing.T) {
|
|
// Delete non-existent prefix, strideTable path exists but
|
|
// with a wrong turn.
|
|
tbl := &Table[int]{}
|
|
checkSize(t, tbl, 2)
|
|
tbl.Insert(p("192.168.0.1/32"), 1)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.255.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 3) // 2 roots, 1 leaf
|
|
tbl.Delete(p("192.40.0.0/32")) // finds wrong child
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.255.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 3) // 2 roots, 1 leaf
|
|
})
|
|
|
|
t.Run("nosuchprefix_not_in_leaf", func(t *testing.T) {
|
|
// Delete non-existent prefix, strideTable path exists but
|
|
// leaf doesn't contain route.
|
|
tbl := &Table[int]{}
|
|
checkSize(t, tbl, 2)
|
|
tbl.Insert(p("192.168.0.1/32"), 1)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.255.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 3) // 2 roots, 1 leaf
|
|
tbl.Delete(p("192.168.0.5/32")) // right leaf, no route
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.255.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 3) // 2 roots, 1 leaf
|
|
})
|
|
|
|
t.Run("intermediate_with_deleted_route", func(t *testing.T) {
|
|
// Intermediate table loses its last route and becomes
|
|
// compactable.
|
|
tbl := &Table[int]{}
|
|
checkSize(t, tbl, 2)
|
|
tbl.Insert(p("192.168.0.1/32"), 1)
|
|
tbl.Insert(p("192.168.0.0/22"), 2)
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.168.0.2", 2},
|
|
{"192.255.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 4) // 2 roots, 1 intermediate w/route, 1 leaf
|
|
tbl.Delete(p("192.168.0.0/22"))
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"192.168.0.1", 1},
|
|
{"192.168.0.2", -1},
|
|
{"192.255.0.1", -1},
|
|
})
|
|
checkSize(t, tbl, 3) // 2 roots, 1 leaf
|
|
})
|
|
|
|
t.Run("default_route", func(t *testing.T) {
|
|
// Default routes have a special case in the code.
|
|
tbl := &Table[int]{}
|
|
|
|
tbl.Insert(p("0.0.0.0/0"), 1)
|
|
tbl.Delete(p("0.0.0.0/0"))
|
|
|
|
checkRoutes(t, tbl, []tableTest{
|
|
{"1.2.3.4", -1},
|
|
})
|
|
checkSize(t, tbl, 2) // 2 roots
|
|
})
|
|
}
|
|
|
|
func TestInsertCompare(t *testing.T) {
|
|
// Create large route tables repeatedly, and compare Table's
|
|
// behavior to a naive and slow but correct implementation.
|
|
t.Parallel()
|
|
pfxs := randomPrefixes(10_000)
|
|
|
|
slow := slowPrefixTable[int]{pfxs}
|
|
fast := Table[int]{}
|
|
|
|
for _, pfx := range pfxs {
|
|
fast.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
|
|
if debugInsert {
|
|
t.Log(fast.debugSummary())
|
|
}
|
|
|
|
seenVals4 := map[int]bool{}
|
|
seenVals6 := map[int]bool{}
|
|
for range 10_000 {
|
|
a := randomAddr()
|
|
slowVal, slowOK := slow.get(a)
|
|
fastVal, fastOK := fast.Get(a)
|
|
if !getsEqual(slowVal, slowOK, fastVal, fastOK) {
|
|
t.Fatalf("get(%q) = (%v, %v), want (%v, %v)", a, fastVal, fastOK, slowVal, slowOK)
|
|
}
|
|
if a.Is6() {
|
|
seenVals6[fastVal] = true
|
|
} else {
|
|
seenVals4[fastVal] = true
|
|
}
|
|
}
|
|
|
|
// Empirically, 10k probes into 5k v4 prefixes and 5k v6 prefixes results in
|
|
// ~1k distinct values for v4 and ~300 for v6. distinct routes. This sanity
|
|
// check that we didn't just return a single route for everything should be
|
|
// very generous indeed.
|
|
if cnt := len(seenVals4); cnt < 10 {
|
|
t.Fatalf("saw %d distinct v4 route results, statistically expected ~1000", cnt)
|
|
}
|
|
if cnt := len(seenVals6); cnt < 10 {
|
|
t.Fatalf("saw %d distinct v6 route results, statistically expected ~300", cnt)
|
|
}
|
|
}
|
|
|
|
func TestInsertShuffled(t *testing.T) {
|
|
// The order in which you insert prefixes into a route table
|
|
// should not matter, as long as you're inserting the same set of
|
|
// routes. Verify that this is true, because ART does execute
|
|
// vastly different code depending on the order of insertion, even
|
|
// if the end result is identical.
|
|
//
|
|
// If you're here because this package's tests are slow and you
|
|
// want to make them faster, please do not delete this test (or
|
|
// any test, really). It may seem excessive to test this, but
|
|
// these shuffle tests found a lot of very nasty edge cases during
|
|
// development, and you _really_ don't want to be debugging a
|
|
// faulty route table in production.
|
|
t.Parallel()
|
|
pfxs := randomPrefixes(1000)
|
|
var pfxs2 []slowPrefixEntry[int]
|
|
|
|
defer func() {
|
|
if t.Failed() {
|
|
t.Logf("pre-shuffle: %#v", pfxs)
|
|
t.Logf("post-shuffle: %#v", pfxs2)
|
|
}
|
|
}()
|
|
|
|
for range 10 {
|
|
pfxs2 := append([]slowPrefixEntry[int](nil), pfxs...)
|
|
rand.Shuffle(len(pfxs2), func(i, j int) { pfxs2[i], pfxs2[j] = pfxs2[j], pfxs2[i] })
|
|
|
|
addrs := make([]netip.Addr, 0, 10_000)
|
|
for range 10_000 {
|
|
addrs = append(addrs, randomAddr())
|
|
}
|
|
|
|
rt := Table[int]{}
|
|
rt2 := Table[int]{}
|
|
|
|
for _, pfx := range pfxs {
|
|
rt.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
for _, pfx := range pfxs2 {
|
|
rt2.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
|
|
for _, a := range addrs {
|
|
val1, ok1 := rt.Get(a)
|
|
val2, ok2 := rt2.Get(a)
|
|
if !getsEqual(val1, ok1, val2, ok2) {
|
|
t.Fatalf("get(%q) = (%v, %v), want (%v, %v)", a, val2, ok2, val1, ok1)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestDeleteCompare(t *testing.T) {
|
|
// Create large route tables repeatedly, delete half of their
|
|
// prefixes, and compare Table's behavior to a naive and slow but
|
|
// correct implementation.
|
|
t.Parallel()
|
|
|
|
const (
|
|
numPrefixes = 10_000 // total prefixes to insert (test deletes 50% of them)
|
|
numPerFamily = numPrefixes / 2
|
|
deleteCut = numPerFamily / 2
|
|
numProbes = 10_000 // random addr lookups to do
|
|
)
|
|
|
|
// We have to do this little dance instead of just using allPrefixes,
|
|
// because we want pfxs and toDelete to be non-overlapping sets.
|
|
all4, all6 := randomPrefixes4(numPerFamily), randomPrefixes6(numPerFamily)
|
|
pfxs := append([]slowPrefixEntry[int](nil), all4[:deleteCut]...)
|
|
pfxs = append(pfxs, all6[:deleteCut]...)
|
|
toDelete := append([]slowPrefixEntry[int](nil), all4[deleteCut:]...)
|
|
toDelete = append(toDelete, all6[deleteCut:]...)
|
|
|
|
defer func() {
|
|
if t.Failed() {
|
|
for _, pfx := range pfxs {
|
|
fmt.Printf("%q, ", pfx.pfx)
|
|
}
|
|
fmt.Println("")
|
|
for _, pfx := range toDelete {
|
|
fmt.Printf("%q, ", pfx.pfx)
|
|
}
|
|
fmt.Println("")
|
|
}
|
|
}()
|
|
|
|
slow := slowPrefixTable[int]{pfxs}
|
|
fast := Table[int]{}
|
|
|
|
for _, pfx := range pfxs {
|
|
fast.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
|
|
for _, pfx := range toDelete {
|
|
fast.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
for _, pfx := range toDelete {
|
|
fast.Delete(pfx.pfx)
|
|
}
|
|
|
|
seenVals4 := map[int]bool{}
|
|
seenVals6 := map[int]bool{}
|
|
for range numProbes {
|
|
a := randomAddr()
|
|
slowVal, slowOK := slow.get(a)
|
|
fastVal, fastOK := fast.Get(a)
|
|
if !getsEqual(slowVal, slowOK, fastVal, fastOK) {
|
|
t.Fatalf("get(%q) = (%v, %v), want (%v, %v)", a, fastVal, fastOK, slowVal, slowOK)
|
|
}
|
|
if a.Is6() {
|
|
seenVals6[fastVal] = true
|
|
} else {
|
|
seenVals4[fastVal] = true
|
|
}
|
|
}
|
|
// Empirically, 10k probes into 5k v4 prefixes and 5k v6 prefixes results in
|
|
// ~1k distinct values for v4 and ~300 for v6. distinct routes. This sanity
|
|
// check that we didn't just return a single route for everything should be
|
|
// very generous indeed.
|
|
if cnt := len(seenVals4); cnt < 10 {
|
|
t.Fatalf("saw %d distinct v4 route results, statistically expected ~1000", cnt)
|
|
}
|
|
if cnt := len(seenVals6); cnt < 10 {
|
|
t.Fatalf("saw %d distinct v6 route results, statistically expected ~300", cnt)
|
|
}
|
|
}
|
|
|
|
func TestDeleteShuffled(t *testing.T) {
|
|
// The order in which you delete prefixes from a route table
|
|
// should not matter, as long as you're deleting the same set of
|
|
// routes. Verify that this is true, because ART does execute
|
|
// vastly different code depending on the order of deletions, even
|
|
// if the end result is identical.
|
|
//
|
|
// If you're here because this package's tests are slow and you
|
|
// want to make them faster, please do not delete this test (or
|
|
// any test, really). It may seem excessive to test this, but
|
|
// these shuffle tests found a lot of very nasty edge cases during
|
|
// development, and you _really_ don't want to be debugging a
|
|
// faulty route table in production.
|
|
t.Parallel()
|
|
|
|
const (
|
|
numPrefixes = 10_000 // prefixes to insert (test deletes 50% of them)
|
|
numPerFamily = numPrefixes / 2
|
|
deleteCut = numPerFamily / 2
|
|
numProbes = 10_000 // random addr lookups to do
|
|
)
|
|
|
|
// We have to do this little dance instead of just using allPrefixes,
|
|
// because we want pfxs and toDelete to be non-overlapping sets.
|
|
all4, all6 := randomPrefixes4(numPerFamily), randomPrefixes6(numPerFamily)
|
|
pfxs := append([]slowPrefixEntry[int](nil), all4[:deleteCut]...)
|
|
pfxs = append(pfxs, all6[:deleteCut]...)
|
|
toDelete := append([]slowPrefixEntry[int](nil), all4[deleteCut:]...)
|
|
toDelete = append(toDelete, all6[deleteCut:]...)
|
|
|
|
rt := Table[int]{}
|
|
for _, pfx := range pfxs {
|
|
rt.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
for _, pfx := range toDelete {
|
|
rt.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
for _, pfx := range toDelete {
|
|
rt.Delete(pfx.pfx)
|
|
}
|
|
|
|
for range 10 {
|
|
pfxs2 := append([]slowPrefixEntry[int](nil), pfxs...)
|
|
toDelete2 := append([]slowPrefixEntry[int](nil), toDelete...)
|
|
rand.Shuffle(len(toDelete2), func(i, j int) { toDelete2[i], toDelete2[j] = toDelete2[j], toDelete2[i] })
|
|
rt2 := Table[int]{}
|
|
for _, pfx := range pfxs2 {
|
|
rt2.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
for _, pfx := range toDelete2 {
|
|
rt2.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
for _, pfx := range toDelete2 {
|
|
rt2.Delete(pfx.pfx)
|
|
}
|
|
|
|
// Diffing a deep tree of tables gives cmp.Diff a nervous breakdown, so
|
|
// test for equivalence statistically with random probes instead.
|
|
for range numProbes {
|
|
a := randomAddr()
|
|
val1, ok1 := rt.Get(a)
|
|
val2, ok2 := rt2.Get(a)
|
|
if !getsEqual(val1, ok1, val2, ok2) {
|
|
t.Errorf("get(%q) = (%v, %v), want (%v, %v)", a, val2, ok2, val1, ok1)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestDeleteIsReverseOfInsert(t *testing.T) {
|
|
// Insert N prefixes, then delete those same prefixes in reverse
|
|
// order. Each deletion should exactly undo the internal structure
|
|
// changes that each insert did.
|
|
const N = 100
|
|
|
|
var tab Table[int]
|
|
prefixes := randomPrefixes(N)
|
|
|
|
defer func() {
|
|
if t.Failed() {
|
|
fmt.Printf("the prefixes that fail the test: %v\n", prefixes)
|
|
}
|
|
}()
|
|
|
|
want := make([]string, 0, len(prefixes))
|
|
for _, p := range prefixes {
|
|
want = append(want, tab.debugSummary())
|
|
tab.Insert(p.pfx, p.val)
|
|
}
|
|
|
|
for i := len(prefixes) - 1; i >= 0; i-- {
|
|
tab.Delete(prefixes[i].pfx)
|
|
if got := tab.debugSummary(); got != want[i] {
|
|
t.Fatalf("after delete %d, mismatch:\n\n got: %s\n\nwant: %s", i, got, want[i])
|
|
}
|
|
}
|
|
}
|
|
|
|
type tableTest struct {
|
|
// addr is an IP address string to look up in a route table.
|
|
addr string
|
|
// want is the expected >=0 value associated with the route, or -1
|
|
// if we expect a lookup miss.
|
|
want int
|
|
}
|
|
|
|
// checkRoutes verifies that the route lookups in tt return the
|
|
// expected results on tbl.
|
|
func checkRoutes(t *testing.T, tbl *Table[int], tt []tableTest) {
|
|
t.Helper()
|
|
for _, tc := range tt {
|
|
v, ok := tbl.Get(netip.MustParseAddr(tc.addr))
|
|
if !ok && tc.want != -1 {
|
|
t.Errorf("lookup %q got (%v, %v), want (_, false)", tc.addr, v, ok)
|
|
}
|
|
if ok && v != tc.want {
|
|
t.Errorf("lookup %q got (%v, %v), want (%v, true)", tc.addr, v, ok, tc.want)
|
|
}
|
|
}
|
|
}
|
|
|
|
// 100k routes for IPv6, at the current size of strideTable and strideEntry, is
|
|
// in the ballpark of 4GiB if you assume worst-case prefix distribution. Future
|
|
// optimizations will knock down the memory consumption by over an order of
|
|
// magnitude, so for now just skip the 100k benchmarks to stay well away of
|
|
// OOMs.
|
|
//
|
|
// TODO(go/bug/7781): reenable larger table tests once memory utilization is
|
|
// optimized.
|
|
var benchRouteCount = []int{10, 100, 1000, 10_000} //, 100_000}
|
|
|
|
// forFamilyAndCount runs the benchmark fn with different sets of
|
|
// routes.
|
|
//
|
|
// fn is called once for each combination of {addr_family, num_routes},
|
|
// where addr_family is ipv4 or ipv6, num_routes is the values in
|
|
// benchRouteCount.
|
|
func forFamilyAndCount(b *testing.B, fn func(b *testing.B, routes []slowPrefixEntry[int])) {
|
|
for _, fam := range []string{"ipv4", "ipv6"} {
|
|
rng := randomPrefixes4
|
|
if fam == "ipv6" {
|
|
rng = randomPrefixes6
|
|
}
|
|
b.Run(fam, func(b *testing.B) {
|
|
for _, nroutes := range benchRouteCount {
|
|
routes := rng(nroutes)
|
|
b.Run(fmt.Sprint(nroutes), func(b *testing.B) {
|
|
fn(b, routes)
|
|
})
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func BenchmarkTableInsertion(b *testing.B) {
|
|
forFamilyAndCount(b, func(b *testing.B, routes []slowPrefixEntry[int]) {
|
|
b.StopTimer()
|
|
b.ResetTimer()
|
|
var startMem, endMem runtime.MemStats
|
|
runtime.ReadMemStats(&startMem)
|
|
b.StartTimer()
|
|
for range b.N {
|
|
var rt Table[int]
|
|
for _, route := range routes {
|
|
rt.Insert(route.pfx, route.val)
|
|
}
|
|
}
|
|
b.StopTimer()
|
|
runtime.ReadMemStats(&endMem)
|
|
inserts := float64(b.N) * float64(len(routes))
|
|
allocs := float64(endMem.Mallocs - startMem.Mallocs)
|
|
bytes := float64(endMem.TotalAlloc - startMem.TotalAlloc)
|
|
elapsed := float64(b.Elapsed().Nanoseconds())
|
|
elapsedSec := b.Elapsed().Seconds()
|
|
b.ReportMetric(elapsed/inserts, "ns/op")
|
|
b.ReportMetric(inserts/elapsedSec, "routes/s")
|
|
b.ReportMetric(roundFloat64(allocs/inserts), "avg-allocs/op")
|
|
b.ReportMetric(roundFloat64(bytes/inserts), "avg-B/op")
|
|
})
|
|
}
|
|
|
|
func BenchmarkTableDelete(b *testing.B) {
|
|
forFamilyAndCount(b, func(b *testing.B, routes []slowPrefixEntry[int]) {
|
|
// Collect memstats for one round of insertions, so we can remove it
|
|
// from the total at the end and get only the deletion alloc count.
|
|
insertAllocs, insertBytes := getMemCost(func() {
|
|
var rt Table[int]
|
|
for _, route := range routes {
|
|
rt.Insert(route.pfx, route.val)
|
|
}
|
|
})
|
|
insertAllocs *= float64(b.N)
|
|
insertBytes *= float64(b.N)
|
|
|
|
var t runningTimer
|
|
allocs, bytes := getMemCost(func() {
|
|
for range b.N {
|
|
var rt Table[int]
|
|
for _, route := range routes {
|
|
rt.Insert(route.pfx, route.val)
|
|
}
|
|
t.Start()
|
|
for _, route := range routes {
|
|
rt.Delete(route.pfx)
|
|
}
|
|
t.Stop()
|
|
}
|
|
})
|
|
inserts := float64(b.N) * float64(len(routes))
|
|
allocs -= insertAllocs
|
|
bytes -= insertBytes
|
|
elapsed := float64(t.Elapsed().Nanoseconds())
|
|
elapsedSec := t.Elapsed().Seconds()
|
|
b.ReportMetric(elapsed/inserts, "ns/op")
|
|
b.ReportMetric(inserts/elapsedSec, "routes/s")
|
|
b.ReportMetric(roundFloat64(allocs/inserts), "avg-allocs/op")
|
|
b.ReportMetric(roundFloat64(bytes/inserts), "avg-B/op")
|
|
})
|
|
}
|
|
|
|
func BenchmarkTableGet(b *testing.B) {
|
|
forFamilyAndCount(b, func(b *testing.B, routes []slowPrefixEntry[int]) {
|
|
genAddr := randomAddr4
|
|
if routes[0].pfx.Addr().Is6() {
|
|
genAddr = randomAddr6
|
|
}
|
|
var rt Table[int]
|
|
for _, route := range routes {
|
|
rt.Insert(route.pfx, route.val)
|
|
}
|
|
addrAllocs, addrBytes := getMemCost(func() {
|
|
// Have to run genAddr more than once, otherwise the reported
|
|
// cost is 16 bytes - presumably due to some amortized costs in
|
|
// the memory allocator? Either way, empirically 100 iterations
|
|
// reliably reports the correct cost.
|
|
for range 100 {
|
|
_ = genAddr()
|
|
}
|
|
})
|
|
addrAllocs /= 100
|
|
addrBytes /= 100
|
|
var t runningTimer
|
|
allocs, bytes := getMemCost(func() {
|
|
for range b.N {
|
|
addr := genAddr()
|
|
t.Start()
|
|
writeSink, _ = rt.Get(addr)
|
|
t.Stop()
|
|
}
|
|
})
|
|
b.ReportAllocs() // Enables the output, but we report manually below
|
|
allocs -= (addrAllocs * float64(b.N))
|
|
bytes -= (addrBytes * float64(b.N))
|
|
lookups := float64(b.N)
|
|
elapsed := float64(t.Elapsed().Nanoseconds())
|
|
elapsedSec := float64(t.Elapsed().Seconds())
|
|
b.ReportMetric(elapsed/lookups, "ns/op")
|
|
b.ReportMetric(lookups/elapsedSec, "addrs/s")
|
|
b.ReportMetric(allocs/lookups, "allocs/op")
|
|
b.ReportMetric(bytes/lookups, "B/op")
|
|
|
|
})
|
|
}
|
|
|
|
// getMemCost runs fn 100 times and returns the number of allocations and bytes
|
|
// allocated by each call to fn.
|
|
//
|
|
// Note that if your fn allocates very little memory (less than ~16 bytes), you
|
|
// should make fn run its workload ~100 times and divide the results of
|
|
// getMemCost yourself. Otherwise, the byte count you get will be rounded up due
|
|
// to the memory allocator's bucketing granularity.
|
|
func getMemCost(fn func()) (allocs, bytes float64) {
|
|
var start, end runtime.MemStats
|
|
runtime.ReadMemStats(&start)
|
|
fn()
|
|
runtime.ReadMemStats(&end)
|
|
return float64(end.Mallocs - start.Mallocs), float64(end.TotalAlloc - start.TotalAlloc)
|
|
}
|
|
|
|
// runningTimer is a timer that keeps track of the cumulative time it's spent
|
|
// running since creation. A newly created runningTimer is stopped.
|
|
//
|
|
// This timer exists because some of our benchmarks have to interleave costly
|
|
// ancillary logic in each benchmark iteration, rather than being able to
|
|
// front-load all the work before a single b.ResetTimer().
|
|
//
|
|
// As it turns out, b.StartTimer() and b.StopTimer() are expensive function
|
|
// calls, because they do costly memory allocation accounting on every call.
|
|
// Starting and stopping the benchmark timer in every b.N loop iteration slows
|
|
// the benchmarks down by orders of magnitude.
|
|
//
|
|
// So, rather than rely on testing.B's timing facility, we use this very
|
|
// lightweight timer combined with getMemCost to do our own accounting more
|
|
// efficiently.
|
|
type runningTimer struct {
|
|
cumulative time.Duration
|
|
start time.Time
|
|
}
|
|
|
|
func (t *runningTimer) Start() {
|
|
t.Stop()
|
|
t.start = time.Now()
|
|
}
|
|
|
|
func (t *runningTimer) Stop() {
|
|
if t.start.IsZero() {
|
|
return
|
|
}
|
|
t.cumulative += time.Since(t.start)
|
|
t.start = time.Time{}
|
|
}
|
|
|
|
func (t *runningTimer) Elapsed() time.Duration {
|
|
return t.cumulative
|
|
}
|
|
|
|
func checkSize(t *testing.T, tbl *Table[int], want int) {
|
|
t.Helper()
|
|
if got := tbl.numStrides(); got != want {
|
|
t.Errorf("wrong table size, got %d strides want %d", got, want)
|
|
}
|
|
}
|
|
|
|
func (t *Table[T]) numStrides() int {
|
|
seen := map[*strideTable[T]]bool{}
|
|
return t.numStridesRec(seen, &t.v4) + t.numStridesRec(seen, &t.v6)
|
|
}
|
|
|
|
func (t *Table[T]) numStridesRec(seen map[*strideTable[T]]bool, st *strideTable[T]) int {
|
|
ret := 1
|
|
if st.childRefs == 0 {
|
|
return ret
|
|
}
|
|
for _, c := range st.children {
|
|
if c == nil || seen[c] {
|
|
continue
|
|
}
|
|
seen[c] = true
|
|
ret += t.numStridesRec(seen, c)
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// slowPrefixTable is a routing table implemented as a set of prefixes that are
|
|
// explicitly scanned in full for every route lookup. It is very slow, but also
|
|
// reasonably easy to verify by inspection, and so a good correctness reference
|
|
// for Table.
|
|
type slowPrefixTable[T any] struct {
|
|
prefixes []slowPrefixEntry[T]
|
|
}
|
|
|
|
type slowPrefixEntry[T any] struct {
|
|
pfx netip.Prefix
|
|
val T
|
|
}
|
|
|
|
func (t *slowPrefixTable[T]) insert(pfx netip.Prefix, val T) {
|
|
pfx = pfx.Masked()
|
|
for i, ent := range t.prefixes {
|
|
if ent.pfx == pfx {
|
|
t.prefixes[i].val = val
|
|
return
|
|
}
|
|
}
|
|
t.prefixes = append(t.prefixes, slowPrefixEntry[T]{pfx, val})
|
|
}
|
|
|
|
func (t *slowPrefixTable[T]) get(addr netip.Addr) (ret T, ok bool) {
|
|
bestLen := -1
|
|
|
|
for _, pfx := range t.prefixes {
|
|
if pfx.pfx.Contains(addr) && pfx.pfx.Bits() > bestLen {
|
|
ret = pfx.val
|
|
bestLen = pfx.pfx.Bits()
|
|
}
|
|
}
|
|
return ret, bestLen != -1
|
|
}
|
|
|
|
// randomPrefixes returns n randomly generated prefixes and associated values,
|
|
// distributed equally between IPv4 and IPv6.
|
|
func randomPrefixes(n int) []slowPrefixEntry[int] {
|
|
pfxs := randomPrefixes4(n / 2)
|
|
pfxs = append(pfxs, randomPrefixes6(n-len(pfxs))...)
|
|
return pfxs
|
|
}
|
|
|
|
// randomPrefixes4 returns n randomly generated IPv4 prefixes and associated values.
|
|
func randomPrefixes4(n int) []slowPrefixEntry[int] {
|
|
pfxs := map[netip.Prefix]bool{}
|
|
|
|
for len(pfxs) < n {
|
|
len := rand.Intn(33)
|
|
pfx, err := randomAddr4().Prefix(len)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
pfxs[pfx] = true
|
|
}
|
|
|
|
ret := make([]slowPrefixEntry[int], 0, len(pfxs))
|
|
for pfx := range pfxs {
|
|
ret = append(ret, slowPrefixEntry[int]{pfx, rand.Int()})
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
// randomPrefixes6 returns n randomly generated IPv4 prefixes and associated values.
|
|
func randomPrefixes6(n int) []slowPrefixEntry[int] {
|
|
pfxs := map[netip.Prefix]bool{}
|
|
|
|
for len(pfxs) < n {
|
|
len := rand.Intn(129)
|
|
pfx, err := randomAddr6().Prefix(len)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
pfxs[pfx] = true
|
|
}
|
|
|
|
ret := make([]slowPrefixEntry[int], 0, len(pfxs))
|
|
for pfx := range pfxs {
|
|
ret = append(ret, slowPrefixEntry[int]{pfx, rand.Int()})
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
// randomAddr returns a randomly generated IP address.
|
|
func randomAddr() netip.Addr {
|
|
if rand.Intn(2) == 1 {
|
|
return randomAddr6()
|
|
} else {
|
|
return randomAddr4()
|
|
}
|
|
}
|
|
|
|
// randomAddr4 returns a randomly generated IPv4 address.
|
|
func randomAddr4() netip.Addr {
|
|
var b [4]byte
|
|
if _, err := crand.Read(b[:]); err != nil {
|
|
panic(err)
|
|
}
|
|
return netip.AddrFrom4(b)
|
|
}
|
|
|
|
// randomAddr6 returns a randomly generated IPv6 address.
|
|
func randomAddr6() netip.Addr {
|
|
var b [16]byte
|
|
if _, err := crand.Read(b[:]); err != nil {
|
|
panic(err)
|
|
}
|
|
return netip.AddrFrom16(b)
|
|
}
|
|
|
|
// roundFloat64 rounds f to 2 decimal places, for display.
|
|
//
|
|
// It round-trips through a float->string->float conversion, so should not be
|
|
// used in a performance critical setting.
|
|
func roundFloat64(f float64) float64 {
|
|
s := fmt.Sprintf("%.2f", f)
|
|
ret, err := strconv.ParseFloat(s, 64)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return ret
|
|
}
|