tailscale/net/dns/resolver/forwarder.go
Denton Gentry d883747d8b net/dns/resolver: don't forward DNS-SD on all platforms
We added the initial handling only for macOS and iOS.
With 1.16.0 now released, suppress forwarding DNS-SD
on all platforms to test it through the 1.17.x cycle.

Updates #2442

Signed-off-by: Denton Gentry <dgentry@tailscale.com>
2021-10-08 17:14:59 -07:00

731 lines
20 KiB
Go

// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package resolver
import (
"bytes"
"context"
"encoding/binary"
"errors"
"fmt"
"io"
"io/ioutil"
"math/rand"
"net"
"net/http"
"runtime"
"sort"
"strings"
"sync"
"time"
dns "golang.org/x/net/dns/dnsmessage"
"inet.af/netaddr"
"tailscale.com/net/netns"
"tailscale.com/types/dnstype"
"tailscale.com/types/logger"
"tailscale.com/util/dnsname"
"tailscale.com/wgengine/monitor"
)
// headerBytes is the number of bytes in a DNS message header.
const headerBytes = 12
const (
// responseTimeout is the maximal amount of time to wait for a DNS response.
responseTimeout = 5 * time.Second
// dohTransportTimeout is how long to keep idle HTTP
// connections open to DNS-over-HTTPs servers. This is pretty
// arbitrary.
dohTransportTimeout = 30 * time.Second
// wellKnownHostBackupDelay is how long to artificially delay upstream
// DNS queries to the "fallback" DNS server IP for a known provider
// (e.g. how long to wait to query Google's 8.8.4.4 after 8.8.8.8).
wellKnownHostBackupDelay = 200 * time.Millisecond
)
var errNoUpstreams = errors.New("upstream nameservers not set")
// txid identifies a DNS transaction.
//
// As the standard DNS Request ID is only 16 bits, we extend it:
// the lower 32 bits are the zero-extended bits of the DNS Request ID;
// the upper 32 bits are the CRC32 checksum of the first question in the request.
// This makes probability of txid collision negligible.
type txid uint64
// getTxID computes the txid of the given DNS packet.
func getTxID(packet []byte) txid {
if len(packet) < headerBytes {
return 0
}
dnsid := binary.BigEndian.Uint16(packet[0:2])
// Previously, we hashed the question and combined it with the original txid
// which was useful when concurrent queries were multiplexed on a single
// local source port. We encountered some situations where the DNS server
// canonicalizes the question in the response (uppercase converted to
// lowercase in this case), which resulted in responses that we couldn't
// match to the original request due to hash mismatches.
return txid(dnsid)
}
// clampEDNSSize attempts to limit the maximum EDNS response size. This is not
// an exhaustive solution, instead only easy cases are currently handled in the
// interest of speed and reduced complexity. Only OPT records at the very end of
// the message with no option codes are addressed.
// TODO: handle more situations if we discover that they happen often
func clampEDNSSize(packet []byte, maxSize uint16) {
// optFixedBytes is the size of an OPT record with no option codes.
const optFixedBytes = 11
const edns0Version = 0
if len(packet) < headerBytes+optFixedBytes {
return
}
arCount := binary.BigEndian.Uint16(packet[10:12])
if arCount == 0 {
// OPT shows up in an AR, so there must be no OPT
return
}
// https://datatracker.ietf.org/doc/html/rfc6891#section-6.1.2
opt := packet[len(packet)-optFixedBytes:]
if opt[0] != 0 {
// OPT NAME must be 0 (root domain)
return
}
if dns.Type(binary.BigEndian.Uint16(opt[1:3])) != dns.TypeOPT {
// Not an OPT record
return
}
requestedSize := binary.BigEndian.Uint16(opt[3:5])
// Ignore extended RCODE in opt[5]
if opt[6] != edns0Version {
// Be conservative and don't touch unknown versions.
return
}
// Ignore flags in opt[6:9]
if binary.BigEndian.Uint16(opt[9:11]) != 0 {
// RDLEN must be 0 (no variable length data). We're at the end of the
// packet so this should be 0 anyway)..
return
}
if requestedSize <= maxSize {
return
}
// Clamp the maximum size
binary.BigEndian.PutUint16(opt[3:5], maxSize)
}
type route struct {
Suffix dnsname.FQDN
Resolvers []resolverAndDelay
}
// resolverAndDelay is an upstream DNS resolver and a delay for how
// long to wait before querying it.
type resolverAndDelay struct {
// name is the upstream resolver.
name dnstype.Resolver
// startDelay is an amount to delay this resolver at
// start. It's used when, say, there are four Google or
// Cloudflare DNS IPs (two IPv4 + two IPv6) and we don't want
// to race all four at once.
startDelay time.Duration
}
// forwarder forwards DNS packets to a number of upstream nameservers.
type forwarder struct {
logf logger.Logf
linkMon *monitor.Mon
linkSel ForwardLinkSelector
dohSem chan struct{}
ctx context.Context // good until Close
ctxCancel context.CancelFunc // closes ctx
// responses is a channel by which responses are returned.
responses chan packet
mu sync.Mutex // guards following
dohClient map[string]*http.Client // urlBase -> client
// routes are per-suffix resolvers to use, with
// the most specific routes first.
routes []route
}
func init() {
rand.Seed(time.Now().UnixNano())
}
func newForwarder(logf logger.Logf, responses chan packet, linkMon *monitor.Mon, linkSel ForwardLinkSelector) *forwarder {
maxDoHInFlight := 1000 // effectively unlimited
if runtime.GOOS == "ios" {
// No HTTP/2 on iOS yet (for size reasons), so DoH is
// pricier.
maxDoHInFlight = 10
}
f := &forwarder{
logf: logger.WithPrefix(logf, "forward: "),
linkMon: linkMon,
linkSel: linkSel,
responses: responses,
dohSem: make(chan struct{}, maxDoHInFlight),
}
f.ctx, f.ctxCancel = context.WithCancel(context.Background())
return f
}
func (f *forwarder) Close() error {
f.ctxCancel()
return nil
}
// resolversWithDelays maps from a set of DNS server names to a slice of
// a type that included a startDelay. So if resolvers contains e.g. four
// Google DNS IPs (two IPv4 + twoIPv6), this function partition adds
// delays to some.
func resolversWithDelays(resolvers []dnstype.Resolver) []resolverAndDelay {
type hostAndFam struct {
host string // some arbitrary string representing DNS host (currently the DoH base)
bits uint8 // either 32 or 128 for IPv4 vs IPv6s address family
}
// Track how many of each known resolver host are in the list,
// per address family.
total := map[hostAndFam]int{}
rr := make([]resolverAndDelay, len(resolvers))
for _, r := range resolvers {
if ip, err := netaddr.ParseIP(r.Addr); err == nil {
if host, ok := knownDoH[ip]; ok {
total[hostAndFam{host, ip.BitLen()}]++
}
}
}
done := map[hostAndFam]int{}
for i, r := range resolvers {
var startDelay time.Duration
if ip, err := netaddr.ParseIP(r.Addr); err == nil {
if host, ok := knownDoH[ip]; ok {
key4 := hostAndFam{host, 32}
key6 := hostAndFam{host, 128}
switch {
case ip.Is4():
if done[key4] > 0 {
startDelay += wellKnownHostBackupDelay
}
case ip.Is6():
total4 := total[key4]
if total4 >= 2 {
// If we have two IPv4 IPs of the same provider
// already in the set, delay the IPv6 queries
// until halfway through the timeout (so wait
// 2.5 seconds). Even the network is IPv6-only,
// the DoH dialer will fallback to IPv6
// immediately anyway.
startDelay = responseTimeout / 2
} else if total4 == 1 {
startDelay += wellKnownHostBackupDelay
}
if done[key6] > 0 {
startDelay += wellKnownHostBackupDelay
}
}
done[hostAndFam{host, ip.BitLen()}]++
}
}
rr[i] = resolverAndDelay{
name: r,
startDelay: startDelay,
}
}
return rr
}
// setRoutes sets the routes to use for DNS forwarding. It's called by
// Resolver.SetConfig on reconfig.
//
// The memory referenced by routesBySuffix should not be modified.
func (f *forwarder) setRoutes(routesBySuffix map[dnsname.FQDN][]dnstype.Resolver) {
routes := make([]route, 0, len(routesBySuffix))
for suffix, rs := range routesBySuffix {
routes = append(routes, route{
Suffix: suffix,
Resolvers: resolversWithDelays(rs),
})
}
// Sort from longest prefix to shortest.
sort.Slice(routes, func(i, j int) bool {
return routes[i].Suffix.NumLabels() > routes[j].Suffix.NumLabels()
})
f.mu.Lock()
defer f.mu.Unlock()
f.routes = routes
}
var stdNetPacketListener packetListener = new(net.ListenConfig)
type packetListener interface {
ListenPacket(ctx context.Context, network, address string) (net.PacketConn, error)
}
func (f *forwarder) packetListener(ip netaddr.IP) (packetListener, error) {
if f.linkSel == nil || initListenConfig == nil {
return stdNetPacketListener, nil
}
linkName := f.linkSel.PickLink(ip)
if linkName == "" {
return stdNetPacketListener, nil
}
lc := new(net.ListenConfig)
if err := initListenConfig(lc, f.linkMon, linkName); err != nil {
return nil, err
}
return lc, nil
}
func (f *forwarder) getKnownDoHClient(ip netaddr.IP) (urlBase string, c *http.Client, ok bool) {
urlBase, ok = knownDoH[ip]
if !ok {
return
}
f.mu.Lock()
defer f.mu.Unlock()
if c, ok := f.dohClient[urlBase]; ok {
return urlBase, c, true
}
if f.dohClient == nil {
f.dohClient = map[string]*http.Client{}
}
nsDialer := netns.NewDialer()
c = &http.Client{
Transport: &http.Transport{
IdleConnTimeout: dohTransportTimeout,
DialContext: func(ctx context.Context, netw, addr string) (net.Conn, error) {
if !strings.HasPrefix(netw, "tcp") {
return nil, fmt.Errorf("unexpected network %q", netw)
}
c, err := nsDialer.DialContext(ctx, "tcp", net.JoinHostPort(ip.String(), "443"))
// If v4 failed, try an equivalent v6 also in the time remaining.
if err != nil && ctx.Err() == nil {
if ip6, ok := dohV6(urlBase); ok && ip.Is4() {
if c6, err := nsDialer.DialContext(ctx, "tcp", net.JoinHostPort(ip6.String(), "443")); err == nil {
return c6, nil
}
}
}
return c, err
},
},
}
f.dohClient[urlBase] = c
return urlBase, c, true
}
const dohType = "application/dns-message"
func (f *forwarder) releaseDoHSem() { <-f.dohSem }
func (f *forwarder) sendDoH(ctx context.Context, urlBase string, c *http.Client, packet []byte) ([]byte, error) {
// Bound the number of HTTP requests in flight. This primarily
// matters for iOS where we're very memory constrained and
// HTTP requests are heavier on iOS where we don't include
// HTTP/2 for binary size reasons (as binaries on iOS linked
// with Go code cost memory proportional to the binary size,
// for reasons not fully understood).
select {
case f.dohSem <- struct{}{}:
case <-ctx.Done():
return nil, ctx.Err()
}
defer f.releaseDoHSem()
req, err := http.NewRequestWithContext(ctx, "POST", urlBase, bytes.NewReader(packet))
if err != nil {
return nil, err
}
req.Header.Set("Content-Type", dohType)
// Note: we don't currently set the Accept header (which is
// only a SHOULD in the spec) as iOS doesn't use HTTP/2 and
// we'd rather save a few bytes on outgoing requests when
// empirically no provider cares about the Accept header's
// absence.
hres, err := c.Do(req)
if err != nil {
return nil, err
}
defer hres.Body.Close()
if hres.StatusCode != 200 {
return nil, errors.New(hres.Status)
}
if ct := hres.Header.Get("Content-Type"); ct != dohType {
return nil, fmt.Errorf("unexpected response Content-Type %q", ct)
}
return ioutil.ReadAll(hres.Body)
}
// send sends packet to dst. It is best effort.
//
// send expects the reply to have the same txid as txidOut.
func (f *forwarder) send(ctx context.Context, fq *forwardQuery, rr resolverAndDelay) ([]byte, error) {
if strings.HasPrefix(rr.name.Addr, "http://") {
return nil, fmt.Errorf("http:// resolvers not supported yet")
}
if strings.HasPrefix(rr.name.Addr, "https://") {
return nil, fmt.Errorf("https:// resolvers not supported yet")
}
if strings.HasPrefix(rr.name.Addr, "tls://") {
return nil, fmt.Errorf("tls:// resolvers not supported yet")
}
ipp, err := netaddr.ParseIPPort(rr.name.Addr)
if err != nil {
return nil, err
}
// Upgrade known DNS IPs to DoH (DNS-over-HTTPs).
// All known DoH is over port 53.
if urlBase, dc, ok := f.getKnownDoHClient(ipp.IP()); ok {
res, err := f.sendDoH(ctx, urlBase, dc, fq.packet)
if err == nil || ctx.Err() != nil {
return res, err
}
f.logf("DoH error from %v: %v", ipp.IP(), err)
}
ln, err := f.packetListener(ipp.IP())
if err != nil {
return nil, err
}
conn, err := ln.ListenPacket(ctx, "udp", ":0")
if err != nil {
f.logf("ListenPacket failed: %v", err)
return nil, err
}
defer conn.Close()
fq.closeOnCtxDone.Add(conn)
defer fq.closeOnCtxDone.Remove(conn)
if _, err := conn.WriteTo(fq.packet, ipp.UDPAddr()); err != nil {
if err := ctx.Err(); err != nil {
return nil, err
}
return nil, err
}
// The 1 extra byte is to detect packet truncation.
out := make([]byte, maxResponseBytes+1)
n, _, err := conn.ReadFrom(out)
if err != nil {
if err := ctx.Err(); err != nil {
return nil, err
}
if packetWasTruncated(err) {
err = nil
} else {
return nil, err
}
}
truncated := n > maxResponseBytes
if truncated {
n = maxResponseBytes
}
if n < headerBytes {
f.logf("recv: packet too small (%d bytes)", n)
}
out = out[:n]
txid := getTxID(out)
if txid != fq.txid {
return nil, errors.New("txid doesn't match")
}
if truncated {
const dnsFlagTruncated = 0x200
flags := binary.BigEndian.Uint16(out[2:4])
flags |= dnsFlagTruncated
binary.BigEndian.PutUint16(out[2:4], flags)
// TODO(#2067): Remove any incomplete records? RFC 1035 section 6.2
// states that truncation should head drop so that the authority
// section can be preserved if possible. However, the UDP read with
// a too-small buffer has already dropped the end, so that's the
// best we can do.
}
clampEDNSSize(out, maxResponseBytes)
return out, nil
}
// resolvers returns the resolvers to use for domain.
func (f *forwarder) resolvers(domain dnsname.FQDN) []resolverAndDelay {
f.mu.Lock()
routes := f.routes
f.mu.Unlock()
for _, route := range routes {
if route.Suffix == "." || route.Suffix.Contains(domain) {
return route.Resolvers
}
}
return nil
}
// forwardQuery is information and state about a forwarded DNS query that's
// being sent to 1 or more upstreams.
//
// In the case of racing against multiple equivalent upstreams
// (e.g. Google or CloudFlare's 4 DNS IPs: 2 IPv4 + 2 IPv6), this type
// handles racing them more intelligently than just blasting away 4
// queries at once.
type forwardQuery struct {
txid txid
packet []byte
// closeOnCtxDone lets send register values to Close if the
// caller's ctx expires. This avoids send from allocating its
// own waiting goroutine to interrupt the ReadFrom, as memory
// is tight on iOS and we want the number of pending DNS
// lookups to be bursty without too much associated
// goroutine/memory cost.
closeOnCtxDone *closePool
// TODO(bradfitz): add race delay state:
// mu sync.Mutex
// ...
}
// forward forwards the query to all upstream nameservers and returns the first response.
func (f *forwarder) forward(query packet) error {
domain, err := nameFromQuery(query.bs)
if err != nil {
return err
}
// Drop DNS service discovery spam, primarily for battery life
// on mobile. Things like Spotify on iOS generate this traffic,
// when browsing for LAN devices. But even when filtering this
// out, playing on Sonos still works.
if hasRDNSBonjourPrefix(domain) {
f.logf("[v1] dropping %q", domain)
return nil
}
clampEDNSSize(query.bs, maxResponseBytes)
resolvers := f.resolvers(domain)
if len(resolvers) == 0 {
return errNoUpstreams
}
fq := &forwardQuery{
txid: getTxID(query.bs),
packet: query.bs,
closeOnCtxDone: new(closePool),
}
defer fq.closeOnCtxDone.Close()
ctx, cancel := context.WithTimeout(f.ctx, responseTimeout)
defer cancel()
resc := make(chan []byte, 1)
var (
mu sync.Mutex
firstErr error
)
for i := range resolvers {
go func(rr *resolverAndDelay) {
if rr.startDelay > 0 {
timer := time.NewTimer(rr.startDelay)
select {
case <-timer.C:
case <-ctx.Done():
timer.Stop()
return
}
}
resb, err := f.send(ctx, fq, *rr)
if err != nil {
mu.Lock()
defer mu.Unlock()
if firstErr == nil {
firstErr = err
}
return
}
select {
case resc <- resb:
default:
}
}(&resolvers[i])
}
select {
case v := <-resc:
select {
case <-ctx.Done():
return ctx.Err()
case f.responses <- packet{v, query.addr}:
return nil
}
case <-ctx.Done():
mu.Lock()
defer mu.Unlock()
if firstErr != nil {
return firstErr
}
return ctx.Err()
}
}
var initListenConfig func(_ *net.ListenConfig, _ *monitor.Mon, tunName string) error
// nameFromQuery extracts the normalized query name from bs.
func nameFromQuery(bs []byte) (dnsname.FQDN, error) {
var parser dns.Parser
hdr, err := parser.Start(bs)
if err != nil {
return "", err
}
if hdr.Response {
return "", errNotQuery
}
q, err := parser.Question()
if err != nil {
return "", err
}
n := q.Name.Data[:q.Name.Length]
return dnsname.ToFQDN(rawNameToLower(n))
}
// closePool is a dynamic set of io.Closers to close as a group.
// It's intended to be Closed at most once.
//
// The zero value is ready for use.
type closePool struct {
mu sync.Mutex
m map[io.Closer]bool
closed bool
}
func (p *closePool) Add(c io.Closer) {
p.mu.Lock()
defer p.mu.Unlock()
if p.closed {
c.Close()
return
}
if p.m == nil {
p.m = map[io.Closer]bool{}
}
p.m[c] = true
}
func (p *closePool) Remove(c io.Closer) {
p.mu.Lock()
defer p.mu.Unlock()
if p.closed {
return
}
delete(p.m, c)
}
func (p *closePool) Close() error {
p.mu.Lock()
defer p.mu.Unlock()
if p.closed {
return nil
}
p.closed = true
for c := range p.m {
c.Close()
}
return nil
}
var knownDoH = map[netaddr.IP]string{} // 8.8.8.8 => "https://..."
var dohIPsOfBase = map[string][]netaddr.IP{}
func addDoH(ipStr, base string) {
ip := netaddr.MustParseIP(ipStr)
knownDoH[ip] = base
dohIPsOfBase[base] = append(dohIPsOfBase[base], ip)
}
func dohV6(base string) (ip netaddr.IP, ok bool) {
for _, ip := range dohIPsOfBase[base] {
if ip.Is6() {
return ip, true
}
}
return ip, false
}
func init() {
// Cloudflare
addDoH("1.1.1.1", "https://cloudflare-dns.com/dns-query")
addDoH("1.0.0.1", "https://cloudflare-dns.com/dns-query")
addDoH("2606:4700:4700::1111", "https://cloudflare-dns.com/dns-query")
addDoH("2606:4700:4700::1001", "https://cloudflare-dns.com/dns-query")
// Cloudflare -Malware
addDoH("1.1.1.2", "https://security.cloudflare-dns.com/dns-query")
addDoH("1.0.0.2", "https://security.cloudflare-dns.com/dns-query")
addDoH("2606:4700:4700::1112", "https://security.cloudflare-dns.com/dns-query")
addDoH("2606:4700:4700::1002", "https://security.cloudflare-dns.com/dns-query")
// Cloudflare -Malware -Adult
addDoH("1.1.1.3", "https://family.cloudflare-dns.com/dns-query")
addDoH("1.0.0.3", "https://family.cloudflare-dns.com/dns-query")
addDoH("2606:4700:4700::1113", "https://family.cloudflare-dns.com/dns-query")
addDoH("2606:4700:4700::1003", "https://family.cloudflare-dns.com/dns-query")
// Google
addDoH("8.8.8.8", "https://dns.google/dns-query")
addDoH("8.8.4.4", "https://dns.google/dns-query")
addDoH("2001:4860:4860::8888", "https://dns.google/dns-query")
addDoH("2001:4860:4860::8844", "https://dns.google/dns-query")
// OpenDNS
// TODO(bradfitz): OpenDNS is unique amongst this current set in that
// its DoH DNS names resolve to different IPs than its normal DNS
// IPs. Support that later. For now we assume that they're the same.
// addDoH("208.67.222.222", "https://doh.opendns.com/dns-query")
// addDoH("208.67.220.220", "https://doh.opendns.com/dns-query")
// addDoH("208.67.222.123", "https://doh.familyshield.opendns.com/dns-query")
// addDoH("208.67.220.123", "https://doh.familyshield.opendns.com/dns-query")
// Quad9
addDoH("9.9.9.9", "https://dns.quad9.net/dns-query")
addDoH("149.112.112.112", "https://dns.quad9.net/dns-query")
addDoH("2620:fe::fe", "https://dns.quad9.net/dns-query")
addDoH("2620:fe::fe:9", "https://dns.quad9.net/dns-query")
// Quad9 -DNSSEC
addDoH("9.9.9.10", "https://dns10.quad9.net/dns-query")
addDoH("149.112.112.10", "https://dns10.quad9.net/dns-query")
addDoH("2620:fe::10", "https://dns10.quad9.net/dns-query")
addDoH("2620:fe::fe:10", "https://dns10.quad9.net/dns-query")
}