tailscale/net/art/table.go
David Anderson a7c910e361 net/art: implement the Table type, a multi-level art route table.
Updates #7781

                           │    sec/op     │
TableInsertion/ipv4/10       1.562µ ±   2%
TableInsertion/ipv4/100      2.398µ ±   5%
TableInsertion/ipv4/1000     2.097µ ±   3%
TableInsertion/ipv4/10000    2.756µ ±   4%
TableInsertion/ipv4/100000   2.473µ ±  13%
TableInsertion/ipv6/10       7.649µ ±   2%
TableInsertion/ipv6/100      12.09µ ±   3%
TableInsertion/ipv6/1000     14.84µ ±   5%
TableInsertion/ipv6/10000    14.72µ ±   8%
TableInsertion/ipv6/100000   13.23µ ±  41%
TableDelete/ipv4/10          378.4n ±   5%
TableDelete/ipv4/100         366.9n ±   3%
TableDelete/ipv4/1000        418.6n ±   3%
TableDelete/ipv4/10000       609.2n ±  11%
TableDelete/ipv4/100000      679.2n ±  28%
TableDelete/ipv6/10          504.2n ±   4%
TableDelete/ipv6/100         959.5n ±  12%
TableDelete/ipv6/1000        1.436µ ±   6%
TableDelete/ipv6/10000       1.772µ ±  15%
TableDelete/ipv6/100000      1.172µ ± 113%
TableGet/ipv4/10             32.14n ±  11%
TableGet/ipv4/100            38.58n ±   2%
TableGet/ipv4/1000           45.03n ±   2%
TableGet/ipv4/10000          52.90n ±   7%
TableGet/ipv4/100000         135.2n ±  11%
TableGet/ipv6/10             41.55n ±   1%
TableGet/ipv6/100            44.78n ±   2%
TableGet/ipv6/1000           49.03n ±   2%
TableGet/ipv6/10000          65.38n ±   5%
TableGet/ipv6/100000         525.0n ±  39%

                           │   avg-B/op   │
TableInsertion/ipv4/10       25.18Ki ± 0%
TableInsertion/ipv4/100      17.63Ki ± 0%
TableInsertion/ipv4/1000     14.14Ki ± 0%
TableInsertion/ipv4/10000    12.92Ki ± 0%
TableInsertion/ipv4/100000   11.13Ki ± 0%
TableInsertion/ipv6/10       76.87Ki ± 0%
TableInsertion/ipv6/100      98.33Ki ± 0%
TableInsertion/ipv6/1000     91.44Ki ± 0%
TableInsertion/ipv6/10000    90.39Ki ± 0%
TableInsertion/ipv6/100000   87.19Ki ± 0%
TableDelete/ipv4/10            3.230 ± 0%
TableDelete/ipv4/100           4.020 ± 0%
TableDelete/ipv4/1000          3.990 ± 0%
TableDelete/ipv4/10000         4.000 ± 0%
TableDelete/ipv4/100000        4.000 ± 0%
TableDelete/ipv6/10            16.00 ± 0%
TableDelete/ipv6/100           16.00 ± 0%
TableDelete/ipv6/1000          16.00 ± 0%
TableDelete/ipv6/10000         16.00 ± 0%
TableDelete/ipv6/100000        16.00 ± 0%

                           │ avg-allocs/op │
TableInsertion/ipv4/10          2.900 ± 0%
TableInsertion/ipv4/100         2.330 ± 0%
TableInsertion/ipv4/1000        2.070 ± 0%
TableInsertion/ipv4/10000       1.980 ± 0%
TableInsertion/ipv4/100000      1.840 ± 0%
TableInsertion/ipv6/10          6.800 ± 0%
TableInsertion/ipv6/100         8.420 ± 0%
TableInsertion/ipv6/1000        7.900 ± 0%
TableInsertion/ipv6/10000       7.820 ± 0%
TableInsertion/ipv6/100000      7.580 ± 0%
TableDelete/ipv4/10             1.000 ± 0%
TableDelete/ipv4/100            1.000 ± 0%
TableDelete/ipv4/1000           1.000 ± 0%
TableDelete/ipv4/10000          1.000 ± 0%
TableDelete/ipv4/100000         1.000 ± 0%
TableDelete/ipv6/10             1.000 ± 0%
TableDelete/ipv6/100            1.000 ± 0%
TableDelete/ipv6/1000           1.000 ± 0%
TableDelete/ipv6/10000          1.000 ± 0%
TableDelete/ipv6/100000         1.000 ± 0%

                           │   routes/s   │
TableInsertion/ipv4/10       640.3k ±  2%
TableInsertion/ipv4/100      417.1k ±  5%
TableInsertion/ipv4/1000     477.0k ±  3%
TableInsertion/ipv4/10000    362.8k ±  5%
TableInsertion/ipv4/100000   404.5k ± 15%
TableInsertion/ipv6/10       130.7k ±  1%
TableInsertion/ipv6/100      82.69k ±  3%
TableInsertion/ipv6/1000     67.37k ±  5%
TableInsertion/ipv6/10000    67.93k ±  9%
TableInsertion/ipv6/100000   75.63k ± 29%
TableDelete/ipv4/10          2.642M ±  6%
TableDelete/ipv4/100         2.726M ±  3%
TableDelete/ipv4/1000        2.389M ±  3%
TableDelete/ipv4/10000       1.641M ± 12%
TableDelete/ipv4/100000      1.472M ± 27%
TableDelete/ipv6/10          1.984M ±  4%
TableDelete/ipv6/100         1.042M ± 11%
TableDelete/ipv6/1000        696.5k ±  6%
TableDelete/ipv6/10000       564.4k ± 13%
TableDelete/ipv6/100000      853.6k ± 53%

                     │   addrs/s    │
TableGet/ipv4/10       31.11M ± 10%
TableGet/ipv4/100      25.92M ±  2%
TableGet/ipv4/1000     22.21M ±  2%
TableGet/ipv4/10000    18.91M ±  8%
TableGet/ipv4/100000   7.397M ± 12%
TableGet/ipv6/10       24.07M ±  1%
TableGet/ipv6/100      22.33M ±  2%
TableGet/ipv6/1000     20.40M ±  2%
TableGet/ipv6/10000    15.30M ±  5%
TableGet/ipv6/100000   1.905M ± 28%

                     │    B/op    │
TableGet/ipv4/10       4.000 ± 0%
TableGet/ipv4/100      4.000 ± 0%
TableGet/ipv4/1000     4.000 ± 0%
TableGet/ipv4/10000    4.000 ± 0%
TableGet/ipv4/100000   4.000 ± 0%
TableGet/ipv6/10       16.00 ± 0%
TableGet/ipv6/100      16.00 ± 0%
TableGet/ipv6/1000     16.00 ± 0%
TableGet/ipv6/10000    16.00 ± 0%
TableGet/ipv6/100000   16.00 ± 0%

                     │ allocs/op  │
TableGet/ipv4/10       1.000 ± 0%
TableGet/ipv4/100      1.000 ± 0%
TableGet/ipv4/1000     1.000 ± 0%
TableGet/ipv4/10000    1.000 ± 0%
TableGet/ipv4/100000   1.000 ± 0%
TableGet/ipv6/10       1.000 ± 0%
TableGet/ipv6/100      1.000 ± 0%
TableGet/ipv6/1000     1.000 ± 0%
TableGet/ipv6/10000    1.000 ± 0%
TableGet/ipv6/100000   1.000 ± 0%

Signed-off-by: David Anderson <danderson@tailscale.com>
2023-04-13 09:04:17 -07:00

163 lines
4.7 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package art provides a routing table that implements the Allotment Routing
// Table (ART) algorithm by Donald Knuth, as described in the paper by Yoichi
// Hariguchi.
//
// ART outperforms the traditional radix tree implementations for route lookups,
// insertions, and deletions.
//
// For more information, see Yoichi Hariguchi's paper:
// https://cseweb.ucsd.edu//~varghese/TEACH/cs228/artlookup.pdf
package art
import (
"bytes"
"fmt"
"io"
"net/netip"
"strings"
)
// Table is an IPv4 and IPv6 routing table.
type Table[T any] struct {
v4 strideTable[T]
v6 strideTable[T]
}
// Get does a route lookup for addr and returns the associated value, or nil if
// no route matched.
func (t *Table[T]) Get(addr netip.Addr) *T {
st := &t.v4
if addr.Is6() {
st = &t.v6
}
var ret *T
for _, stride := range addr.AsSlice() {
rt, child := st.getValAndChild(stride)
if rt != nil {
// Found a more specific route than whatever we found previously,
// keep a note.
ret = rt
}
if child == nil {
// No sub-routes further down, whatever we have recorded in ret is
// the result.
return ret
}
st = child
}
// Unreachable because Insert/Delete won't allow the leaf strideTables to
// have children, so we must return via the nil check in the loop.
panic("unreachable")
}
// Insert adds pfx to the table, with value val.
// If pfx is already present in the table, its value is set to val.
func (t *Table[T]) Insert(pfx netip.Prefix, val *T) {
if val == nil {
panic("Table.Insert called with nil value")
}
st := &t.v4
if pfx.Addr().Is6() {
st = &t.v6
}
bs := pfx.Addr().AsSlice()
i := 0
numBits := pfx.Bits()
// The strideTable we want to insert into is potentially at the end of a
// chain of parent tables, each one encoding successive 8 bits of the
// prefix. Navigate downwards, allocating child tables as needed, until we
// find the one this prefix belongs in.
for numBits > 8 {
st = st.getOrCreateChild(bs[i])
i++
numBits -= 8
}
// Finally, insert the remaining 0-8 bits of the prefix into the child
// table.
st.insert(bs[i], numBits, val)
}
// Delete removes pfx from the table, if it is present.
func (t *Table[T]) Delete(pfx netip.Prefix) {
st := &t.v4
if pfx.Addr().Is6() {
st = &t.v6
}
bs := pfx.Addr().AsSlice()
i := 0
numBits := pfx.Bits()
// Deletion may drive the refcount of some strideTables down to zero. We
// need to clean up these dangling tables, so we have to keep track of which
// tables we touch on the way down, and which strideEntry index each child
// is registered in.
strideTables := [16]*strideTable[T]{st}
var strideIndexes [16]int
// Similar to Insert, navigate down the tree of strideTables, looking for
// the one that houses the last 0-8 bits of the prefix to delete.
//
// The only difference is that here, we don't create missing child tables.
// If a child necessary to pfx is missing, then the pfx cannot exist in the
// Table, and we can exit early.
for numBits > 8 {
child, idx := st.getChild(bs[i])
if child == nil {
// Prefix can't exist in the table, one of the necessary
// strideTables doesn't exit.
return
}
// Note that the strideIndex and strideTables entries are off-by-one.
// The child table pointer is recorded at i+1, but it is referenced by a
// particular index in the parent table, at index i.
strideIndexes[i] = idx
i++
strideTables[i] = child
numBits -= 8
st = child
}
if st.delete(bs[i], numBits) == nil {
// Prefix didn't exist in the expected strideTable, refcount hasn't
// changed, no need to run through cleanup.
return
}
// st.delete reduced st's refcount by one, so we may be hanging onto a chain
// of redundant strideTables. Walk back up the path we recorded in the
// descent loop, deleting tables until we encounter one that still has other
// refs (or we hit the root strideTable, which is never deleted).
for i > 0 && strideTables[i].refs == 0 {
strideTables[i-1].deleteChild(strideIndexes[i-1])
i--
}
}
// debugSummary prints the tree of allocated strideTables in t, with each
// strideTable's refcount.
func (t *Table[T]) debugSummary() string {
var ret bytes.Buffer
fmt.Fprintf(&ret, "v4: ")
strideSummary(&ret, &t.v4, 0)
fmt.Fprintf(&ret, "v6: ")
strideSummary(&ret, &t.v6, 0)
return ret.String()
}
func strideSummary[T any](w io.Writer, st *strideTable[T], indent int) {
fmt.Fprintf(w, "%d refs\n", st.refs)
indent += 2
for i := firstHostIndex; i <= lastHostIndex; i++ {
if child := st.entries[i].child; child != nil {
addr, len := inversePrefixIndex(i)
fmt.Fprintf(w, "%s%d/%d: ", strings.Repeat(" ", indent), addr, len)
strideSummary(w, child, indent)
}
}
}