tailscale/wgengine/filter/filter.go

362 lines
9.9 KiB
Go

// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package filter contains a stateful packet filter.
package filter
import (
"fmt"
"sync"
"time"
"github.com/golang/groupcache/lru"
"golang.org/x/time/rate"
"tailscale.com/types/logger"
"tailscale.com/wgengine/packet"
)
type filterState struct {
mu sync.Mutex
lru *lru.Cache // of tuple
}
// Filter is a stateful packet filter.
type Filter struct {
logf logger.Logf
// localNets is the list of IP prefixes that we know to be "local"
// to this node. All packets coming in over tailscale must have a
// destination within localNets, regardless of the policy filter
// below. A nil localNets rejects all incoming traffic.
localNets []Net
// matches is a list of match->action rules applied to all packets
// arriving over tailscale tunnels. Matches are checked in order,
// and processing stops at the first matching rule. The default
// policy if no rules match is to drop the packet.
matches Matches
// state is the connection tracking state attached to this
// filter. It is used to allow incoming traffic that is a response
// to an outbound connection that this node made, even if those
// incoming packets don't get accepted by matches above.
state *filterState
}
// Response is a verdict: either a Drop, Accept, or noVerdict skip to
// continue processing.
type Response int
const (
Drop Response = iota
Accept
noVerdict // Returned from subfilters to continue processing.
)
func (r Response) String() string {
switch r {
case Drop:
return "Drop"
case Accept:
return "Accept"
case noVerdict:
return "noVerdict"
default:
return "???"
}
}
// RunFlags controls the filter's debug log verbosity at runtime.
type RunFlags int
const (
LogDrops RunFlags = 1 << iota
LogAccepts
HexdumpDrops
HexdumpAccepts
)
type tuple struct {
SrcIP packet.IP
DstIP packet.IP
SrcPort uint16
DstPort uint16
}
const lruMax = 512 // max entries in UDP LRU cache
// MatchAllowAll matches all packets.
var MatchAllowAll = Matches{
Match{[]NetPortRange{NetPortRangeAny}, []Net{NetAny}},
}
// NewAllowAll returns a packet filter that accepts everything to and
// from localNets.
func NewAllowAll(localNets []Net, logf logger.Logf) *Filter {
return New(MatchAllowAll, localNets, nil, logf)
}
// NewAllowNone returns a packet filter that rejects everything.
func NewAllowNone(logf logger.Logf) *Filter {
return New(nil, nil, nil, logf)
}
// New creates a new packet filter. The filter enforces that incoming
// packets must be destined to an IP in localNets, and must be allowed
// by matches. If shareStateWith is non-nil, the returned filter
// shares state with the previous one, to enable rules to be changed
// at runtime without breaking existing flows.
func New(matches Matches, localNets []Net, shareStateWith *Filter, logf logger.Logf) *Filter {
var state *filterState
if shareStateWith != nil {
state = shareStateWith.state
} else {
state = &filterState{
lru: lru.New(lruMax),
}
}
f := &Filter{
logf: logf,
matches: matches,
localNets: localNets,
state: state,
}
return f
}
func maybeHexdump(flag RunFlags, b []byte) string {
if flag == 0 {
return ""
}
return packet.Hexdump(b) + "\n"
}
// TODO(apenwarr): use a bigger bucket for specifically TCP SYN accept logging?
// Logging is a quick way to record every newly opened TCP connection, but
// we have to be cautious about flooding the logs vs letting people use
// flood protection to hide their traffic. We could use a rate limiter in
// the actual *filter* for SYN accepts, perhaps.
var acceptBucket = rate.NewLimiter(rate.Every(10*time.Second), 3)
var dropBucket = rate.NewLimiter(rate.Every(5*time.Second), 10)
func (f *Filter) logRateLimit(runflags RunFlags, q *packet.ParsedPacket, dir direction, r Response, why string) {
var verdict string
if r == Drop && omitDropLogging(q, dir) {
return
}
if r == Drop && (runflags&LogDrops) != 0 && dropBucket.Allow() {
verdict = "Drop"
runflags &= HexdumpDrops
} else if r == Accept && (runflags&LogAccepts) != 0 && acceptBucket.Allow() {
verdict = "Accept"
runflags &= HexdumpAccepts
}
// Note: it is crucial that q.String() be called only if {accept,drop}Bucket.Allow() passes,
// since it causes an allocation.
if verdict != "" {
b := q.Buffer()
f.logf("%s: %s %d %s\n%s", verdict, q.String(), len(b), why, maybeHexdump(runflags, b))
}
}
// RunIn determines whether this node is allowed to receive q from a Tailscale peer.
func (f *Filter) RunIn(q *packet.ParsedPacket, rf RunFlags) Response {
dir := in
r := f.pre(q, rf, dir)
if r == Accept || r == Drop {
// already logged
return r
}
r, why := f.runIn(q)
f.logRateLimit(rf, q, dir, r, why)
return r
}
// RunOut determines whether this node is allowed to send q to a Tailscale peer.
func (f *Filter) RunOut(q *packet.ParsedPacket, rf RunFlags) Response {
dir := out
r := f.pre(q, rf, dir)
if r == Drop || r == Accept {
// already logged
return r
}
r, why := f.runOut(q)
f.logRateLimit(rf, q, dir, r, why)
return r
}
func (f *Filter) runIn(q *packet.ParsedPacket) (r Response, why string) {
// A compromised peer could try to send us packets for
// destinations we didn't explicitly advertise. This check is to
// prevent that.
if !ipInList(q.DstIP, f.localNets) {
return Drop, "destination not allowed"
}
if q.IPVersion == 6 {
// TODO: support IPv6.
return Drop, "no rules matched"
}
switch q.IPProto {
case packet.ICMP:
if q.IsEchoResponse() || q.IsError() {
// ICMP responses are allowed.
// TODO(apenwarr): consider using conntrack state.
// We could choose to reject all packets that aren't
// related to an existing ICMP-Echo, TCP, or UDP
// session.
return Accept, "icmp response ok"
} else if matchIPWithoutPorts(f.matches, q) {
// If any port is open to an IP, allow ICMP to it.
return Accept, "icmp ok"
}
case packet.TCP:
// For TCP, we want to allow *outgoing* connections,
// which means we want to allow return packets on those
// connections. To make this restriction work, we need to
// allow non-SYN packets (continuation of an existing session)
// to arrive. This should be okay since a new incoming session
// can't be initiated without first sending a SYN.
// It happens to also be much faster.
// TODO(apenwarr): Skip the rest of decoding in this path?
if q.IPProto == packet.TCP && !q.IsTCPSyn() {
return Accept, "tcp non-syn"
}
if matchIPPorts(f.matches, q) {
return Accept, "tcp ok"
}
case packet.UDP:
t := tuple{q.SrcIP, q.DstIP, q.SrcPort, q.DstPort}
f.state.mu.Lock()
_, ok := f.state.lru.Get(t)
f.state.mu.Unlock()
if ok {
return Accept, "udp cached"
}
if matchIPPorts(f.matches, q) {
return Accept, "udp ok"
}
default:
return Drop, "Unknown proto"
}
return Drop, "no rules matched"
}
func (f *Filter) runOut(q *packet.ParsedPacket) (r Response, why string) {
if q.IPProto == packet.UDP {
t := tuple{q.DstIP, q.SrcIP, q.DstPort, q.SrcPort}
var ti interface{} = t // allocate once, rather than twice inside mutex
f.state.mu.Lock()
f.state.lru.Add(ti, ti)
f.state.mu.Unlock()
}
return Accept, "ok out"
}
// direction is whether a packet was flowing in to this machine, or flowing out.
type direction int
const (
in direction = iota
out
)
func (d direction) String() string {
switch d {
case in:
return "in"
case out:
return "out"
default:
return fmt.Sprintf("[??dir=%d]", int(d))
}
}
func (f *Filter) pre(q *packet.ParsedPacket, rf RunFlags, dir direction) Response {
if len(q.Buffer()) == 0 {
// wireguard keepalive packet, always permit.
return Accept
}
if len(q.Buffer()) < 20 {
f.logRateLimit(rf, q, dir, Drop, "too short")
return Drop
}
if q.IPVersion == 6 {
f.logRateLimit(rf, q, dir, Drop, "ipv6")
return Drop
}
switch q.IPProto {
case packet.Unknown:
// Unknown packets are dangerous; always drop them.
f.logRateLimit(rf, q, dir, Drop, "unknown")
return Drop
case packet.Fragment:
// Fragments after the first always need to be passed through.
// Very small fragments are considered Junk by ParsedPacket.
f.logRateLimit(rf, q, dir, Accept, "fragment")
return Accept
}
return noVerdict
}
const (
// ipv6AllRoutersLinkLocal is ff02::2 (All link-local routers)
ipv6AllRoutersLinkLocal = "\xff\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02"
// ipv6AllMLDv2CapableRouters is ff02::16 (All MLDv2-capable routers)
ipv6AllMLDv2CapableRouters = "\xff\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16"
)
// omitDropLogging reports whether packet p, which has already been
// deemded a packet to Drop, should bypass the [rate-limited] logging.
// We don't want to log scary & spammy reject warnings for packets that
// are totally normal, like IPv6 route announcements.
func omitDropLogging(p *packet.ParsedPacket, dir direction) bool {
b := p.Buffer()
switch dir {
case out:
switch p.IPVersion {
case 4:
// ParsedPacket.Decode zeros out ParsedPacket.IPProtocol for protocols
// it doesn't know about, so parse it out ourselves if needed.
ipProto := p.IPProto
if ipProto == 0 && len(b) > 8 {
ipProto = packet.IPProto(b[9])
}
// Omit logging about outgoing IGMP.
if ipProto == packet.IGMP {
return true
}
case 6:
if len(b) < 40 {
return false
}
src, dst := b[8:8+16], b[24:24+16]
// Omit logging for outgoing IPv6 ICMP-v6 queries to ff02::2,
// as sent by the OS, looking for routers.
if p.IPProto == packet.ICMPv6 {
if isLinkLocalV6(src) && string(dst) == ipv6AllRoutersLinkLocal {
return true
}
}
if string(dst) == ipv6AllMLDv2CapableRouters {
return true
}
panic(fmt.Sprintf("Got proto=%2x; src=%x dst=%x", int(p.IPProto), src, dst))
}
}
return false
}
// isLinkLocalV6 reports whether src is in fe80::/10.
func isLinkLocalV6(src []byte) bool {
return len(src) == 16 && src[0] == 0xfe && src[1]>>6 == 0x80>>6
}