mirror of
https://github.com/tailscale/tailscale.git
synced 2025-01-10 01:53:49 +00:00
a5fd51ebdc
At the current unoptimized memory utilization of the various data structures, 100k IPv6 routes consumes in the ballpark of 3-4GiB, which risks OOMing our 386 test machine. Until we have the optimizations to (drastically) reduce that consumption, skip the test that bloats too much for 32-bit machines. Signed-off-by: David Anderson <danderson@tailscale.com>
551 lines
15 KiB
Go
551 lines
15 KiB
Go
// Copyright (c) Tailscale Inc & AUTHORS
|
|
// SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
package art
|
|
|
|
import (
|
|
crand "crypto/rand"
|
|
"fmt"
|
|
"math/rand"
|
|
"net/netip"
|
|
"runtime"
|
|
"strconv"
|
|
"testing"
|
|
"time"
|
|
|
|
"tailscale.com/types/ptr"
|
|
)
|
|
|
|
func TestInsert(t *testing.T) {
|
|
t.Parallel()
|
|
pfxs := randomPrefixes(10_000)
|
|
|
|
slow := slowPrefixTable[int]{pfxs}
|
|
fast := Table[int]{}
|
|
|
|
for _, pfx := range pfxs {
|
|
fast.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
|
|
t.Logf(fast.debugSummary())
|
|
|
|
seenVals4 := map[*int]bool{}
|
|
seenVals6 := map[*int]bool{}
|
|
for i := 0; i < 10_000; i++ {
|
|
a := randomAddr()
|
|
slowVal := slow.get(a)
|
|
fastVal := fast.Get(a)
|
|
if a.Is6() {
|
|
seenVals6[fastVal] = true
|
|
} else {
|
|
seenVals4[fastVal] = true
|
|
}
|
|
if slowVal != fastVal {
|
|
t.Errorf("get(%q) = %p, want %p", a, fastVal, slowVal)
|
|
}
|
|
}
|
|
// Empirically, 10k probes into 5k v4 prefixes and 5k v6 prefixes results in
|
|
// ~1k distinct values for v4 and ~300 for v6. distinct routes. This sanity
|
|
// check that we didn't just return a single route for everything should be
|
|
// very generous indeed.
|
|
if cnt := len(seenVals4); cnt < 10 {
|
|
t.Fatalf("saw %d distinct v4 route results, statistically expected ~1000", cnt)
|
|
}
|
|
if cnt := len(seenVals6); cnt < 10 {
|
|
t.Fatalf("saw %d distinct v6 route results, statistically expected ~300", cnt)
|
|
}
|
|
}
|
|
|
|
func TestInsertShuffled(t *testing.T) {
|
|
t.Parallel()
|
|
pfxs := randomPrefixes(10_000)
|
|
|
|
rt := Table[int]{}
|
|
for _, pfx := range pfxs {
|
|
rt.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
|
|
for i := 0; i < 10; i++ {
|
|
pfxs2 := append([]slowPrefixEntry[int](nil), pfxs...)
|
|
rand.Shuffle(len(pfxs2), func(i, j int) { pfxs2[i], pfxs2[j] = pfxs2[j], pfxs2[i] })
|
|
rt2 := Table[int]{}
|
|
for _, pfx := range pfxs2 {
|
|
rt2.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
|
|
// Diffing a deep tree of tables gives cmp.Diff a nervous breakdown, so
|
|
// test for equivalence statistically with random probes instead.
|
|
for i := 0; i < 10_000; i++ {
|
|
a := randomAddr()
|
|
val1 := rt.Get(a)
|
|
val2 := rt2.Get(a)
|
|
if (val1 == nil && val2 != nil) || (val1 != nil && val2 == nil) || (*val1 != *val2) {
|
|
t.Errorf("get(%q) = %s, want %s", a, printIntPtr(val2), printIntPtr(val1))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestDelete(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const (
|
|
numPrefixes = 10_000 // total prefixes to insert (test deletes 50% of them)
|
|
numPerFamily = numPrefixes / 2
|
|
deleteCut = numPerFamily / 2
|
|
numProbes = 10_000 // random addr lookups to do
|
|
)
|
|
|
|
// We have to do this little dance instead of just using allPrefixes,
|
|
// because we want pfxs and toDelete to be non-overlapping sets.
|
|
all4, all6 := randomPrefixes4(numPerFamily), randomPrefixes6(numPerFamily)
|
|
pfxs := append([]slowPrefixEntry[int](nil), all4[:deleteCut]...)
|
|
pfxs = append(pfxs, all6[:deleteCut]...)
|
|
toDelete := append([]slowPrefixEntry[int](nil), all4[deleteCut:]...)
|
|
toDelete = append(toDelete, all6[deleteCut:]...)
|
|
|
|
slow := slowPrefixTable[int]{pfxs}
|
|
fast := Table[int]{}
|
|
|
|
for _, pfx := range pfxs {
|
|
fast.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
|
|
for _, pfx := range toDelete {
|
|
fast.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
for _, pfx := range toDelete {
|
|
fast.Delete(pfx.pfx)
|
|
}
|
|
|
|
seenVals4 := map[*int]bool{}
|
|
seenVals6 := map[*int]bool{}
|
|
for i := 0; i < numProbes; i++ {
|
|
a := randomAddr()
|
|
slowVal := slow.get(a)
|
|
fastVal := fast.Get(a)
|
|
if a.Is6() {
|
|
seenVals6[fastVal] = true
|
|
} else {
|
|
seenVals4[fastVal] = true
|
|
}
|
|
if slowVal != fastVal {
|
|
t.Fatalf("get(%q) = %p, want %p", a, fastVal, slowVal)
|
|
}
|
|
}
|
|
// Empirically, 10k probes into 5k v4 prefixes and 5k v6 prefixes results in
|
|
// ~1k distinct values for v4 and ~300 for v6. distinct routes. This sanity
|
|
// check that we didn't just return a single route for everything should be
|
|
// very generous indeed.
|
|
if cnt := len(seenVals4); cnt < 10 {
|
|
t.Fatalf("saw %d distinct v4 route results, statistically expected ~1000", cnt)
|
|
}
|
|
if cnt := len(seenVals6); cnt < 10 {
|
|
t.Fatalf("saw %d distinct v6 route results, statistically expected ~300", cnt)
|
|
}
|
|
}
|
|
|
|
func TestDeleteShuffled(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const (
|
|
numPrefixes = 10_000 // prefixes to insert (test deletes 50% of them)
|
|
numPerFamily = numPrefixes / 2
|
|
deleteCut = numPerFamily / 2
|
|
numProbes = 10_000 // random addr lookups to do
|
|
)
|
|
|
|
// We have to do this little dance instead of just using allPrefixes,
|
|
// because we want pfxs and toDelete to be non-overlapping sets.
|
|
all4, all6 := randomPrefixes4(numPerFamily), randomPrefixes6(numPerFamily)
|
|
pfxs := append([]slowPrefixEntry[int](nil), all4[:deleteCut]...)
|
|
pfxs = append(pfxs, all6[:deleteCut]...)
|
|
toDelete := append([]slowPrefixEntry[int](nil), all4[deleteCut:]...)
|
|
toDelete = append(toDelete, all6[deleteCut:]...)
|
|
|
|
rt := Table[int]{}
|
|
for _, pfx := range pfxs {
|
|
rt.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
for _, pfx := range toDelete {
|
|
rt.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
for _, pfx := range toDelete {
|
|
rt.Delete(pfx.pfx)
|
|
}
|
|
|
|
for i := 0; i < 10; i++ {
|
|
pfxs2 := append([]slowPrefixEntry[int](nil), pfxs...)
|
|
toDelete2 := append([]slowPrefixEntry[int](nil), toDelete...)
|
|
rand.Shuffle(len(toDelete2), func(i, j int) { toDelete2[i], toDelete2[j] = toDelete2[j], toDelete2[i] })
|
|
rt2 := Table[int]{}
|
|
for _, pfx := range pfxs2 {
|
|
rt2.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
for _, pfx := range toDelete2 {
|
|
rt2.Insert(pfx.pfx, pfx.val)
|
|
}
|
|
for _, pfx := range toDelete2 {
|
|
rt2.Delete(pfx.pfx)
|
|
}
|
|
|
|
// Diffing a deep tree of tables gives cmp.Diff a nervous breakdown, so
|
|
// test for equivalence statistically with random probes instead.
|
|
for i := 0; i < numProbes; i++ {
|
|
a := randomAddr()
|
|
val1 := rt.Get(a)
|
|
val2 := rt2.Get(a)
|
|
if val1 == nil && val2 == nil {
|
|
continue
|
|
}
|
|
if (val1 == nil && val2 != nil) || (val1 != nil && val2 == nil) || (*val1 != *val2) {
|
|
t.Errorf("get(%q) = %s, want %s", a, printIntPtr(val2), printIntPtr(val1))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 100k routes for IPv6, at the current size of strideTable and strideEntry, is
|
|
// in the ballpark of 4GiB if you assume worst-case prefix distribution. Future
|
|
// optimizations will knock down the memory consumption by over an order of
|
|
// magnitude, so for now just skip the 100k benchmarks to stay well away of
|
|
// OOMs.
|
|
//
|
|
// TODO(go/bug/7781): reenable larger table tests once memory utilization is
|
|
// optimized.
|
|
var benchRouteCount = []int{10, 100, 1000, 10_000} //, 100_000}
|
|
|
|
// forFamilyAndCount runs the benchmark fn with different sets of
|
|
// routes.
|
|
//
|
|
// fn is called once for each combination of {addr_family, num_routes},
|
|
// where addr_family is ipv4 or ipv6, num_routes is the values in
|
|
// benchRouteCount.
|
|
func forFamilyAndCount(b *testing.B, fn func(b *testing.B, routes []slowPrefixEntry[int])) {
|
|
for _, fam := range []string{"ipv4", "ipv6"} {
|
|
rng := randomPrefixes4
|
|
if fam == "ipv6" {
|
|
rng = randomPrefixes6
|
|
}
|
|
b.Run(fam, func(b *testing.B) {
|
|
for _, nroutes := range benchRouteCount {
|
|
routes := rng(nroutes)
|
|
b.Run(fmt.Sprint(nroutes), func(b *testing.B) {
|
|
fn(b, routes)
|
|
})
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func BenchmarkTableInsertion(b *testing.B) {
|
|
forFamilyAndCount(b, func(b *testing.B, routes []slowPrefixEntry[int]) {
|
|
b.StopTimer()
|
|
b.ResetTimer()
|
|
var startMem, endMem runtime.MemStats
|
|
runtime.ReadMemStats(&startMem)
|
|
b.StartTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
var rt Table[int]
|
|
for _, route := range routes {
|
|
rt.Insert(route.pfx, route.val)
|
|
}
|
|
}
|
|
b.StopTimer()
|
|
runtime.ReadMemStats(&endMem)
|
|
inserts := float64(b.N) * float64(len(routes))
|
|
allocs := float64(endMem.Mallocs - startMem.Mallocs)
|
|
bytes := float64(endMem.TotalAlloc - startMem.TotalAlloc)
|
|
elapsed := float64(b.Elapsed().Nanoseconds())
|
|
elapsedSec := b.Elapsed().Seconds()
|
|
b.ReportMetric(elapsed/inserts, "ns/op")
|
|
b.ReportMetric(inserts/elapsedSec, "routes/s")
|
|
b.ReportMetric(roundFloat64(allocs/inserts), "avg-allocs/op")
|
|
b.ReportMetric(roundFloat64(bytes/inserts), "avg-B/op")
|
|
})
|
|
}
|
|
|
|
func BenchmarkTableDelete(b *testing.B) {
|
|
forFamilyAndCount(b, func(b *testing.B, routes []slowPrefixEntry[int]) {
|
|
// Collect memstats for one round of insertions, so we can remove it
|
|
// from the total at the end and get only the deletion alloc count.
|
|
insertAllocs, insertBytes := getMemCost(func() {
|
|
var rt Table[int]
|
|
for _, route := range routes {
|
|
rt.Insert(route.pfx, route.val)
|
|
}
|
|
})
|
|
insertAllocs *= float64(b.N)
|
|
insertBytes *= float64(b.N)
|
|
|
|
var t runningTimer
|
|
allocs, bytes := getMemCost(func() {
|
|
for i := 0; i < b.N; i++ {
|
|
var rt Table[int]
|
|
for _, route := range routes {
|
|
rt.Insert(route.pfx, route.val)
|
|
}
|
|
t.Start()
|
|
for _, route := range routes {
|
|
rt.Delete(route.pfx)
|
|
}
|
|
t.Stop()
|
|
}
|
|
})
|
|
inserts := float64(b.N) * float64(len(routes))
|
|
allocs -= insertAllocs
|
|
bytes -= insertBytes
|
|
elapsed := float64(t.Elapsed().Nanoseconds())
|
|
elapsedSec := t.Elapsed().Seconds()
|
|
b.ReportMetric(elapsed/inserts, "ns/op")
|
|
b.ReportMetric(inserts/elapsedSec, "routes/s")
|
|
b.ReportMetric(roundFloat64(allocs/inserts), "avg-allocs/op")
|
|
b.ReportMetric(roundFloat64(bytes/inserts), "avg-B/op")
|
|
})
|
|
}
|
|
|
|
var addrSink netip.Addr
|
|
|
|
func BenchmarkTableGet(b *testing.B) {
|
|
forFamilyAndCount(b, func(b *testing.B, routes []slowPrefixEntry[int]) {
|
|
genAddr := randomAddr4
|
|
if routes[0].pfx.Addr().Is6() {
|
|
genAddr = randomAddr6
|
|
}
|
|
var rt Table[int]
|
|
for _, route := range routes {
|
|
rt.Insert(route.pfx, route.val)
|
|
}
|
|
addrAllocs, addrBytes := getMemCost(func() {
|
|
// Have to run genAddr more than once, otherwise the reported
|
|
// cost is 16 bytes - presumably due to some amortized costs in
|
|
// the memory allocator? Either way, empirically 100 iterations
|
|
// reliably reports the correct cost.
|
|
for i := 0; i < 100; i++ {
|
|
_ = genAddr()
|
|
}
|
|
})
|
|
addrAllocs /= 100
|
|
addrBytes /= 100
|
|
var t runningTimer
|
|
allocs, bytes := getMemCost(func() {
|
|
for i := 0; i < b.N; i++ {
|
|
addr := genAddr()
|
|
t.Start()
|
|
writeSink = rt.Get(addr)
|
|
t.Stop()
|
|
}
|
|
})
|
|
b.ReportAllocs() // Enables the output, but we report manually below
|
|
allocs -= (addrAllocs * float64(b.N))
|
|
bytes -= (addrBytes * float64(b.N))
|
|
lookups := float64(b.N)
|
|
elapsed := float64(t.Elapsed().Nanoseconds())
|
|
elapsedSec := float64(t.Elapsed().Seconds())
|
|
b.ReportMetric(elapsed/lookups, "ns/op")
|
|
b.ReportMetric(lookups/elapsedSec, "addrs/s")
|
|
b.ReportMetric(allocs/lookups, "allocs/op")
|
|
b.ReportMetric(bytes/lookups, "B/op")
|
|
|
|
})
|
|
}
|
|
|
|
// getMemCost runs fn 100 times and returns the number of allocations and bytes
|
|
// allocated by each call to fn.
|
|
//
|
|
// Note that if your fn allocates very little memory (less than ~16 bytes), you
|
|
// should make fn run its workload ~100 times and divide the results of
|
|
// getMemCost yourself. Otherwise, the byte count you get will be rounded up due
|
|
// to the memory allocator's bucketing granularity.
|
|
func getMemCost(fn func()) (allocs, bytes float64) {
|
|
var start, end runtime.MemStats
|
|
runtime.ReadMemStats(&start)
|
|
fn()
|
|
runtime.ReadMemStats(&end)
|
|
return float64(end.Mallocs - start.Mallocs), float64(end.TotalAlloc - start.TotalAlloc)
|
|
}
|
|
|
|
// runningTimer is a timer that keeps track of the cumulative time it's spent
|
|
// running since creation. A newly created runningTimer is stopped.
|
|
//
|
|
// This timer exists because some of our benchmarks have to interleave costly
|
|
// ancillary logic in each benchmark iteration, rather than being able to
|
|
// front-load all the work before a single b.ResetTimer().
|
|
//
|
|
// As it turns out, b.StartTimer() and b.StopTimer() are expensive function
|
|
// calls, because they do costly memory allocation accounting on every call.
|
|
// Starting and stopping the benchmark timer in every b.N loop iteration slows
|
|
// the benchmarks down by orders of magnitude.
|
|
//
|
|
// So, rather than rely on testing.B's timing facility, we use this very
|
|
// lightweight timer combined with getMemCost to do our own accounting more
|
|
// efficiently.
|
|
type runningTimer struct {
|
|
cumulative time.Duration
|
|
start time.Time
|
|
}
|
|
|
|
func (t *runningTimer) Start() {
|
|
t.Stop()
|
|
t.start = time.Now()
|
|
}
|
|
|
|
func (t *runningTimer) Stop() {
|
|
if t.start.IsZero() {
|
|
return
|
|
}
|
|
t.cumulative += time.Since(t.start)
|
|
t.start = time.Time{}
|
|
}
|
|
|
|
func (t *runningTimer) Elapsed() time.Duration {
|
|
return t.cumulative
|
|
}
|
|
|
|
// slowPrefixTable is a routing table implemented as a set of prefixes that are
|
|
// explicitly scanned in full for every route lookup. It is very slow, but also
|
|
// reasonably easy to verify by inspection, and so a good correctness reference
|
|
// for Table.
|
|
type slowPrefixTable[T any] struct {
|
|
prefixes []slowPrefixEntry[T]
|
|
}
|
|
|
|
type slowPrefixEntry[T any] struct {
|
|
pfx netip.Prefix
|
|
val *T
|
|
}
|
|
|
|
func (t *slowPrefixTable[T]) delete(pfx netip.Prefix) {
|
|
ret := make([]slowPrefixEntry[T], 0, len(t.prefixes))
|
|
for _, ent := range t.prefixes {
|
|
if ent.pfx == pfx {
|
|
continue
|
|
}
|
|
ret = append(ret, ent)
|
|
}
|
|
t.prefixes = ret
|
|
}
|
|
|
|
func (t *slowPrefixTable[T]) insert(pfx netip.Prefix, val *T) {
|
|
for _, ent := range t.prefixes {
|
|
if ent.pfx == pfx {
|
|
ent.val = val
|
|
return
|
|
}
|
|
}
|
|
t.prefixes = append(t.prefixes, slowPrefixEntry[T]{pfx, val})
|
|
}
|
|
|
|
func (t *slowPrefixTable[T]) get(addr netip.Addr) *T {
|
|
var (
|
|
ret *T
|
|
bestLen = -1
|
|
)
|
|
|
|
for _, pfx := range t.prefixes {
|
|
if pfx.pfx.Contains(addr) && pfx.pfx.Bits() > bestLen {
|
|
ret = pfx.val
|
|
bestLen = pfx.pfx.Bits()
|
|
}
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// randomPrefixes returns n randomly generated prefixes and associated values,
|
|
// distributed equally between IPv4 and IPv6.
|
|
func randomPrefixes(n int) []slowPrefixEntry[int] {
|
|
pfxs := randomPrefixes4(n / 2)
|
|
pfxs = append(pfxs, randomPrefixes6(n-len(pfxs))...)
|
|
return pfxs
|
|
}
|
|
|
|
// randomPrefixes4 returns n randomly generated IPv4 prefixes and associated values.
|
|
func randomPrefixes4(n int) []slowPrefixEntry[int] {
|
|
pfxs := map[netip.Prefix]bool{}
|
|
|
|
for len(pfxs) < n {
|
|
len := rand.Intn(33)
|
|
pfx, err := randomAddr4().Prefix(len)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
pfxs[pfx] = true
|
|
}
|
|
|
|
ret := make([]slowPrefixEntry[int], 0, len(pfxs))
|
|
for pfx := range pfxs {
|
|
ret = append(ret, slowPrefixEntry[int]{pfx, ptr.To(rand.Int())})
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
// randomPrefixes6 returns n randomly generated IPv4 prefixes and associated values.
|
|
func randomPrefixes6(n int) []slowPrefixEntry[int] {
|
|
pfxs := map[netip.Prefix]bool{}
|
|
|
|
for len(pfxs) < n {
|
|
len := rand.Intn(129)
|
|
pfx, err := randomAddr6().Prefix(len)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
pfxs[pfx] = true
|
|
}
|
|
|
|
ret := make([]slowPrefixEntry[int], 0, len(pfxs))
|
|
for pfx := range pfxs {
|
|
ret = append(ret, slowPrefixEntry[int]{pfx, ptr.To(rand.Int())})
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
// randomAddr returns a randomly generated IP address.
|
|
func randomAddr() netip.Addr {
|
|
if rand.Intn(2) == 1 {
|
|
return randomAddr6()
|
|
} else {
|
|
return randomAddr4()
|
|
}
|
|
}
|
|
|
|
// randomAddr4 returns a randomly generated IPv4 address.
|
|
func randomAddr4() netip.Addr {
|
|
var b [4]byte
|
|
if _, err := crand.Read(b[:]); err != nil {
|
|
panic(err)
|
|
}
|
|
return netip.AddrFrom4(b)
|
|
}
|
|
|
|
// randomAddr6 returns a randomly generated IPv6 address.
|
|
func randomAddr6() netip.Addr {
|
|
var b [16]byte
|
|
if _, err := crand.Read(b[:]); err != nil {
|
|
panic(err)
|
|
}
|
|
return netip.AddrFrom16(b)
|
|
}
|
|
|
|
// printIntPtr returns *v as a string, or the literal "<nil>" if v is nil.
|
|
func printIntPtr(v *int) string {
|
|
if v == nil {
|
|
return "<nil>"
|
|
}
|
|
return fmt.Sprint(*v)
|
|
}
|
|
|
|
// roundFloat64 rounds f to 2 decimal places, for display.
|
|
//
|
|
// It round-trips through a float->string->float conversion, so should not be
|
|
// used in a performance critical setting.
|
|
func roundFloat64(f float64) float64 {
|
|
s := fmt.Sprintf("%.2f", f)
|
|
ret, err := strconv.ParseFloat(s, 64)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return ret
|
|
}
|