tailscale/cmd/stunstamp/stunstamp.go
Jordan Whited 7aec8d4e6b
cmd/stunstamp: refactor connection construction (#13110)
getConns() is now responsible for returning both stable and unstable
conns. conn and measureFn are now passed together via connAndMeasureFn.
newConnAndMeasureFn() is responsible for constructing them.

TCP measurement timeouts are adjusted to more closely match netcheck.

Updates tailscale/corp#22114

Signed-off-by: Jordan Whited <jordan@tailscale.com>
2024-08-12 14:09:45 -07:00

1117 lines
30 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// The stunstamp binary measures round-trip latency with DERPs.
package main
import (
"bytes"
"cmp"
"context"
"crypto/tls"
"encoding/json"
"errors"
"flag"
"fmt"
"io"
"log"
"math"
"math/rand/v2"
"net"
"net/http"
"net/netip"
"net/url"
"os"
"os/signal"
"runtime"
"slices"
"strconv"
"strings"
"sync"
"syscall"
"time"
"github.com/golang/snappy"
"github.com/prometheus/prometheus/prompb"
"github.com/tcnksm/go-httpstat"
"tailscale.com/logtail/backoff"
"tailscale.com/net/stun"
"tailscale.com/net/tcpinfo"
"tailscale.com/tailcfg"
)
var (
flagDERPMap = flag.String("derp-map", "https://login.tailscale.com/derpmap/default", "URL to DERP map")
flagInterval = flag.Duration("interval", time.Minute, "interval to probe at in time.ParseDuration() format")
flagIPv6 = flag.Bool("ipv6", false, "probe IPv6 addresses")
flagRemoteWriteURL = flag.String("rw-url", "", "prometheus remote write URL")
flagInstance = flag.String("instance", "", "instance label value; defaults to hostname if unspecified")
flagSTUNDstPorts = flag.String("stun-dst-ports", "", "comma-separated list of STUN destination ports to monitor")
flagHTTPSDstPorts = flag.String("https-dst-ports", "", "comma-separated list of HTTPS destination ports to monitor")
flagTCPDstPorts = flag.String("tcp-dst-ports", "", "comma-separated list of TCP destination ports to monitor")
flagICMP = flag.Bool("icmp", false, "probe ICMP")
)
const (
minInterval = time.Second
maxBufferDuration = time.Hour
)
func getDERPMap(ctx context.Context, url string) (*tailcfg.DERPMap, error) {
req, err := http.NewRequestWithContext(ctx, "GET", url, nil)
if err != nil {
return nil, err
}
resp, err := http.DefaultClient.Do(req)
if err != nil {
return nil, err
}
defer resp.Body.Close()
if resp.StatusCode != 200 {
return nil, fmt.Errorf("non-200 derp map resp: %d", resp.StatusCode)
}
dm := tailcfg.DERPMap{}
err = json.NewDecoder(resp.Body).Decode(&dm)
if err != nil {
return nil, fmt.Errorf("failed to decode derp map resp: %v", err)
}
return &dm, nil
}
type timestampSource int
const (
timestampSourceUserspace timestampSource = iota
timestampSourceKernel
)
func (t timestampSource) String() string {
switch t {
case timestampSourceUserspace:
return "userspace"
case timestampSourceKernel:
return "kernel"
default:
return "unknown"
}
}
type protocol string
const (
protocolSTUN protocol = "stun"
protocolICMP protocol = "icmp"
protocolHTTPS protocol = "https"
protocolTCP protocol = "tcp"
)
// resultKey contains the stable dimensions and their values for a given
// timeseries, i.e. not time and not rtt/timeout.
type resultKey struct {
meta nodeMeta
timestampSource timestampSource
connStability connStability
protocol protocol
dstPort int
}
type result struct {
key resultKey
at time.Time
rtt *time.Duration // nil signifies failure, e.g. timeout
}
type lportsPool struct {
sync.Mutex
ports []int
}
func (l *lportsPool) get() int {
l.Lock()
defer l.Unlock()
ret := l.ports[0]
l.ports = append(l.ports[:0], l.ports[1:]...)
return ret
}
func (l *lportsPool) put(i int) {
l.Lock()
defer l.Unlock()
l.ports = append(l.ports, int(i))
}
var (
lports *lportsPool
)
const (
lportPoolSize = 16000
lportBase = 2048
)
func init() {
lports = &lportsPool{
ports: make([]int, 0, lportPoolSize),
}
for i := lportBase; i < lportBase+lportPoolSize; i++ {
lports.ports = append(lports.ports, i)
}
}
// lportForTCPConn satisfies io.ReadWriteCloser, but is really just used to pass
// around a persistent laddr for stableConn purposes. The underlying TCP
// connection is not created until measurement time as in some cases we need to
// measure dial time.
type lportForTCPConn int
func (l *lportForTCPConn) Close() error {
if *l == 0 {
return nil
}
lports.put(int(*l))
return nil
}
func (l *lportForTCPConn) Write([]byte) (int, error) {
return 0, errors.New("unimplemented")
}
func (l *lportForTCPConn) Read([]byte) (int, error) {
return 0, errors.New("unimplemented")
}
func addrInUse(err error, lport *lportForTCPConn) bool {
if errors.Is(err, syscall.EADDRINUSE) {
old := int(*lport)
// abandon port, don't return it to pool
*lport = lportForTCPConn(lports.get()) // get a new port
log.Printf("EADDRINUSE: %v old: %d new: %d", err, old, *lport)
return true
}
return false
}
func tcpDial(ctx context.Context, lport *lportForTCPConn, dst netip.AddrPort) (net.Conn, error) {
for {
var opErr error
dialer := &net.Dialer{
LocalAddr: &net.TCPAddr{
Port: int(*lport),
},
Control: func(network, address string, c syscall.RawConn) error {
return c.Control(func(fd uintptr) {
// we may restart faster than TIME_WAIT can clear
opErr = setSOReuseAddr(fd)
})
},
}
if opErr != nil {
panic(opErr)
}
tcpConn, err := dialer.DialContext(ctx, "tcp", dst.String())
if err != nil {
if addrInUse(err, lport) {
continue
}
return nil, err
}
return tcpConn, nil
}
}
type tempError struct {
error
}
func (t tempError) Temporary() bool {
return true
}
func measureTCPRTT(conn io.ReadWriteCloser, _ string, dst netip.AddrPort) (rtt time.Duration, err error) {
lport, ok := conn.(*lportForTCPConn)
if !ok {
return 0, fmt.Errorf("unexpected conn type: %T", conn)
}
// Set a dial timeout < 1s (TCP_TIMEOUT_INIT on Linux) as a means to avoid
// SYN retries, which can contribute to tcpi->rtt below. This simply limits
// retries from the initiator, but SYN+ACK on the reverse path can also
// time out and be retransmitted.
ctx, cancel := context.WithTimeout(context.Background(), time.Millisecond*750)
defer cancel()
tcpConn, err := tcpDial(ctx, lport, dst)
if err != nil {
return 0, tempError{err}
}
defer tcpConn.Close()
// This is an unreliable method to measure TCP RTT. The Linux kernel
// describes it as such in tcp_rtt_estimator(). We take some care in how we
// hold tcp_info->rtt here, e.g. clamping dial timeout, but if we are to
// actually use this elsewhere as an input to some decision it warrants a
// deeper study and consideration for alternative methods. Its usefulness
// here is as a point of comparison against the other methods.
rtt, err = tcpinfo.RTT(tcpConn)
if err != nil {
return 0, tempError{err}
}
return rtt, nil
}
func measureHTTPSRTT(conn io.ReadWriteCloser, hostname string, dst netip.AddrPort) (rtt time.Duration, err error) {
lport, ok := conn.(*lportForTCPConn)
if !ok {
return 0, fmt.Errorf("unexpected conn type: %T", conn)
}
var httpResult httpstat.Result
// 5s mirrors net/netcheck.overallProbeTimeout used in net/netcheck.Client.measureHTTPSLatency.
reqCtx, cancel := context.WithTimeout(httpstat.WithHTTPStat(context.Background(), &httpResult), time.Second*5)
defer cancel()
reqURL := "https://" + dst.String() + "/derp/latency-check"
req, err := http.NewRequestWithContext(reqCtx, "GET", reqURL, nil)
if err != nil {
return 0, err
}
client := &http.Client{}
// 1.5s mirrors derp/derphttp.dialnodeTimeout used in derp/derphttp.DialNode().
dialCtx, dialCancel := context.WithTimeout(reqCtx, time.Millisecond*1500)
defer dialCancel()
tcpConn, err := tcpDial(dialCtx, lport, dst)
if err != nil {
return 0, tempError{err}
}
defer tcpConn.Close()
tlsConn := tls.Client(tcpConn, &tls.Config{
ServerName: hostname,
})
// Mirror client/netcheck behavior, which handshakes before handing the
// tlsConn over to the http.Client via http.Transport
err = tlsConn.Handshake()
if err != nil {
return 0, tempError{err}
}
tlsConnCh := make(chan net.Conn, 1)
tlsConnCh <- tlsConn
tr := &http.Transport{
DialTLSContext: func(ctx context.Context, network string, addr string) (net.Conn, error) {
select {
case tlsConn := <-tlsConnCh:
return tlsConn, nil
default:
return nil, errors.New("unexpected second call of DialTLSContext")
}
},
}
client.Transport = tr
resp, err := client.Do(req)
if err != nil {
return 0, tempError{err}
}
if resp.StatusCode/100 != 2 {
return 0, tempError{fmt.Errorf("unexpected status code: %d", resp.StatusCode)}
}
defer resp.Body.Close()
_, err = io.Copy(io.Discard, io.LimitReader(resp.Body, 8<<10))
if err != nil {
return 0, tempError{err}
}
httpResult.End(time.Now())
return httpResult.ServerProcessing, nil
}
func measureSTUNRTT(conn io.ReadWriteCloser, _ string, dst netip.AddrPort) (rtt time.Duration, err error) {
uconn, ok := conn.(*net.UDPConn)
if !ok {
return 0, fmt.Errorf("unexpected conn type: %T", conn)
}
err = uconn.SetReadDeadline(time.Now().Add(time.Second * 2))
if err != nil {
return 0, fmt.Errorf("error setting read deadline: %w", err)
}
txID := stun.NewTxID()
req := stun.Request(txID)
txAt := time.Now()
_, err = uconn.WriteToUDP(req, &net.UDPAddr{
IP: dst.Addr().AsSlice(),
Port: int(dst.Port()),
})
if err != nil {
return 0, fmt.Errorf("error writing to udp socket: %w", err)
}
b := make([]byte, 1460)
for {
n, err := uconn.Read(b)
rxAt := time.Now()
if err != nil {
return 0, fmt.Errorf("error reading from udp socket: %w", err)
}
gotTxID, _, err := stun.ParseResponse(b[:n])
if err != nil || gotTxID != txID {
continue
}
return rxAt.Sub(txAt), nil
}
}
func isTemporaryOrTimeoutErr(err error) bool {
if errors.Is(err, os.ErrDeadlineExceeded) || errors.Is(err, context.DeadlineExceeded) {
return true
}
if err, ok := err.(interface{ Temporary() bool }); ok {
return err.Temporary()
}
return false
}
type nodeMeta struct {
regionID int
regionCode string
hostname string
addr netip.Addr
}
type measureFn func(conn io.ReadWriteCloser, hostname string, dst netip.AddrPort) (rtt time.Duration, err error)
// probe measures round trip time for the node described by meta over cf against
// dstPort. It may return a nil duration and nil error in the event of a
// timeout. A non-nil error indicates an unrecoverable or non-temporary error.
func probe(meta nodeMeta, cf *connAndMeasureFn, dstPort int) (*time.Duration, error) {
ua := &net.UDPAddr{
IP: net.IP(meta.addr.AsSlice()),
Port: dstPort,
}
time.Sleep(rand.N(200 * time.Millisecond)) // jitter across tx
rtt, err := cf.fn(cf.conn, meta.hostname, netip.AddrPortFrom(meta.addr, uint16(dstPort)))
if err != nil {
if isTemporaryOrTimeoutErr(err) {
log.Printf("temp error measuring RTT to %s(%s): %v", meta.hostname, ua.String(), err)
return nil, nil
}
return nil, err
}
return &rtt, nil
}
// nodeMetaFromDERPMap parses the provided DERP map in order to update nodeMeta
// in the provided nodeMetaByAddr. It returns a slice of nodeMeta containing
// the nodes that are no longer seen in the DERP map, but were previously held
// in nodeMetaByAddr.
func nodeMetaFromDERPMap(dm *tailcfg.DERPMap, nodeMetaByAddr map[netip.Addr]nodeMeta, ipv6 bool) (stale []nodeMeta, err error) {
// Parse the new derp map before making any state changes in nodeMetaByAddr.
// If parse fails we just stick with the old state.
updated := make(map[netip.Addr]nodeMeta)
for regionID, region := range dm.Regions {
for _, node := range region.Nodes {
v4, err := netip.ParseAddr(node.IPv4)
if err != nil || !v4.Is4() {
return nil, fmt.Errorf("invalid ipv4 addr for node in derp map: %v", node.Name)
}
metas := make([]nodeMeta, 0, 2)
metas = append(metas, nodeMeta{
regionID: regionID,
regionCode: region.RegionCode,
hostname: node.HostName,
addr: v4,
})
if ipv6 {
v6, err := netip.ParseAddr(node.IPv6)
if err != nil || !v6.Is6() {
return nil, fmt.Errorf("invalid ipv6 addr for node in derp map: %v", node.Name)
}
metas = append(metas, metas[0])
metas[1].addr = v6
}
for _, meta := range metas {
updated[meta.addr] = meta
}
}
}
// Find nodeMeta that have changed
for addr, updatedMeta := range updated {
previousMeta, ok := nodeMetaByAddr[addr]
if ok {
if previousMeta == updatedMeta {
continue
}
stale = append(stale, previousMeta)
nodeMetaByAddr[addr] = updatedMeta
} else {
nodeMetaByAddr[addr] = updatedMeta
}
}
// Find nodeMeta that no longer exist
for addr, potentialStale := range nodeMetaByAddr {
_, ok := updated[addr]
if !ok {
stale = append(stale, potentialStale)
}
}
return stale, nil
}
type connAndMeasureFn struct {
conn io.ReadWriteCloser
fn measureFn
}
// newConnAndMeasureFn returns a connAndMeasureFn or an error. It may return
// nil for both if some combination of the supplied timestampSource, protocol,
// or connStability is unsupported.
func newConnAndMeasureFn(source timestampSource, protocol protocol, stable connStability) (*connAndMeasureFn, error) {
info := getProtocolSupportInfo(protocol)
if !info.stableConn && bool(stable) {
return nil, nil
}
if !info.userspaceTS && source == timestampSourceUserspace {
return nil, nil
}
if !info.kernelTS && source == timestampSourceKernel {
return nil, nil
}
switch protocol {
case protocolSTUN:
if source == timestampSourceKernel {
conn, err := getUDPConnKernelTimestamp()
if err != nil {
return nil, err
}
return &connAndMeasureFn{
conn: conn,
fn: measureSTUNRTTKernel,
}, nil
} else {
conn, err := net.ListenUDP("udp", &net.UDPAddr{})
if err != nil {
return nil, err
}
return &connAndMeasureFn{
conn: conn,
fn: measureSTUNRTT,
}, nil
}
case protocolICMP:
// TODO(jwhited): implement
return nil, nil
case protocolHTTPS:
localPort := 0
if stable {
localPort = lports.get()
}
conn := lportForTCPConn(localPort)
return &connAndMeasureFn{
conn: &conn,
fn: measureHTTPSRTT,
}, nil
case protocolTCP:
localPort := 0
if stable {
localPort = lports.get()
}
conn := lportForTCPConn(localPort)
return &connAndMeasureFn{
conn: &conn,
fn: measureTCPRTT,
}, nil
}
return nil, errors.New("unknown protocol")
}
type stableConnKey struct {
node netip.Addr
protocol protocol
port int
}
type protocolSupportInfo struct {
kernelTS bool
userspaceTS bool
stableConn bool
}
func getConns(
stableConns map[stableConnKey][2]*connAndMeasureFn,
addr netip.Addr,
protocol protocol,
dstPort int,
) (stable, unstable [2]*connAndMeasureFn, err error) {
key := stableConnKey{addr, protocol, dstPort}
defer func() {
if err != nil {
for _, source := range []timestampSource{timestampSourceUserspace, timestampSourceKernel} {
c := stable[source]
if c != nil {
c.conn.Close()
}
c = unstable[source]
if c != nil {
c.conn.Close()
}
}
}
}()
var ok bool
stable, ok = stableConns[key]
if !ok {
for _, source := range []timestampSource{timestampSourceUserspace, timestampSourceKernel} {
var cf *connAndMeasureFn
cf, err = newConnAndMeasureFn(source, protocol, stableConn)
if err != nil {
return
}
stable[source] = cf
}
stableConns[key] = stable
}
for _, source := range []timestampSource{timestampSourceUserspace, timestampSourceKernel} {
var cf *connAndMeasureFn
cf, err = newConnAndMeasureFn(source, protocol, unstableConn)
if err != nil {
return
}
unstable[source] = cf
}
return stable, unstable, nil
}
// probeNodes measures the round-trip time for the protocols and ports described
// by portsByProtocol against the DERP nodes described by nodeMetaByAddr.
// stableConns are used to recycle connections across calls to probeNodes.
// probeNodes is also responsible for trimming stableConns based on node
// lifetime in nodeMetaByAddr. It returns the results or an error if one occurs.
func probeNodes(nodeMetaByAddr map[netip.Addr]nodeMeta, stableConns map[stableConnKey][2]*connAndMeasureFn, portsByProtocol map[protocol][]int) ([]result, error) {
wg := sync.WaitGroup{}
results := make([]result, 0)
resultsCh := make(chan result)
errCh := make(chan error)
doneCh := make(chan struct{})
numProbes := 0
at := time.Now()
addrsToProbe := make(map[netip.Addr]bool)
doProbe := func(cf *connAndMeasureFn, meta nodeMeta, source timestampSource, stable connStability, protocol protocol, dstPort int) {
defer wg.Done()
r := result{
key: resultKey{
meta: meta,
timestampSource: source,
connStability: stable,
dstPort: dstPort,
protocol: protocol,
},
at: at,
}
rtt, err := probe(meta, cf, dstPort)
if err != nil {
select {
case <-doneCh:
return
case errCh <- err:
return
}
}
r.rtt = rtt
select {
case <-doneCh:
case resultsCh <- r:
}
}
for _, meta := range nodeMetaByAddr {
addrsToProbe[meta.addr] = true
for p, ports := range portsByProtocol {
for _, port := range ports {
stable, unstable, err := getConns(stableConns, meta.addr, p, port)
if err != nil {
close(doneCh)
wg.Wait()
return nil, err
}
for i, cf := range stable {
if cf != nil {
wg.Add(1)
numProbes++
go doProbe(cf, meta, timestampSource(i), stableConn, p, port)
}
}
for i, cf := range unstable {
if cf != nil {
wg.Add(1)
numProbes++
go doProbe(cf, meta, timestampSource(i), unstableConn, p, port)
}
}
}
}
}
// cleanup conns we no longer need
for k, cf := range stableConns {
if !addrsToProbe[k.node] {
if cf[timestampSourceKernel] != nil {
cf[timestampSourceKernel].conn.Close()
}
cf[timestampSourceUserspace].conn.Close()
delete(stableConns, k)
}
}
for {
select {
case err := <-errCh:
close(doneCh)
wg.Wait()
return nil, err
case result := <-resultsCh:
results = append(results, result)
if len(results) == numProbes {
return results, nil
}
}
}
}
type connStability bool
const (
unstableConn connStability = false
stableConn connStability = true
)
const (
rttMetricName = "stunstamp_derp_rtt_ns"
timeoutsMetricName = "stunstamp_derp_timeouts_total"
)
func timeSeriesLabels(metricName string, meta nodeMeta, instance string, source timestampSource, stability connStability, protocol protocol, dstPort int) []prompb.Label {
addressFamily := "ipv4"
if meta.addr.Is6() {
addressFamily = "ipv6"
}
labels := make([]prompb.Label, 0)
labels = append(labels, prompb.Label{
Name: "job",
Value: "stunstamp-rw",
})
labels = append(labels, prompb.Label{
Name: "instance",
Value: instance,
})
labels = append(labels, prompb.Label{
Name: "region_id",
Value: fmt.Sprintf("%d", meta.regionID),
})
labels = append(labels, prompb.Label{
Name: "region_code",
Value: meta.regionCode,
})
labels = append(labels, prompb.Label{
Name: "address_family",
Value: addressFamily,
})
labels = append(labels, prompb.Label{
Name: "hostname",
Value: meta.hostname,
})
labels = append(labels, prompb.Label{
Name: "protocol",
Value: string(protocol),
})
labels = append(labels, prompb.Label{
Name: "dst_port",
Value: strconv.Itoa(dstPort),
})
labels = append(labels, prompb.Label{
Name: "__name__",
Value: metricName,
})
labels = append(labels, prompb.Label{
Name: "timestamp_source",
Value: source.String(),
})
labels = append(labels, prompb.Label{
Name: "stable_conn",
Value: fmt.Sprintf("%v", stability),
})
slices.SortFunc(labels, func(a, b prompb.Label) int {
// prometheus remote-write spec requires lexicographically sorted label names
return cmp.Compare(a.Name, b.Name)
})
return labels
}
const (
// https://prometheus.io/docs/concepts/remote_write_spec/#stale-markers
staleNaN uint64 = 0x7ff0000000000002
)
func staleMarkersFromNodeMeta(stale []nodeMeta, instance string, portsByProtocol map[protocol][]int) []prompb.TimeSeries {
staleMarkers := make([]prompb.TimeSeries, 0)
now := time.Now()
for p, ports := range portsByProtocol {
for _, port := range ports {
for _, s := range stale {
samples := []prompb.Sample{
{
Timestamp: now.UnixMilli(),
Value: math.Float64frombits(staleNaN),
},
}
// We send stale markers for all combinations in the interest
// of simplicity.
for _, name := range []string{rttMetricName, timeoutsMetricName} {
for _, source := range []timestampSource{timestampSourceUserspace, timestampSourceKernel} {
for _, stable := range []connStability{unstableConn, stableConn} {
staleMarkers = append(staleMarkers, prompb.TimeSeries{
Labels: timeSeriesLabels(name, s, instance, source, stable, p, port),
Samples: samples,
})
}
}
}
}
}
}
return staleMarkers
}
// resultsToPromTimeSeries returns a slice of prometheus TimeSeries for the
// provided results and instance. timeouts is updated based on results, i.e.
// all result.key's are added to timeouts if they do not exist, and removed
// from timeouts if they are not present in results.
func resultsToPromTimeSeries(results []result, instance string, timeouts map[resultKey]uint64) []prompb.TimeSeries {
all := make([]prompb.TimeSeries, 0, len(results)*2)
seenKeys := make(map[resultKey]bool)
for _, r := range results {
timeoutsCount := timeouts[r.key] // a non-existent key will return a zero val
seenKeys[r.key] = true
rttLabels := timeSeriesLabels(rttMetricName, r.key.meta, instance, r.key.timestampSource, r.key.connStability, r.key.protocol, r.key.dstPort)
rttSamples := make([]prompb.Sample, 1)
rttSamples[0].Timestamp = r.at.UnixMilli()
if r.rtt != nil {
rttSamples[0].Value = float64(*r.rtt)
} else {
rttSamples[0].Value = math.NaN()
timeoutsCount++
}
rttTS := prompb.TimeSeries{
Labels: rttLabels,
Samples: rttSamples,
}
all = append(all, rttTS)
timeouts[r.key] = timeoutsCount
timeoutsLabels := timeSeriesLabels(timeoutsMetricName, r.key.meta, instance, r.key.timestampSource, r.key.connStability, r.key.protocol, r.key.dstPort)
timeoutsSamples := make([]prompb.Sample, 1)
timeoutsSamples[0].Timestamp = r.at.UnixMilli()
timeoutsSamples[0].Value = float64(timeoutsCount)
timeoutsTS := prompb.TimeSeries{
Labels: timeoutsLabels,
Samples: timeoutsSamples,
}
all = append(all, timeoutsTS)
}
for k := range timeouts {
if !seenKeys[k] {
delete(timeouts, k)
}
}
return all
}
type remoteWriteClient struct {
c *http.Client
url string
}
type recoverableErr struct {
error
}
func newRemoteWriteClient(url string) *remoteWriteClient {
return &remoteWriteClient{
c: &http.Client{
Timeout: time.Second * 30,
},
url: url,
}
}
func (r *remoteWriteClient) write(ctx context.Context, ts []prompb.TimeSeries) error {
wr := &prompb.WriteRequest{
Timeseries: ts,
}
b, err := wr.Marshal()
if err != nil {
return fmt.Errorf("unable to marshal write request: %w", err)
}
compressed := snappy.Encode(nil, b)
req, err := http.NewRequestWithContext(ctx, "POST", r.url, bytes.NewReader(compressed))
if err != nil {
return fmt.Errorf("unable to create write request: %w", err)
}
req.Header.Add("Content-Encoding", "snappy")
req.Header.Set("Content-Type", "application/x-protobuf")
req.Header.Set("User-Agent", "stunstamp")
req.Header.Set("X-Prometheus-Remote-Write-Version", "0.1.0")
resp, err := r.c.Do(req)
if err != nil {
return recoverableErr{fmt.Errorf("error performing write request: %w", err)}
}
if resp.StatusCode/100 != 2 {
err = fmt.Errorf("remote server %s returned HTTP status %d", r.url, resp.StatusCode)
}
if resp.StatusCode/100 == 5 || resp.StatusCode == http.StatusTooManyRequests {
return recoverableErr{err}
}
return err
}
func remoteWriteTimeSeries(client *remoteWriteClient, tsCh chan []prompb.TimeSeries) {
bo := backoff.NewBackoff("remote-write", log.Printf, time.Second*30)
// writeErr may contribute to bo's backoff schedule across tsCh read ops,
// i.e. if an unrecoverable error occurs for client.write(ctx, A), that
// should be accounted against bo prior to attempting to
// client.write(ctx, B).
var writeErr error
for ts := range tsCh {
for {
bo.BackOff(context.Background(), writeErr)
reqCtx, cancel := context.WithTimeout(context.Background(), time.Second*30)
writeErr = client.write(reqCtx, ts)
cancel()
var re recoverableErr
recoverable := errors.As(writeErr, &re)
if writeErr != nil {
log.Printf("remote write error(recoverable=%v): %v", recoverable, writeErr)
}
if !recoverable {
// a nil err is not recoverable
break
}
}
}
}
func getPortsFromFlag(f string) ([]int, error) {
if len(f) == 0 {
return nil, nil
}
split := strings.Split(f, ",")
slices.Sort(split)
split = slices.Compact(split)
ports := make([]int, 0)
for _, portStr := range split {
port, err := strconv.ParseUint(portStr, 10, 16)
if err != nil {
return nil, err
}
ports = append(ports, int(port))
}
return ports, nil
}
func main() {
if runtime.GOOS != "linux" && runtime.GOOS != "darwin" {
log.Fatal("unsupported platform")
}
flag.Parse()
portsByProtocol := make(map[protocol][]int)
stunPorts, err := getPortsFromFlag(*flagSTUNDstPorts)
if err != nil {
log.Fatalf("invalid stun-dst-ports flag value: %v", err)
}
if len(stunPorts) > 0 {
portsByProtocol[protocolSTUN] = stunPorts
}
httpsPorts, err := getPortsFromFlag(*flagHTTPSDstPorts)
if err != nil {
log.Fatalf("invalid https-dst-ports flag value: %v", err)
}
if len(httpsPorts) > 0 {
portsByProtocol[protocolHTTPS] = httpsPorts
}
tcpPorts, err := getPortsFromFlag(*flagTCPDstPorts)
if err != nil {
log.Fatalf("invalid tcp-dst-ports flag value: %v", err)
}
if len(tcpPorts) > 0 {
portsByProtocol[protocolTCP] = tcpPorts
}
if *flagICMP {
portsByProtocol[protocolICMP] = []int{0}
}
if len(portsByProtocol) == 0 {
log.Fatal("nothing to probe")
}
// TODO(jwhited): remove protocol restriction
for k := range portsByProtocol {
if k != protocolSTUN && k != protocolHTTPS && k != protocolTCP {
log.Fatal("ICMP is not yet supported")
}
}
if len(*flagDERPMap) < 1 {
log.Fatal("derp-map flag is unset")
}
if *flagInterval < minInterval || *flagInterval > maxBufferDuration {
log.Fatalf("interval must be >= %s and <= %s", minInterval, maxBufferDuration)
}
if len(*flagRemoteWriteURL) < 1 {
log.Fatal("rw-url flag is unset")
}
_, err = url.Parse(*flagRemoteWriteURL)
if err != nil {
log.Fatalf("invalid rw-url flag value: %v", err)
}
if len(*flagInstance) < 1 {
hostname, err := os.Hostname()
if err != nil {
log.Fatalf("failed to get hostname: %v", err)
}
*flagInstance = hostname
}
sigCh := make(chan os.Signal, 1)
signal.Notify(sigCh, syscall.SIGINT, syscall.SIGTERM)
dmCh := make(chan *tailcfg.DERPMap)
go func() {
bo := backoff.NewBackoff("derp-map", log.Printf, time.Second*30)
for {
ctx, cancel := context.WithTimeout(context.Background(), time.Second*10)
dm, err := getDERPMap(ctx, *flagDERPMap)
cancel()
bo.BackOff(context.Background(), err)
if err != nil {
continue
}
dmCh <- dm
return
}
}()
nodeMetaByAddr := make(map[netip.Addr]nodeMeta)
select {
case <-sigCh:
return
case dm := <-dmCh:
_, err := nodeMetaFromDERPMap(dm, nodeMetaByAddr, *flagIPv6)
if err != nil {
log.Fatalf("error parsing derp map on startup: %v", err)
}
}
tsCh := make(chan []prompb.TimeSeries, maxBufferDuration / *flagInterval)
remoteWriteDoneCh := make(chan struct{})
rwc := newRemoteWriteClient(*flagRemoteWriteURL)
go func() {
remoteWriteTimeSeries(rwc, tsCh)
close(remoteWriteDoneCh)
}()
shutdown := func() {
close(tsCh)
select {
case <-time.After(time.Second * 10): // give goroutine some time to flush
case <-remoteWriteDoneCh:
}
// send stale markers on shutdown
staleMeta := make([]nodeMeta, 0, len(nodeMetaByAddr))
for _, v := range nodeMetaByAddr {
staleMeta = append(staleMeta, v)
}
staleMarkers := staleMarkersFromNodeMeta(staleMeta, *flagInstance, portsByProtocol)
if len(staleMarkers) > 0 {
ctx, cancel := context.WithTimeout(context.Background(), time.Second*5)
rwc.write(ctx, staleMarkers)
cancel()
}
return
}
log.Println("stunstamp started")
// Re-using sockets means we get the same 5-tuple across runs. This results
// in a higher probability of the packets traversing the same underlay path.
// Comparison of stable and unstable 5-tuple results can shed light on
// differences between paths where hashing (multipathing/load balancing)
// comes into play. The inner 2 element array index is timestampSource.
stableConns := make(map[stableConnKey][2]*connAndMeasureFn)
// timeouts holds counts of timeout events. Values are persisted for the
// lifetime of the related node in the DERP map.
timeouts := make(map[resultKey]uint64)
derpMapTicker := time.NewTicker(time.Minute * 5)
defer derpMapTicker.Stop()
probeTicker := time.NewTicker(*flagInterval)
defer probeTicker.Stop()
for {
select {
case <-probeTicker.C:
results, err := probeNodes(nodeMetaByAddr, stableConns, portsByProtocol)
if err != nil {
log.Printf("unrecoverable error while probing: %v", err)
shutdown()
return
}
ts := resultsToPromTimeSeries(results, *flagInstance, timeouts)
select {
case tsCh <- ts:
default:
select {
case <-tsCh:
log.Println("prometheus remote-write buffer full, dropped measurements")
default:
tsCh <- ts
}
}
case dm := <-dmCh:
staleMeta, err := nodeMetaFromDERPMap(dm, nodeMetaByAddr, *flagIPv6)
if err != nil {
log.Printf("error parsing DERP map, continuing with stale map: %v", err)
continue
}
staleMarkers := staleMarkersFromNodeMeta(staleMeta, *flagInstance, portsByProtocol)
if len(staleMarkers) < 1 {
continue
}
select {
case tsCh <- staleMarkers:
default:
select {
case <-tsCh:
log.Println("prometheus remote-write buffer full, dropped measurements")
default:
tsCh <- staleMarkers
}
}
case <-derpMapTicker.C:
go func() {
ctx, cancel := context.WithTimeout(context.Background(), time.Second*10)
defer cancel()
updatedDM, err := getDERPMap(ctx, *flagDERPMap)
if err == nil {
dmCh <- updatedDM
}
}()
case <-sigCh:
shutdown()
return
}
}
}