mirror of
https://github.com/tailscale/tailscale.git
synced 2025-01-10 18:13:41 +00:00
fd6686d81a
When a rotation signature chain reaches a certain size, remove the oldest rotation signature from the chain before wrapping it in a new rotation signature. Since all previous rotation signatures are signed by the same wrapping pubkey (node's own tailnet lock key), the node can re-construct the chain, re-signing previous rotation signatures. This will satisfy the existing certificate validation logic. Updates #13185 Signed-off-by: Anton Tolchanov <anton@tailscale.com>
497 lines
16 KiB
Go
497 lines
16 KiB
Go
// Copyright (c) Tailscale Inc & AUTHORS
|
|
// SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
package tka
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/ed25519"
|
|
"encoding/base64"
|
|
"errors"
|
|
"fmt"
|
|
"strings"
|
|
|
|
"github.com/fxamacker/cbor/v2"
|
|
"github.com/hdevalence/ed25519consensus"
|
|
"golang.org/x/crypto/blake2s"
|
|
"tailscale.com/types/key"
|
|
"tailscale.com/types/logger"
|
|
"tailscale.com/types/tkatype"
|
|
)
|
|
|
|
//go:generate go run tailscale.com/cmd/cloner -clonefunc=false -type=NodeKeySignature
|
|
|
|
// SigKind describes valid NodeKeySignature types.
|
|
type SigKind uint8
|
|
|
|
const (
|
|
SigInvalid SigKind = iota
|
|
// SigDirect describes a signature over a specific node key, signed
|
|
// by a key in the tailnet key authority referenced by the specified keyID.
|
|
SigDirect
|
|
// SigRotation describes a signature over a specific node key, signed
|
|
// by the rotation key authorized by a nested NodeKeySignature structure.
|
|
//
|
|
// While it is possible to nest rotations multiple times up to the CBOR
|
|
// nesting limit, it is intended that nodes simply regenerate their outer
|
|
// SigRotation signature and sign it again with their rotation key. That
|
|
// way, SigRotation nesting should only be 2 deep in the common case.
|
|
SigRotation
|
|
// SigCredential describes a signature over a specific public key, signed
|
|
// by a key in the tailnet key authority referenced by the specified keyID.
|
|
// In effect, SigCredential delegates the ability to make a signature to
|
|
// a different public/private key pair.
|
|
//
|
|
// It is intended that a different public/private key pair be generated
|
|
// for each different SigCredential that is created. Implementors must
|
|
// take care that the private side is only known to the entity that needs
|
|
// to generate the wrapping SigRotation signature, and it is immediately
|
|
// discarded after use.
|
|
//
|
|
// SigCredential is expected to be nested in a SigRotation signature.
|
|
SigCredential
|
|
)
|
|
|
|
func (s SigKind) String() string {
|
|
switch s {
|
|
case SigInvalid:
|
|
return "invalid"
|
|
case SigDirect:
|
|
return "direct"
|
|
case SigRotation:
|
|
return "rotation"
|
|
case SigCredential:
|
|
return "credential"
|
|
default:
|
|
return fmt.Sprintf("Sig?<%d>", int(s))
|
|
}
|
|
}
|
|
|
|
// NodeKeySignature encapsulates a signature that authorizes a specific
|
|
// node key, based on verification from keys in the tailnet key authority.
|
|
type NodeKeySignature struct {
|
|
// SigKind identifies the variety of signature.
|
|
SigKind SigKind `cbor:"1,keyasint"`
|
|
// Pubkey identifies the key.NodePublic which is being authorized.
|
|
// SigCredential signatures do not use this field.
|
|
Pubkey []byte `cbor:"2,keyasint,omitempty"`
|
|
|
|
// KeyID identifies which key in the tailnet key authority should
|
|
// be used to verify this signature. Only set for SigDirect and
|
|
// SigCredential signature kinds.
|
|
KeyID []byte `cbor:"3,keyasint,omitempty"`
|
|
|
|
// Signature is the packed (R, S) ed25519 signature over all other
|
|
// fields of the structure.
|
|
Signature []byte `cbor:"4,keyasint,omitempty"`
|
|
|
|
// Nested describes a NodeKeySignature which authorizes the node-key
|
|
// used as Pubkey. Only used for SigRotation signatures.
|
|
Nested *NodeKeySignature `cbor:"5,keyasint,omitempty"`
|
|
|
|
// WrappingPubkey specifies the ed25519 public key which must be used
|
|
// to sign a Signature which embeds this one.
|
|
//
|
|
// For SigRotation signatures multiple levels deep, intermediate
|
|
// signatures may omit this value, in which case the parent WrappingPubkey
|
|
// is used.
|
|
//
|
|
// SigCredential signatures use this field to specify the public key
|
|
// they are certifying, following the usual semanticsfor WrappingPubkey.
|
|
WrappingPubkey []byte `cbor:"6,keyasint,omitempty"`
|
|
}
|
|
|
|
// String returns a human-readable representation of the NodeKeySignature,
|
|
// making it easy to see nested signatures.
|
|
func (s NodeKeySignature) String() string {
|
|
var b strings.Builder
|
|
var addToBuf func(NodeKeySignature, int)
|
|
addToBuf = func(sig NodeKeySignature, depth int) {
|
|
indent := strings.Repeat(" ", depth)
|
|
b.WriteString(indent + "SigKind: " + sig.SigKind.String() + "\n")
|
|
if len(sig.Pubkey) > 0 {
|
|
var pubKey string
|
|
var np key.NodePublic
|
|
if err := np.UnmarshalBinary(sig.Pubkey); err != nil {
|
|
pubKey = fmt.Sprintf("<error: %s>", err)
|
|
} else {
|
|
pubKey = np.ShortString()
|
|
}
|
|
b.WriteString(indent + "Pubkey: " + pubKey + "\n")
|
|
}
|
|
if len(sig.KeyID) > 0 {
|
|
keyID := key.NLPublicFromEd25519Unsafe(sig.KeyID).CLIString()
|
|
b.WriteString(indent + "KeyID: " + keyID + "\n")
|
|
}
|
|
if len(sig.WrappingPubkey) > 0 {
|
|
pubKey := key.NLPublicFromEd25519Unsafe(sig.WrappingPubkey).CLIString()
|
|
b.WriteString(indent + "WrappingPubkey: " + pubKey + "\n")
|
|
}
|
|
if sig.Nested != nil {
|
|
b.WriteString(indent + "Nested:\n")
|
|
addToBuf(*sig.Nested, depth+1)
|
|
}
|
|
}
|
|
addToBuf(s, 0)
|
|
return strings.TrimSpace(b.String())
|
|
}
|
|
|
|
// UnverifiedWrappingPublic returns the public key which must sign a
|
|
// signature which embeds this one, if any.
|
|
//
|
|
// See docs on NodeKeySignature.WrappingPubkey & SigRotation for documentation
|
|
// about wrapping public keys.
|
|
//
|
|
// SAFETY: The caller MUST verify the signature using
|
|
// Authority.NodeKeyAuthorized if treating this as authentic information.
|
|
func (s NodeKeySignature) UnverifiedWrappingPublic() (pub ed25519.PublicKey, ok bool) {
|
|
return s.wrappingPublic()
|
|
}
|
|
|
|
// wrappingPublic returns the public key which must sign a signature which
|
|
// embeds this one, if any.
|
|
func (s NodeKeySignature) wrappingPublic() (pub ed25519.PublicKey, ok bool) {
|
|
if len(s.WrappingPubkey) > 0 {
|
|
return ed25519.PublicKey(s.WrappingPubkey), true
|
|
}
|
|
|
|
switch s.SigKind {
|
|
case SigRotation:
|
|
if s.Nested == nil {
|
|
return nil, false
|
|
}
|
|
return s.Nested.wrappingPublic()
|
|
|
|
default:
|
|
return nil, false
|
|
}
|
|
}
|
|
|
|
// UnverifiedAuthorizingKeyID returns the KeyID of the key which authorizes
|
|
// this signature.
|
|
//
|
|
// SAFETY: The caller MUST verify the signature using
|
|
// Authority.NodeKeyAuthorized if treating this as authentic information.
|
|
func (s NodeKeySignature) UnverifiedAuthorizingKeyID() (tkatype.KeyID, error) {
|
|
return s.authorizingKeyID()
|
|
}
|
|
|
|
// authorizingKeyID returns the KeyID of the key trusted by network-lock which authorizes
|
|
// this signature.
|
|
func (s NodeKeySignature) authorizingKeyID() (tkatype.KeyID, error) {
|
|
switch s.SigKind {
|
|
case SigDirect, SigCredential:
|
|
if len(s.KeyID) == 0 {
|
|
return tkatype.KeyID{}, errors.New("invalid signature: no keyID present")
|
|
}
|
|
return tkatype.KeyID(s.KeyID), nil
|
|
|
|
case SigRotation:
|
|
if s.Nested == nil {
|
|
return tkatype.KeyID{}, errors.New("invalid signature: rotation signature missing nested signature")
|
|
}
|
|
return s.Nested.authorizingKeyID()
|
|
|
|
default:
|
|
return tkatype.KeyID{}, fmt.Errorf("unhandled signature type: %v", s.SigKind)
|
|
}
|
|
}
|
|
|
|
// SigHash returns the cryptographic digest which a signature
|
|
// is over.
|
|
//
|
|
// This is a hash of the serialized structure, sans the signature.
|
|
// Without this exclusion, the hash used for the signature
|
|
// would be circularly dependent on the signature.
|
|
func (s NodeKeySignature) SigHash() [blake2s.Size]byte {
|
|
dupe := s
|
|
dupe.Signature = nil
|
|
return blake2s.Sum256(dupe.Serialize())
|
|
}
|
|
|
|
// Serialize returns the given NKS in a serialized format.
|
|
//
|
|
// We would implement encoding.BinaryMarshaler, except that would
|
|
// unfortunately get called by the cbor marshaller resulting in infinite
|
|
// recursion.
|
|
func (s *NodeKeySignature) Serialize() tkatype.MarshaledSignature {
|
|
out := bytes.NewBuffer(make([]byte, 0, 128)) // 64byte sig + 32byte keyID + 32byte headroom
|
|
encoder, err := cbor.CTAP2EncOptions().EncMode()
|
|
if err != nil {
|
|
// Deterministic validation of encoding options, should
|
|
// never fail.
|
|
panic(err)
|
|
}
|
|
if err := encoder.NewEncoder(out).Encode(s); err != nil {
|
|
// Writing to a bytes.Buffer should never fail.
|
|
panic(err)
|
|
}
|
|
return out.Bytes()
|
|
}
|
|
|
|
// Unserialize decodes bytes representing a marshaled NKS.
|
|
//
|
|
// We would implement encoding.BinaryUnmarshaler, except that would
|
|
// unfortunately get called by the cbor unmarshaller resulting in infinite
|
|
// recursion.
|
|
func (s *NodeKeySignature) Unserialize(data []byte) error {
|
|
dec, _ := cborDecOpts.DecMode()
|
|
return dec.Unmarshal(data, s)
|
|
}
|
|
|
|
// verifySignature checks that the NodeKeySignature is authentic & certified
|
|
// by the given verificationKey. Additionally, SigDirect and SigRotation
|
|
// signatures are checked to ensure they authorize the given nodeKey.
|
|
func (s *NodeKeySignature) verifySignature(nodeKey key.NodePublic, verificationKey Key) error {
|
|
if s.SigKind != SigCredential {
|
|
nodeBytes, err := nodeKey.MarshalBinary()
|
|
if err != nil {
|
|
return fmt.Errorf("marshalling pubkey: %v", err)
|
|
}
|
|
if !bytes.Equal(nodeBytes, s.Pubkey) {
|
|
return errors.New("signature does not authorize nodeKey")
|
|
}
|
|
}
|
|
|
|
sigHash := s.SigHash()
|
|
switch s.SigKind {
|
|
case SigRotation:
|
|
if s.Nested == nil {
|
|
return errors.New("nested signatures must nest a signature")
|
|
}
|
|
|
|
// Verify the signature using the nested rotation key.
|
|
verifyPub, ok := s.Nested.wrappingPublic()
|
|
if !ok {
|
|
return errors.New("missing rotation key")
|
|
}
|
|
if len(verifyPub) != ed25519.PublicKeySize {
|
|
return fmt.Errorf("bad rotation key length: %d", len(verifyPub))
|
|
}
|
|
if !ed25519.Verify(ed25519.PublicKey(verifyPub[:]), sigHash[:], s.Signature) {
|
|
return errors.New("invalid signature")
|
|
}
|
|
|
|
// Recurse to verify the signature on the nested structure.
|
|
var nestedPub key.NodePublic
|
|
// SigCredential signatures certify an indirection key rather than a node
|
|
// key, so theres no need to check the node key.
|
|
if s.Nested.SigKind != SigCredential {
|
|
if err := nestedPub.UnmarshalBinary(s.Nested.Pubkey); err != nil {
|
|
return fmt.Errorf("nested pubkey: %v", err)
|
|
}
|
|
}
|
|
if err := s.Nested.verifySignature(nestedPub, verificationKey); err != nil {
|
|
return fmt.Errorf("nested: %v", err)
|
|
}
|
|
return nil
|
|
|
|
case SigDirect, SigCredential:
|
|
if s.Nested != nil {
|
|
return fmt.Errorf("invalid signature: signatures of type %v cannot nest another signature", s.SigKind)
|
|
}
|
|
switch verificationKey.Kind {
|
|
case Key25519:
|
|
if len(verificationKey.Public) != ed25519.PublicKeySize {
|
|
return fmt.Errorf("ed25519 key has wrong length: %d", len(verificationKey.Public))
|
|
}
|
|
if ed25519consensus.Verify(ed25519.PublicKey(verificationKey.Public), sigHash[:], s.Signature) {
|
|
return nil
|
|
}
|
|
return errors.New("invalid signature")
|
|
|
|
default:
|
|
return fmt.Errorf("unhandled key type: %v", verificationKey.Kind)
|
|
}
|
|
|
|
default:
|
|
return fmt.Errorf("unhandled signature type: %v", s.SigKind)
|
|
}
|
|
}
|
|
|
|
// RotationDetails holds additional information about a nodeKeySignature
|
|
// of kind SigRotation.
|
|
type RotationDetails struct {
|
|
// PrevNodeKeys is a list of node keys which have been rotated out.
|
|
PrevNodeKeys []key.NodePublic
|
|
|
|
// InitialSig is the first signature in the chain which led to
|
|
// this rotating signature.
|
|
InitialSig *NodeKeySignature
|
|
}
|
|
|
|
// rotationDetails returns the RotationDetails for a SigRotation signature.
|
|
func (s *NodeKeySignature) rotationDetails() (*RotationDetails, error) {
|
|
if s.SigKind != SigRotation {
|
|
return nil, nil
|
|
}
|
|
|
|
sri := &RotationDetails{}
|
|
nested := s.Nested
|
|
for nested != nil {
|
|
if len(nested.Pubkey) > 0 {
|
|
var nestedPub key.NodePublic
|
|
if err := nestedPub.UnmarshalBinary(nested.Pubkey); err != nil {
|
|
return nil, fmt.Errorf("nested pubkey: %v", err)
|
|
}
|
|
sri.PrevNodeKeys = append(sri.PrevNodeKeys, nestedPub)
|
|
}
|
|
if nested.SigKind != SigRotation {
|
|
break
|
|
}
|
|
nested = nested.Nested
|
|
}
|
|
sri.InitialSig = nested
|
|
return sri, nil
|
|
}
|
|
|
|
// ResignNKS re-signs a node-key signature for a new node-key.
|
|
//
|
|
// This only matters on network-locked tailnets, because node-key signatures are
|
|
// how other nodes know that a node-key is authentic. When the node-key is
|
|
// rotated then the existing signature becomes invalid, so this function is
|
|
// responsible for generating a new wrapping signature to certify the new node-key.
|
|
//
|
|
// The signature itself is a SigRotation signature, which embeds the old signature
|
|
// and certifies the new node-key as a replacement for the old by signing the new
|
|
// signature with RotationPubkey (which is the node's own network-lock key).
|
|
func ResignNKS(priv key.NLPrivate, nodeKey key.NodePublic, oldNKS tkatype.MarshaledSignature) (tkatype.MarshaledSignature, error) {
|
|
var oldSig NodeKeySignature
|
|
if err := oldSig.Unserialize(oldNKS); err != nil {
|
|
return nil, fmt.Errorf("decoding NKS: %w", err)
|
|
}
|
|
|
|
nk, err := nodeKey.MarshalBinary()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("marshalling node-key: %w", err)
|
|
}
|
|
|
|
if bytes.Equal(nk, oldSig.Pubkey) {
|
|
// The old signature is valid for the node-key we are using, so just
|
|
// use it verbatim.
|
|
return oldNKS, nil
|
|
}
|
|
|
|
nested, err := maybeTrimRotationSignatureChain(oldSig, priv)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("trimming rotation signature chain: %w", err)
|
|
}
|
|
|
|
newSig := NodeKeySignature{
|
|
SigKind: SigRotation,
|
|
Pubkey: nk,
|
|
Nested: &nested,
|
|
}
|
|
if newSig.Signature, err = priv.SignNKS(newSig.SigHash()); err != nil {
|
|
return nil, fmt.Errorf("signing NKS: %w", err)
|
|
}
|
|
|
|
return newSig.Serialize(), nil
|
|
}
|
|
|
|
// maybeTrimRotationSignatureChain truncates rotation signature chain to ensure
|
|
// it contains no more than 15 node keys.
|
|
func maybeTrimRotationSignatureChain(sig NodeKeySignature, priv key.NLPrivate) (NodeKeySignature, error) {
|
|
if sig.SigKind != SigRotation {
|
|
return sig, nil
|
|
}
|
|
|
|
// Collect all the previous node keys, ordered from newest to oldest.
|
|
prevPubkeys := [][]byte{sig.Pubkey}
|
|
nested := sig.Nested
|
|
for nested != nil {
|
|
if len(nested.Pubkey) > 0 {
|
|
prevPubkeys = append(prevPubkeys, nested.Pubkey)
|
|
}
|
|
if nested.SigKind != SigRotation {
|
|
break
|
|
}
|
|
nested = nested.Nested
|
|
}
|
|
|
|
// Existing rotation signature with 15 keys is the maximum we can wrap in a
|
|
// new signature without hitting the CBOR nesting limit of 16 (see
|
|
// MaxNestedLevels in tka.go).
|
|
const maxPrevKeys = 15
|
|
if len(prevPubkeys) <= maxPrevKeys {
|
|
return sig, nil
|
|
}
|
|
|
|
// Create a new rotation signature chain, starting with the original
|
|
// direct signature.
|
|
var err error
|
|
result := nested // original direct signature
|
|
for i := maxPrevKeys - 2; i >= 0; i-- {
|
|
result = &NodeKeySignature{
|
|
SigKind: SigRotation,
|
|
Pubkey: prevPubkeys[i],
|
|
Nested: result,
|
|
}
|
|
if result.Signature, err = priv.SignNKS(result.SigHash()); err != nil {
|
|
return sig, fmt.Errorf("signing NKS: %w", err)
|
|
}
|
|
}
|
|
return *result, nil
|
|
}
|
|
|
|
// SignByCredential signs a node public key by a private key which has its
|
|
// signing authority delegated by a SigCredential signature. This is used by
|
|
// wrapped auth keys.
|
|
func SignByCredential(privKey []byte, wrapped *NodeKeySignature, nodeKey key.NodePublic) (tkatype.MarshaledSignature, error) {
|
|
if wrapped.SigKind != SigCredential {
|
|
return nil, fmt.Errorf("wrapped signature must be a credential, got %v", wrapped.SigKind)
|
|
}
|
|
|
|
nk, err := nodeKey.MarshalBinary()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("marshalling node-key: %w", err)
|
|
}
|
|
|
|
sig := &NodeKeySignature{
|
|
SigKind: SigRotation,
|
|
Pubkey: nk,
|
|
Nested: wrapped,
|
|
}
|
|
sigHash := sig.SigHash()
|
|
sig.Signature = ed25519.Sign(privKey, sigHash[:])
|
|
return sig.Serialize(), nil
|
|
}
|
|
|
|
// DecodeWrappedAuthkey separates wrapping information from an authkey, if any.
|
|
// In all cases the authkey is returned, sans wrapping information if any.
|
|
//
|
|
// If the authkey is wrapped, isWrapped returns true, along with the wrapping signature
|
|
// and private key.
|
|
func DecodeWrappedAuthkey(wrappedAuthKey string, logf logger.Logf) (authKey string, isWrapped bool, sig *NodeKeySignature, priv ed25519.PrivateKey) {
|
|
authKey, suffix, found := strings.Cut(wrappedAuthKey, "--TL")
|
|
if !found {
|
|
return wrappedAuthKey, false, nil, nil
|
|
}
|
|
sigBytes, privBytes, found := strings.Cut(suffix, "-")
|
|
if !found {
|
|
// TODO: propagate these errors to `tailscale up` output?
|
|
logf("decoding wrapped auth-key: did not find delimiter")
|
|
return wrappedAuthKey, false, nil, nil
|
|
}
|
|
|
|
rawSig, err := base64.RawStdEncoding.DecodeString(sigBytes)
|
|
if err != nil {
|
|
logf("decoding wrapped auth-key: signature decode: %v", err)
|
|
return wrappedAuthKey, false, nil, nil
|
|
}
|
|
rawPriv, err := base64.RawStdEncoding.DecodeString(privBytes)
|
|
if err != nil {
|
|
logf("decoding wrapped auth-key: priv decode: %v", err)
|
|
return wrappedAuthKey, false, nil, nil
|
|
}
|
|
|
|
sig = new(NodeKeySignature)
|
|
if err := sig.Unserialize(rawSig); err != nil {
|
|
logf("decoding wrapped auth-key: signature: %v", err)
|
|
return wrappedAuthKey, false, nil, nil
|
|
}
|
|
priv = ed25519.PrivateKey(rawPriv)
|
|
|
|
return authKey, true, sig, priv
|
|
}
|