tailscale/control/noise/handshake.go
David Anderson 89a68a4c22 control/noise: include the protocol version in the Noise prologue.
Signed-off-by: David Anderson <danderson@tailscale.com>
2021-11-10 12:13:54 -08:00

371 lines
11 KiB
Go

// Copyright (c) 2021 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noise
import (
"context"
"crypto/cipher"
"encoding/binary"
"fmt"
"hash"
"io"
"net"
"time"
"golang.org/x/crypto/blake2s"
chp "golang.org/x/crypto/chacha20poly1305"
"golang.org/x/crypto/curve25519"
"golang.org/x/crypto/hkdf"
"golang.org/x/crypto/poly1305"
"tailscale.com/types/key"
)
const (
protocolName = "Noise_IK_25519_ChaChaPoly_BLAKE2s"
// protocolVersion is the version string that gets included as the
// Noise "prologue" in the handshake. It exists so that we can
// ensure that peer have agreed on the protocol version they're
// executing, to defeat some MITM protocol downgrade attacks.
protocolVersion = "Tailscale Control Protocol v1"
invalidNonce = ^uint64(0)
)
// Client initiates a Noise client handshake, returning the resulting
// Noise connection.
//
// The context deadline, if any, covers the entire handshaking
// process.
func Client(ctx context.Context, conn net.Conn, machineKey key.Private, controlKey key.Public) (*Conn, error) {
if deadline, ok := ctx.Deadline(); ok {
if err := conn.SetDeadline(deadline); err != nil {
return nil, fmt.Errorf("setting conn deadline: %w", err)
}
defer func() {
conn.SetDeadline(time.Time{})
}()
}
var s symmetricState
s.Initialize()
// <- s
// ...
s.MixHash(controlKey[:])
// -> e, es, s, ss
var init initiationMessage
machineEphemeral := key.NewPrivate()
machineEphemeralPub := machineEphemeral.Public()
copy(init.MachineEphemeralPub(), machineEphemeralPub[:])
s.MixHash(machineEphemeralPub[:])
if err := s.MixDH(machineEphemeral, controlKey); err != nil {
return nil, fmt.Errorf("computing es: %w", err)
}
machineKeyPub := machineKey.Public()
s.EncryptAndHash(init.MachinePub(), machineKeyPub[:])
if err := s.MixDH(machineKey, controlKey); err != nil {
return nil, fmt.Errorf("computing ss: %w", err)
}
s.EncryptAndHash(init.Tag(), nil) // empty message payload
if _, err := conn.Write(init[:]); err != nil {
return nil, fmt.Errorf("writing initiation: %w", err)
}
// <- e, ee, se
var resp responseMessage
if _, err := io.ReadFull(conn, resp[:]); err != nil {
return nil, fmt.Errorf("reading response: %w", err)
}
var controlEphemeralPub key.Public
copy(controlEphemeralPub[:], resp.ControlEphemeralPub())
s.MixHash(controlEphemeralPub[:])
if err := s.MixDH(machineEphemeral, controlEphemeralPub); err != nil {
return nil, fmt.Errorf("computing ee: %w", err)
}
if err := s.MixDH(machineKey, controlEphemeralPub); err != nil {
return nil, fmt.Errorf("computing se: %w", err)
}
if err := s.DecryptAndHash(nil, resp.Tag()); err != nil {
return nil, fmt.Errorf("decrypting payload: %w", err)
}
c1, c2, err := s.Split()
if err != nil {
return nil, fmt.Errorf("finalizing handshake: %w", err)
}
return &Conn{
conn: conn,
peer: controlKey,
handshakeHash: s.h,
tx: txState{
cipher: c1,
},
rx: rxState{
cipher: c2,
},
}, nil
}
// Server initiates a Noise server handshake, returning the resulting
// Noise connection.
//
// The context deadline, if any, covers the entire handshaking
// process.
func Server(ctx context.Context, conn net.Conn, controlKey key.Private) (*Conn, error) {
if deadline, ok := ctx.Deadline(); ok {
if err := conn.SetDeadline(deadline); err != nil {
return nil, fmt.Errorf("setting conn deadline: %w", err)
}
defer func() {
conn.SetDeadline(time.Time{})
}()
}
var s symmetricState
s.Initialize()
// <- s
// ...
controlKeyPub := controlKey.Public()
s.MixHash(controlKeyPub[:])
// -> e, es, s, ss
var init initiationMessage
if _, err := io.ReadFull(conn, init[:]); err != nil {
return nil, fmt.Errorf("reading initiation: %w", err)
}
var machineEphemeralPub key.Public
copy(machineEphemeralPub[:], init.MachineEphemeralPub())
s.MixHash(machineEphemeralPub[:])
if err := s.MixDH(controlKey, machineEphemeralPub); err != nil {
return nil, fmt.Errorf("computing es: %w", err)
}
var machineKey key.Public
if err := s.DecryptAndHash(machineKey[:], init.MachinePub()); err != nil {
return nil, fmt.Errorf("decrypting machine key: %w", err)
}
if err := s.MixDH(controlKey, machineKey); err != nil {
return nil, fmt.Errorf("computing ss: %w", err)
}
if err := s.DecryptAndHash(nil, init.Tag()); err != nil {
return nil, fmt.Errorf("decrypting initiation tag: %w", err)
}
// <- e, ee, se
var resp responseMessage
controlEphemeral := key.NewPrivate()
controlEphemeralPub := controlEphemeral.Public()
copy(resp.ControlEphemeralPub(), controlEphemeralPub[:])
s.MixHash(controlEphemeralPub[:])
if err := s.MixDH(controlEphemeral, machineEphemeralPub); err != nil {
return nil, fmt.Errorf("computing ee: %w", err)
}
if err := s.MixDH(controlEphemeral, machineKey); err != nil {
return nil, fmt.Errorf("computing se: %w", err)
}
s.EncryptAndHash(resp.Tag(), nil) // empty message payload
c1, c2, err := s.Split()
if err != nil {
return nil, fmt.Errorf("finalizing handshake: %w", err)
}
if _, err := conn.Write(resp[:]); err != nil {
return nil, err
}
return &Conn{
conn: conn,
peer: machineKey,
handshakeHash: s.h,
tx: txState{
cipher: c2,
},
rx: rxState{
cipher: c1,
},
}, nil
}
// initiationMessage is the Noise protocol message sent from a client
// machine to a control server.
type initiationMessage [96]byte
func (m *initiationMessage) MachineEphemeralPub() []byte { return m[:32] }
func (m *initiationMessage) MachinePub() []byte { return m[32:80] }
func (m *initiationMessage) Tag() []byte { return m[80:] }
// responseMessage is the Noise protocol message sent from a control
// server to a client machine.
type responseMessage [48]byte
func (m *responseMessage) ControlEphemeralPub() []byte { return m[:32] }
func (m *responseMessage) Tag() []byte { return m[32:] }
// symmetricState is the SymmetricState object from the Noise protocol
// spec. It contains all the symmetric cipher state of an in-flight
// handshake. Field names match the variable names in the spec.
type symmetricState struct {
h [blake2s.Size]byte
ck [blake2s.Size]byte
k [chp.KeySize]byte
n uint64
mixer hash.Hash // for updating h
}
// Initialize sets s to the initial handshake state, prior to
// processing any Noise messages.
func (s *symmetricState) Initialize() {
if s.mixer != nil {
panic("symmetricState cannot be reused")
}
s.h = blake2s.Sum256([]byte(protocolName))
s.ck = s.h
s.k = [chp.KeySize]byte{}
s.n = invalidNonce
s.mixer = newBLAKE2s()
s.MixHash([]byte(protocolVersion))
}
// MixHash updates s.h to be BLAKE2s(s.h || data), where || is
// concatenation.
func (s *symmetricState) MixHash(data []byte) {
s.mixer.Reset()
s.mixer.Write(s.h[:])
s.mixer.Write(data)
s.mixer.Sum(s.h[:0]) // TODO: check this actually updates s.h correctly...
}
// MixDH updates s.ck and s.k with the result of X25519(priv, pub).
//
// MixDH corresponds to MixKey(X25519(...))) in the spec. Implementing
// it as a single function allows for strongly-typed arguments that
// reduce the risk of error in the caller (e.g. invoking X25519 with
// two private keys, or two public keys), and thus producing the wrong
// calculation.
func (s *symmetricState) MixDH(priv key.Private, pub key.Public) error {
// TODO(danderson): check that this operation is correct. The docs
// for X25519 say that the 2nd arg must be either Basepoint or the
// output of another X25519 call.
//
// I think this is correct, because pub is the result of a
// ScalarBaseMult on the private key, and our private key
// generation code clamps keys to avoid low order points. I
// believe that makes pub equivalent to the output of
// X25519(privateKey, Basepoint), and so the contract is
// respected.
keyData, err := curve25519.X25519(priv[:], pub[:])
if err != nil {
return fmt.Errorf("computing X25519: %w", err)
}
r := hkdf.New(newBLAKE2s, keyData, s.ck[:], nil)
if _, err := io.ReadFull(r, s.ck[:]); err != nil {
return fmt.Errorf("extracting ck: %w", err)
}
if _, err := io.ReadFull(r, s.k[:]); err != nil {
return fmt.Errorf("extracting k: %w", err)
}
s.n = 0
return nil
}
// EncryptAndHash encrypts plaintext into ciphertext (which must be
// the correct size to hold the encrypted plaintext) using the current
// s.k, mixes the ciphertext into s.h, and returns the ciphertext.
func (s *symmetricState) EncryptAndHash(ciphertext, plaintext []byte) {
if s.n == invalidNonce {
// Noise in general permits writing "ciphertext" without a
// key, but in IK it cannot happen.
panic("attempted encryption with uninitialized key")
}
if len(ciphertext) != len(plaintext)+poly1305.TagSize {
panic("ciphertext is wrong size for given plaintext")
}
aead := newCHP(s.k)
var nonce [chp.NonceSize]byte
binary.BigEndian.PutUint64(nonce[4:], s.n)
s.n++
ret := aead.Seal(ciphertext[:0], nonce[:], plaintext, s.h[:])
s.MixHash(ret)
}
// DecryptAndHash decrypts the given ciphertext into plaintext (which
// must be the correct size to hold the decrypted ciphertext) using
// the current s.k. If decryption is successful, it mixes the
// ciphertext into s.h.
func (s *symmetricState) DecryptAndHash(plaintext, ciphertext []byte) error {
if s.n == invalidNonce {
// Noise in general permits "ciphertext" without a key, but in
// IK it cannot happen.
panic("attempted encryption with uninitialized key")
}
if len(ciphertext) != len(plaintext)+poly1305.TagSize {
panic("plaintext is wrong size for given ciphertext")
}
aead := newCHP(s.k)
var nonce [chp.NonceSize]byte
binary.BigEndian.PutUint64(nonce[4:], s.n)
s.n++
if _, err := aead.Open(plaintext[:0], nonce[:], ciphertext, s.h[:]); err != nil {
return err
}
s.MixHash(ciphertext)
return nil
}
// Split returns two ChaCha20Poly1305 ciphers with keys derived from
// the current handshake state. Methods on s must not be used again
// after calling Split().
func (s *symmetricState) Split() (c1, c2 cipher.AEAD, err error) {
var k1, k2 [chp.KeySize]byte
r := hkdf.New(newBLAKE2s, nil, s.ck[:], nil)
if _, err := io.ReadFull(r, k1[:]); err != nil {
return nil, nil, fmt.Errorf("extracting k1: %w", err)
}
if _, err := io.ReadFull(r, k2[:]); err != nil {
return nil, nil, fmt.Errorf("extracting k2: %w", err)
}
c1, err = chp.New(k1[:])
if err != nil {
return nil, nil, fmt.Errorf("constructing AEAD c1: %w", err)
}
c2, err = chp.New(k2[:])
if err != nil {
return nil, nil, fmt.Errorf("constructing AEAD c2: %w", err)
}
return c1, c2, nil
}
// newBLAKE2s returns a hash.Hash implementing BLAKE2s, or panics on
// error.
func newBLAKE2s() hash.Hash {
h, err := blake2s.New256(nil)
if err != nil {
// Should never happen, errors only happen when using BLAKE2s
// in MAC mode with a key.
panic(fmt.Sprintf("blake2s construction: %v", err))
}
return h
}
// newCHP returns a cipher.AEAD implementing ChaCha20Poly1305, or
// panics on error.
func newCHP(key [chp.KeySize]byte) cipher.AEAD {
aead, err := chp.New(key[:])
if err != nil {
// Can only happen if we passed a key of the wrong length. The
// function signature prevents that.
panic(fmt.Sprintf("chacha20poly1305 construction: %v", err))
}
return aead
}