mirror of
https://github.com/tailscale/tailscale.git
synced 2025-01-10 01:53:49 +00:00
87b4bbb94f
Add Value, which measures the rate at which an event occurs, exponentially weighted towards recent activity. It is guaranteed to occupy O(1) memory, operate in O(1) runtime, and is safe for concurrent use. Signed-off-by: Joe Tsai <joetsai@digital-static.net>
237 lines
6.7 KiB
Go
237 lines
6.7 KiB
Go
// Copyright (c) Tailscale Inc & AUTHORS
|
|
// SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
package rate
|
|
|
|
import (
|
|
"flag"
|
|
"math"
|
|
"testing"
|
|
"time"
|
|
|
|
qt "github.com/frankban/quicktest"
|
|
"github.com/google/go-cmp/cmp/cmpopts"
|
|
"tailscale.com/tstime/mono"
|
|
)
|
|
|
|
const (
|
|
min = mono.Time(time.Minute)
|
|
sec = mono.Time(time.Second)
|
|
msec = mono.Time(time.Millisecond)
|
|
usec = mono.Time(time.Microsecond)
|
|
nsec = mono.Time(time.Nanosecond)
|
|
|
|
val = 1.0e6
|
|
)
|
|
|
|
var longNumericalStabilityTest = flag.Bool("long-numerical-stability-test", false, "")
|
|
|
|
func TestValue(t *testing.T) {
|
|
// When performing many small calculations, the accuracy of the
|
|
// result can drift due to accumulated errors in the calculation.
|
|
// Verify that the result is correct even with many small updates.
|
|
// See https://en.wikipedia.org/wiki/Numerical_stability.
|
|
t.Run("NumericalStability", func(t *testing.T) {
|
|
step := usec
|
|
if *longNumericalStabilityTest {
|
|
step = nsec
|
|
}
|
|
numStep := int(sec / step)
|
|
|
|
c := qt.New(t)
|
|
var v Value
|
|
var now mono.Time
|
|
for i := 0; i < numStep; i++ {
|
|
v.addNow(now, float64(step))
|
|
now += step
|
|
}
|
|
c.Assert(v.rateNow(now), qt.CmpEquals(cmpopts.EquateApprox(1e-6, 0)), 1e9/2)
|
|
})
|
|
|
|
halfLives := []struct {
|
|
name string
|
|
period time.Duration
|
|
}{
|
|
{"½s", time.Second / 2},
|
|
{"1s", time.Second},
|
|
{"2s", 2 * time.Second},
|
|
}
|
|
for _, halfLife := range halfLives {
|
|
t.Run(halfLife.name+"/SpikeDecay", func(t *testing.T) {
|
|
testValueSpikeDecay(t, halfLife.period, false)
|
|
})
|
|
t.Run(halfLife.name+"/SpikeDecayAddZero", func(t *testing.T) {
|
|
testValueSpikeDecay(t, halfLife.period, true)
|
|
})
|
|
t.Run(halfLife.name+"/HighThenLow", func(t *testing.T) {
|
|
testValueHighThenLow(t, halfLife.period)
|
|
})
|
|
t.Run(halfLife.name+"/LowFrequency", func(t *testing.T) {
|
|
testLowFrequency(t, halfLife.period)
|
|
})
|
|
}
|
|
}
|
|
|
|
// testValueSpikeDecay starts with a target rate and ensure that it
|
|
// exponentially decays according to the half-life formula.
|
|
func testValueSpikeDecay(t *testing.T, halfLife time.Duration, addZero bool) {
|
|
c := qt.New(t)
|
|
v := Value{HalfLife: halfLife}
|
|
v.addNow(0, val*v.normalizedIntegral())
|
|
|
|
var now mono.Time
|
|
var prevRate float64
|
|
step := 100 * msec
|
|
wantHalfRate := float64(val)
|
|
for now < 10*sec {
|
|
// Adding zero for every time-step will repeatedly trigger the
|
|
// computation to decay the value, which may cause the result
|
|
// to become more numerically unstable.
|
|
if addZero {
|
|
v.addNow(now, 0)
|
|
}
|
|
currRate := v.rateNow(now)
|
|
t.Logf("%0.1fs:\t%0.3f", time.Duration(now).Seconds(), currRate)
|
|
|
|
// At every multiple of a half-life period,
|
|
// the current rate should be half the value of what
|
|
// it was at the last half-life period.
|
|
if time.Duration(now)%halfLife == 0 {
|
|
c.Assert(currRate, qt.CmpEquals(cmpopts.EquateApprox(1e-12, 0)), wantHalfRate)
|
|
wantHalfRate = currRate / 2
|
|
}
|
|
|
|
// Without any newly added events,
|
|
// the rate should be decaying over time.
|
|
if now > 0 && prevRate < currRate {
|
|
t.Errorf("%v: rate is not decaying: %0.1f < %0.1f", time.Duration(now), prevRate, currRate)
|
|
}
|
|
if currRate < 0 {
|
|
t.Errorf("%v: rate too low: %0.1f < %0.1f", time.Duration(now), currRate, 0.0)
|
|
}
|
|
|
|
prevRate = currRate
|
|
now += step
|
|
}
|
|
}
|
|
|
|
// testValueHighThenLow targets a steady-state rate that is high,
|
|
// then switches to a target steady-state rate that is low.
|
|
func testValueHighThenLow(t *testing.T, halfLife time.Duration) {
|
|
c := qt.New(t)
|
|
v := Value{HalfLife: halfLife}
|
|
|
|
var now mono.Time
|
|
var prevRate float64
|
|
var wantRate float64
|
|
const step = 10 * msec
|
|
const stepsPerSecond = int(sec / step)
|
|
|
|
// Target a higher steady-state rate.
|
|
wantRate = 2 * val
|
|
wantHalfRate := float64(0.0)
|
|
eventsPerStep := wantRate / float64(stepsPerSecond)
|
|
for now < 10*sec {
|
|
currRate := v.rateNow(now)
|
|
v.addNow(now, eventsPerStep)
|
|
t.Logf("%0.1fs:\t%0.3f", time.Duration(now).Seconds(), currRate)
|
|
|
|
// At every multiple of a half-life period,
|
|
// the current rate should be half-way more towards
|
|
// the target rate relative to before.
|
|
if time.Duration(now)%halfLife == 0 {
|
|
c.Assert(currRate, qt.CmpEquals(cmpopts.EquateApprox(0.1, 0)), wantHalfRate)
|
|
wantHalfRate += (wantRate - currRate) / 2
|
|
}
|
|
|
|
// Rate should approach wantRate from below,
|
|
// but never exceed it.
|
|
if now > 0 && prevRate > currRate {
|
|
t.Errorf("%v: rate is not growing: %0.1f > %0.1f", time.Duration(now), prevRate, currRate)
|
|
}
|
|
if currRate > 1.01*wantRate {
|
|
t.Errorf("%v: rate too high: %0.1f > %0.1f", time.Duration(now), currRate, wantRate)
|
|
}
|
|
|
|
prevRate = currRate
|
|
now += step
|
|
}
|
|
c.Assert(prevRate, qt.CmpEquals(cmpopts.EquateApprox(0.05, 0)), wantRate)
|
|
|
|
// Target a lower steady-state rate.
|
|
wantRate = val / 3
|
|
wantHalfRate = prevRate
|
|
eventsPerStep = wantRate / float64(stepsPerSecond)
|
|
for now < 20*sec {
|
|
currRate := v.rateNow(now)
|
|
v.addNow(now, eventsPerStep)
|
|
t.Logf("%0.1fs:\t%0.3f", time.Duration(now).Seconds(), currRate)
|
|
|
|
// At every multiple of a half-life period,
|
|
// the current rate should be half-way more towards
|
|
// the target rate relative to before.
|
|
if time.Duration(now)%halfLife == 0 {
|
|
c.Assert(currRate, qt.CmpEquals(cmpopts.EquateApprox(0.1, 0)), wantHalfRate)
|
|
wantHalfRate += (wantRate - currRate) / 2
|
|
}
|
|
|
|
// Rate should approach wantRate from above,
|
|
// but never exceed it.
|
|
if now > 10*sec && prevRate < currRate {
|
|
t.Errorf("%v: rate is not decaying: %0.1f < %0.1f", time.Duration(now), prevRate, currRate)
|
|
}
|
|
if currRate < 0.99*wantRate {
|
|
t.Errorf("%v: rate too low: %0.1f < %0.1f", time.Duration(now), currRate, wantRate)
|
|
}
|
|
|
|
prevRate = currRate
|
|
now += step
|
|
}
|
|
c.Assert(prevRate, qt.CmpEquals(cmpopts.EquateApprox(0.15, 0)), wantRate)
|
|
}
|
|
|
|
// testLowFrequency fires an event at a frequency much slower than
|
|
// the specified half-life period. While the average rate over time
|
|
// should be accurate, the standard deviation gets worse.
|
|
func testLowFrequency(t *testing.T, halfLife time.Duration) {
|
|
v := Value{HalfLife: halfLife}
|
|
|
|
var now mono.Time
|
|
var rates []float64
|
|
for now < 20*min {
|
|
if now%(10*sec) == 0 {
|
|
v.addNow(now, 1) // 1 event every 10 seconds
|
|
}
|
|
now += 50 * msec
|
|
rates = append(rates, v.rateNow(now))
|
|
now += 50 * msec
|
|
}
|
|
|
|
mean, stddev := stats(rates)
|
|
c := qt.New(t)
|
|
c.Assert(mean, qt.CmpEquals(cmpopts.EquateApprox(0.001, 0)), 0.1)
|
|
t.Logf("mean:%v stddev:%v", mean, stddev)
|
|
}
|
|
|
|
func stats(fs []float64) (mean, stddev float64) {
|
|
for _, rate := range fs {
|
|
mean += rate
|
|
}
|
|
mean /= float64(len(fs))
|
|
for _, rate := range fs {
|
|
stddev += (rate - mean) * (rate - mean)
|
|
}
|
|
stddev = math.Sqrt(stddev / float64(len(fs)))
|
|
return mean, stddev
|
|
}
|
|
|
|
// BenchmarkValue benchmarks the cost of Value.Add,
|
|
// which is called often and makes extensive use of floating-point math.
|
|
func BenchmarkValue(b *testing.B) {
|
|
b.ReportAllocs()
|
|
v := Value{HalfLife: time.Second}
|
|
for i := 0; i < b.N; i++ {
|
|
v.Add(1)
|
|
}
|
|
}
|