tailscale/control/controlclient/netmap.go

295 lines
7.6 KiB
Go

// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package controlclient
import (
"bytes"
"encoding/base64"
"encoding/json"
"fmt"
"log"
"net"
"runtime"
"strings"
"time"
"github.com/tailscale/wireguard-go/wgcfg"
"tailscale.com/tailcfg"
"tailscale.com/wgengine/filter"
)
type NetworkMap struct {
// Core networking
NodeKey tailcfg.NodeKey
PrivateKey wgcfg.PrivateKey
Expiry time.Time
Addresses []wgcfg.CIDR
LocalPort uint16 // used for debugging
MachineStatus tailcfg.MachineStatus
Peers []tailcfg.Node
DNS []wgcfg.IP
DNSDomains []string
Hostinfo tailcfg.Hostinfo
PacketFilter filter.Matches
// ACLs
User tailcfg.UserID
Domain string
// TODO(crawshaw): reduce UserProfiles to []tailcfg.UserProfile?
// There are lots of ways to slice this data, leave it up to users.
UserProfiles map[tailcfg.UserID]tailcfg.UserProfile
Roles []tailcfg.Role
// TODO(crawshaw): Groups []tailcfg.Group
// TODO(crawshaw): Capabilities []tailcfg.Capability
}
func (n *NetworkMap) Equal(n2 *NetworkMap) bool {
// TODO(crawshaw): this is crude, but is an easy way to avoid bugs.
b, err := json.Marshal(n)
if err != nil {
panic(err)
}
b2, err := json.Marshal(n2)
if err != nil {
panic(err)
}
return bytes.Equal(b, b2)
}
func (n *NetworkMap) isEmpty() bool {
if n == nil {
return true
}
return n.Equal(&NetworkMap{})
}
func (nm NetworkMap) String() string {
return nm.Concise()
}
func keyString(key [32]byte) string {
b64 := base64.StdEncoding.EncodeToString(key[:])
abbrev := "invalid"
if len(b64) == 44 {
abbrev = b64[0:4] + "…" + b64[39:43]
}
return fmt.Sprintf("[%s]", abbrev)
}
func (nm *NetworkMap) Concise() string {
buf := new(strings.Builder)
fmt.Fprintf(buf, "NetworkMap: self: %v auth=%v :%v %v\n",
keyString(nm.NodeKey), nm.MachineStatus,
nm.LocalPort, nm.Addresses)
for _, p := range nm.Peers {
aip := make([]string, len(p.AllowedIPs))
for i, a := range p.AllowedIPs {
aip[i] = fmt.Sprint(a)
}
u := fmt.Sprint(p.User)
if strings.HasPrefix(u, "userid:") {
u = "u:" + u[7:]
}
f1 := fmt.Sprintf(" %v %-6v %v",
keyString(p.Key), u, p.Endpoints)
f2 := fmt.Sprintf(" %*v\n", 70-len(f1),
strings.Join(aip, " "))
fmt.Fprintf(buf, "%s%s", f1, f2)
}
return buf.String()
}
func (nm *NetworkMap) JSON() string {
b, err := json.MarshalIndent(*nm, "", " ")
if err != nil {
return fmt.Sprintf("[json error: %v]", err)
}
return string(b)
}
// TODO(apenwarr): delete me once relaynode doesn't need this anymore.
// control.go:userMap() supercedes it. This does not belong in the client.
func (nm *NetworkMap) UserMap() map[string][]filter.IP {
// Make a lookup table of roles
log.Printf("roles list is: %v\n", nm.Roles)
roles := make(map[tailcfg.RoleID]tailcfg.Role)
for _, role := range nm.Roles {
roles[role.ID] = role
}
// First, go through each node's addresses and make a lookup table
// of IP->User.
fwd := make(map[wgcfg.IP]string)
for _, node := range nm.Peers {
for _, addr := range node.Addresses {
if addr.Mask == 32 && addr.IP.Is4() {
user, ok := nm.UserProfiles[node.User]
if ok {
fwd[addr.IP] = user.LoginName
}
}
}
}
// Next, reverse the mapping into User->IP.
rev := make(map[string][]filter.IP)
for ip, username := range fwd {
ip4 := ip.To4()
if ip4 != nil {
fip := filter.NewIP(net.IP(ip4))
rev[username] = append(rev[username], fip)
}
}
// Now add roles, which are lists of users, and therefore lists
// of those users' IP addresses.
for _, user := range nm.UserProfiles {
for _, roleid := range user.Roles {
role, ok := roles[roleid]
if ok {
rolename := "role:" + role.Name
rev[rolename] = append(rev[rolename], rev[user.LoginName]...)
}
}
}
//log.Printf("Usermap is: %v\n", rev)
return rev
}
var iOS = runtime.GOOS == "darwin" && (runtime.GOARCH == "arm" || runtime.GOARCH == "arm64")
var keepalive = !iOS
const (
UAllowSingleHosts = 1 << iota
UAllowSubnetRoutes
UAllowDefaultRoute
UHackDefaultRoute
UDefault = 0
)
// Several programs need to parse these arguments into uflags, so let's
// centralize it here.
func UFlagsHelper(uroutes, rroutes, droutes bool) int {
uflags := 0
if uroutes {
uflags |= UAllowSingleHosts
}
if rroutes {
uflags |= UAllowSubnetRoutes
}
if droutes {
uflags |= UAllowDefaultRoute
}
return uflags
}
func (nm *NetworkMap) UAPI(uflags int, dnsOverride []wgcfg.IP) string {
wgcfg, err := nm.WGCfg(uflags, dnsOverride)
if err != nil {
log.Fatalf("WGCfg() failed unexpectedly: %v\n", err)
}
s, err := wgcfg.ToUAPI()
if err != nil {
log.Fatalf("ToUAPI() failed unexpectedly: %v\n", err)
}
return s
}
func (nm *NetworkMap) WGCfg(uflags int, dnsOverride []wgcfg.IP) (*wgcfg.Config, error) {
s := nm._WireGuardConfig(uflags, dnsOverride, true)
return wgcfg.FromWgQuick(s, "tailscale")
}
// TODO(apenwarr): This mode is dangerous.
// Discarding the extra endpoints is almost universally the wrong choice.
// Except that plain wireguard can't handle a peer with multiple endpoints.
// (Yet?)
func (nm *NetworkMap) WireGuardConfigOneEndpoint(uflags int, dnsOverride []wgcfg.IP) string {
return nm._WireGuardConfig(uflags, dnsOverride, false)
}
func (nm *NetworkMap) _WireGuardConfig(uflags int, dnsOverride []wgcfg.IP, allEndpoints bool) string {
buf := new(strings.Builder)
fmt.Fprintf(buf, "[Interface]\n")
fmt.Fprintf(buf, "PrivateKey = %s\n", base64.StdEncoding.EncodeToString(nm.PrivateKey[:]))
if len(nm.Addresses) > 0 {
fmt.Fprintf(buf, "Address = ")
for i, cidr := range nm.Addresses {
if i > 0 {
fmt.Fprintf(buf, ", ")
}
fmt.Fprintf(buf, "%s", cidr)
}
fmt.Fprintf(buf, "\n")
}
fmt.Fprintf(buf, "ListenPort = %d\n", nm.LocalPort)
if len(dnsOverride) > 0 {
dnss := []string{}
for _, ip := range dnsOverride {
dnss = append(dnss, ip.String())
}
fmt.Fprintf(buf, "DNS = %s\n", strings.Join(dnss, ","))
}
fmt.Fprintf(buf, "\n")
for i, peer := range nm.Peers {
if (uflags&UAllowSingleHosts) == 0 && len(peer.AllowedIPs) < 2 {
log.Printf("wgcfg: %v skipping a single-host peer.\n", peer.Key.AbbrevString())
continue
}
if i > 0 {
fmt.Fprintf(buf, "\n")
}
fmt.Fprintf(buf, "[Peer]\n")
fmt.Fprintf(buf, "PublicKey = %s\n", base64.StdEncoding.EncodeToString(peer.Key[:]))
if len(peer.Endpoints) > 0 {
if len(peer.Endpoints) == 1 {
fmt.Fprintf(buf, "Endpoint = %s", peer.Endpoints[0])
} else if allEndpoints {
// TODO(apenwarr): This mode is incompatible.
// Normal wireguard clients don't know how to
// parse it (yet?)
fmt.Fprintf(buf, "Endpoint = %s",
strings.Join(peer.Endpoints, ","))
} else {
fmt.Fprintf(buf, "Endpoint = %s # other endpoints: %s",
peer.Endpoints[0],
strings.Join(peer.Endpoints[1:], ", "))
}
buf.WriteByte('\n')
}
var aips []string
for _, allowedIP := range peer.AllowedIPs {
aip := allowedIP.String()
if allowedIP.Mask == 0 {
if (uflags & UAllowDefaultRoute) == 0 {
log.Printf("wgcfg: %v skipping default route\n", peer.Key.AbbrevString())
continue
}
if (uflags & UHackDefaultRoute) != 0 {
aip = "10.0.0.0/8"
log.Printf("wgcfg: %v converting default route => %v\n", peer.Key.AbbrevString(), aip)
}
} else if allowedIP.Mask < 32 {
if (uflags & UAllowSubnetRoutes) == 0 {
log.Printf("wgcfg: %v skipping subnet route\n", peer.Key.AbbrevString())
continue
}
}
aips = append(aips, aip)
}
fmt.Fprintf(buf, "AllowedIPs = %s\n", strings.Join(aips, ", "))
if keepalive {
fmt.Fprintf(buf, "PersistentKeepalive = 25\n")
}
}
return buf.String()
}