tailscale/util/deephash/deephash_test.go
Charlotte Brandhorst-Satzkorn c573bef0aa tailcfg,wgengine: add initial support for WireGuard only peers
A peer can have IsWireGuardOnly, which means it will not support DERP or
Disco, and it must have Endpoints filled in order to be usable.

In the present implementation only the first Endpoint will be used as
the bestAddr.

Updates tailscale/corp#10351

Co-authored-by: Charlotte Brandhorst-Satzkorn <charlotte@tailscale.com>
Co-authored-by: James Tucker <james@tailscale.com>
Signed-off-by: James Tucker <james@tailscale.com>
2023-04-08 22:08:25 -07:00

1074 lines
36 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package deephash
import (
"archive/tar"
"crypto/sha256"
"encoding/binary"
"fmt"
"hash"
"math"
"math/bits"
"math/rand"
"net/netip"
"reflect"
"runtime"
"testing"
"testing/quick"
"time"
qt "github.com/frankban/quicktest"
"go4.org/mem"
"go4.org/netipx"
"tailscale.com/tailcfg"
"tailscale.com/types/dnstype"
"tailscale.com/types/ipproto"
"tailscale.com/types/key"
"tailscale.com/types/ptr"
"tailscale.com/util/deephash/testtype"
"tailscale.com/util/dnsname"
"tailscale.com/version"
"tailscale.com/wgengine/filter"
"tailscale.com/wgengine/router"
"tailscale.com/wgengine/wgcfg"
)
type appendBytes []byte
func (p appendBytes) AppendTo(b []byte) []byte {
return append(b, p...)
}
func TestHash(t *testing.T) {
type tuple [2]any
type iface struct{ X any }
type scalars struct {
I8 int8
I16 int16
I32 int32
I64 int64
I int
U8 uint8
U16 uint16
U32 uint32
U64 uint64
U uint
UP uintptr
F32 float32
F64 float64
C64 complex64
C128 complex128
}
type MyBool bool
type MyHeader tar.Header
var zeroFloat64 float64
tests := []struct {
in tuple
wantEq bool
}{
{in: tuple{false, true}, wantEq: false},
{in: tuple{true, true}, wantEq: true},
{in: tuple{false, false}, wantEq: true},
{
in: tuple{
scalars{-8, -16, -32, -64, -1234, 8, 16, 32, 64, 1234, 5678, 32.32, 64.64, 32 + 32i, 64 + 64i},
scalars{-8, -16, -32, -64, -1234, 8, 16, 32, 64, 1234, 5678, 32.32, 64.64, 32 + 32i, 64 + 64i},
},
wantEq: true,
},
{in: tuple{scalars{I8: math.MinInt8}, scalars{I8: math.MinInt8 / 2}}, wantEq: false},
{in: tuple{scalars{I16: math.MinInt16}, scalars{I16: math.MinInt16 / 2}}, wantEq: false},
{in: tuple{scalars{I32: math.MinInt32}, scalars{I32: math.MinInt32 / 2}}, wantEq: false},
{in: tuple{scalars{I64: math.MinInt64}, scalars{I64: math.MinInt64 / 2}}, wantEq: false},
{in: tuple{scalars{I: -1234}, scalars{I: -1234 / 2}}, wantEq: false},
{in: tuple{scalars{U8: math.MaxUint8}, scalars{U8: math.MaxUint8 / 2}}, wantEq: false},
{in: tuple{scalars{U16: math.MaxUint16}, scalars{U16: math.MaxUint16 / 2}}, wantEq: false},
{in: tuple{scalars{U32: math.MaxUint32}, scalars{U32: math.MaxUint32 / 2}}, wantEq: false},
{in: tuple{scalars{U64: math.MaxUint64}, scalars{U64: math.MaxUint64 / 2}}, wantEq: false},
{in: tuple{scalars{U: 1234}, scalars{U: 1234 / 2}}, wantEq: false},
{in: tuple{scalars{UP: 5678}, scalars{UP: 5678 / 2}}, wantEq: false},
{in: tuple{scalars{F32: 32.32}, scalars{F32: math.Nextafter32(32.32, 0)}}, wantEq: false},
{in: tuple{scalars{F64: 64.64}, scalars{F64: math.Nextafter(64.64, 0)}}, wantEq: false},
{in: tuple{scalars{F32: float32(math.NaN())}, scalars{F32: float32(math.NaN())}}, wantEq: true},
{in: tuple{scalars{F64: float64(math.NaN())}, scalars{F64: float64(math.NaN())}}, wantEq: true},
{in: tuple{scalars{C64: 32 + 32i}, scalars{C64: complex(math.Nextafter32(32, 0), 32)}}, wantEq: false},
{in: tuple{scalars{C128: 64 + 64i}, scalars{C128: complex(math.Nextafter(64, 0), 64)}}, wantEq: false},
{in: tuple{[]int(nil), []int(nil)}, wantEq: true},
{in: tuple{[]int{}, []int(nil)}, wantEq: false},
{in: tuple{[]int{}, []int{}}, wantEq: true},
{in: tuple{[]string(nil), []string(nil)}, wantEq: true},
{in: tuple{[]string{}, []string(nil)}, wantEq: false},
{in: tuple{[]string{}, []string{}}, wantEq: true},
{in: tuple{[]appendBytes{{}, {0, 0, 0, 0, 0, 0, 0, 1}}, []appendBytes{{}, {0, 0, 0, 0, 0, 0, 0, 1}}}, wantEq: true},
{in: tuple{[]appendBytes{{}, {0, 0, 0, 0, 0, 0, 0, 1}}, []appendBytes{{0, 0, 0, 0, 0, 0, 0, 1}, {}}}, wantEq: false},
{in: tuple{iface{MyBool(true)}, iface{MyBool(true)}}, wantEq: true},
{in: tuple{iface{true}, iface{MyBool(true)}}, wantEq: false},
{in: tuple{iface{MyHeader{}}, iface{MyHeader{}}}, wantEq: true},
{in: tuple{iface{MyHeader{}}, iface{tar.Header{}}}, wantEq: false},
{in: tuple{iface{&MyHeader{}}, iface{&MyHeader{}}}, wantEq: true},
{in: tuple{iface{&MyHeader{}}, iface{&tar.Header{}}}, wantEq: false},
{in: tuple{iface{[]map[string]MyBool{}}, iface{[]map[string]MyBool{}}}, wantEq: true},
{in: tuple{iface{[]map[string]bool{}}, iface{[]map[string]MyBool{}}}, wantEq: false},
{in: tuple{zeroFloat64, -zeroFloat64}, wantEq: false}, // Issue 4883 (false alarm)
{in: tuple{[]any(nil), 0.0}, wantEq: false}, // Issue 4883
{in: tuple{[]any(nil), uint8(0)}, wantEq: false}, // Issue 4883
{in: tuple{nil, nil}, wantEq: true}, // Issue 4883
{
in: func() tuple {
i1 := 1
i2 := 2
v1 := [3]*int{&i1, &i2, &i1}
v2 := [3]*int{&i1, &i2, &i2}
return tuple{v1, v2}
}(),
wantEq: false,
},
{in: tuple{netip.Addr{}, netip.Addr{}}, wantEq: true},
{in: tuple{netip.Addr{}, netip.AddrFrom4([4]byte{})}, wantEq: false},
{in: tuple{netip.AddrFrom4([4]byte{}), netip.AddrFrom4([4]byte{})}, wantEq: true},
{in: tuple{netip.AddrFrom4([4]byte{192, 168, 0, 1}), netip.AddrFrom4([4]byte{192, 168, 0, 1})}, wantEq: true},
{in: tuple{netip.AddrFrom4([4]byte{192, 168, 0, 1}), netip.AddrFrom4([4]byte{192, 168, 0, 2})}, wantEq: false},
{in: tuple{netip.AddrFrom4([4]byte{}), netip.AddrFrom16([16]byte{})}, wantEq: false},
{in: tuple{netip.AddrFrom16([16]byte{}), netip.AddrFrom16([16]byte{})}, wantEq: true},
{in: tuple{netip.AddrPort{}, netip.AddrPort{}}, wantEq: true},
{in: tuple{netip.AddrPort{}, netip.AddrPortFrom(netip.AddrFrom4([4]byte{}), 0)}, wantEq: false},
{in: tuple{netip.AddrPortFrom(netip.AddrFrom4([4]byte{}), 0), netip.AddrPortFrom(netip.AddrFrom4([4]byte{}), 0)}, wantEq: true},
{in: tuple{netip.AddrPortFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), 1234), netip.AddrPortFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), 1234)}, wantEq: true},
{in: tuple{netip.AddrPortFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), 1234), netip.AddrPortFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), 1235)}, wantEq: false},
{in: tuple{netip.AddrPortFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), 1234), netip.AddrPortFrom(netip.AddrFrom4([4]byte{192, 168, 0, 2}), 1234)}, wantEq: false},
{in: tuple{netip.Prefix{}, netip.Prefix{}}, wantEq: true},
{in: tuple{netip.Prefix{}, netip.PrefixFrom(netip.Addr{}, 1)}, wantEq: false},
{in: tuple{netip.Prefix{}, netip.PrefixFrom(netip.AddrFrom4([4]byte{}), 0)}, wantEq: false},
{in: tuple{netip.PrefixFrom(netip.AddrFrom4([4]byte{}), 1), netip.PrefixFrom(netip.AddrFrom4([4]byte{}), 1)}, wantEq: true},
{in: tuple{netip.PrefixFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), 1), netip.PrefixFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), 1)}, wantEq: true},
{in: tuple{netip.PrefixFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), 1), netip.PrefixFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), 0)}, wantEq: false},
{in: tuple{netip.PrefixFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), 1), netip.PrefixFrom(netip.AddrFrom4([4]byte{192, 168, 0, 2}), 1)}, wantEq: false},
{in: tuple{netipx.IPRange{}, netipx.IPRange{}}, wantEq: true},
{in: tuple{netipx.IPRange{}, netipx.IPRangeFrom(netip.AddrFrom4([4]byte{}), netip.AddrFrom16([16]byte{}))}, wantEq: false},
{in: tuple{netipx.IPRangeFrom(netip.AddrFrom4([4]byte{}), netip.AddrFrom16([16]byte{})), netipx.IPRangeFrom(netip.AddrFrom4([4]byte{}), netip.AddrFrom16([16]byte{}))}, wantEq: true},
{in: tuple{netipx.IPRangeFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), netip.AddrFrom4([4]byte{192, 168, 0, 100})), netipx.IPRangeFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), netip.AddrFrom4([4]byte{192, 168, 0, 100}))}, wantEq: true},
{in: tuple{netipx.IPRangeFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), netip.AddrFrom4([4]byte{192, 168, 0, 100})), netipx.IPRangeFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), netip.AddrFrom4([4]byte{192, 168, 0, 101}))}, wantEq: false},
{in: tuple{netipx.IPRangeFrom(netip.AddrFrom4([4]byte{192, 168, 0, 1}), netip.AddrFrom4([4]byte{192, 168, 0, 100})), netipx.IPRangeFrom(netip.AddrFrom4([4]byte{192, 168, 0, 2}), netip.AddrFrom4([4]byte{192, 168, 0, 100}))}, wantEq: false},
{in: tuple{key.DiscoPublic{}, key.DiscoPublic{}}, wantEq: true},
{in: tuple{key.DiscoPublic{}, key.DiscoPublicFromRaw32(mem.B(func() []byte {
b := make([]byte, 32)
b[0] = 1
return b
}()))}, wantEq: false},
{in: tuple{key.NodePublic{}, key.NodePublic{}}, wantEq: true},
{in: tuple{key.NodePublic{}, key.NodePublicFromRaw32(mem.B(func() []byte {
b := make([]byte, 32)
b[0] = 1
return b
}()))}, wantEq: false},
}
for _, tt := range tests {
gotEq := Hash(&tt.in[0]) == Hash(&tt.in[1])
if gotEq != tt.wantEq {
t.Errorf("(Hash(%T %v) == Hash(%T %v)) = %v, want %v", tt.in[0], tt.in[0], tt.in[1], tt.in[1], gotEq, tt.wantEq)
}
}
}
func TestDeepHash(t *testing.T) {
// v contains the types of values we care about for our current callers.
// Mostly we're just testing that we don't panic on handled types.
v := getVal()
hash1 := Hash(v)
t.Logf("hash: %v", hash1)
for i := 0; i < 20; i++ {
v := getVal()
hash2 := Hash(v)
if hash1 != hash2 {
t.Error("second hash didn't match")
}
}
}
// Tests that we actually hash map elements. Whoops.
func TestIssue4868(t *testing.T) {
m1 := map[int]string{1: "foo"}
m2 := map[int]string{1: "bar"}
if Hash(&m1) == Hash(&m2) {
t.Error("bogus")
}
}
func TestIssue4871(t *testing.T) {
m1 := map[string]string{"": "", "x": "foo"}
m2 := map[string]string{}
if h1, h2 := Hash(&m1), Hash(&m2); h1 == h2 {
t.Errorf("bogus: h1=%x, h2=%x", h1, h2)
}
}
func TestNilVsEmptymap(t *testing.T) {
m1 := map[string]string(nil)
m2 := map[string]string{}
if h1, h2 := Hash(&m1), Hash(&m2); h1 == h2 {
t.Errorf("bogus: h1=%x, h2=%x", h1, h2)
}
}
func TestMapFraming(t *testing.T) {
m1 := map[string]string{"foo": "", "fo": "o"}
m2 := map[string]string{}
if h1, h2 := Hash(&m1), Hash(&m2); h1 == h2 {
t.Errorf("bogus: h1=%x, h2=%x", h1, h2)
}
}
func TestQuick(t *testing.T) {
initSeed()
err := quick.Check(func(v, w map[string]string) bool {
return (Hash(&v) == Hash(&w)) == reflect.DeepEqual(v, w)
}, &quick.Config{MaxCount: 1000, Rand: rand.New(rand.NewSource(int64(seed)))})
if err != nil {
t.Fatalf("seed=%v, err=%v", seed, err)
}
}
type tailscaleTypes struct {
WGConfig *wgcfg.Config
RouterConfig *router.Config
MapFQDNAddrs map[dnsname.FQDN][]netip.Addr
MapFQDNAddrPorts map[dnsname.FQDN][]netip.AddrPort
MapDiscoPublics map[key.DiscoPublic]bool
MapResponse *tailcfg.MapResponse
FilterMatch filter.Match
}
func getVal() *tailscaleTypes {
return &tailscaleTypes{
&wgcfg.Config{
Name: "foo",
Addresses: []netip.Prefix{netip.PrefixFrom(netip.AddrFrom16([16]byte{3: 3}).Unmap(), 5)},
Peers: []wgcfg.Peer{
{
PublicKey: key.NodePublic{},
},
},
},
&router.Config{
Routes: []netip.Prefix{
netip.MustParsePrefix("1.2.3.0/24"),
netip.MustParsePrefix("1234::/64"),
},
},
map[dnsname.FQDN][]netip.Addr{
dnsname.FQDN("a."): {netip.MustParseAddr("1.2.3.4"), netip.MustParseAddr("4.3.2.1")},
dnsname.FQDN("b."): {netip.MustParseAddr("8.8.8.8"), netip.MustParseAddr("9.9.9.9")},
dnsname.FQDN("c."): {netip.MustParseAddr("6.6.6.6"), netip.MustParseAddr("7.7.7.7")},
dnsname.FQDN("d."): {netip.MustParseAddr("6.7.6.6"), netip.MustParseAddr("7.7.7.8")},
dnsname.FQDN("e."): {netip.MustParseAddr("6.8.6.6"), netip.MustParseAddr("7.7.7.9")},
dnsname.FQDN("f."): {netip.MustParseAddr("6.9.6.6"), netip.MustParseAddr("7.7.7.0")},
},
map[dnsname.FQDN][]netip.AddrPort{
dnsname.FQDN("a."): {netip.MustParseAddrPort("1.2.3.4:11"), netip.MustParseAddrPort("4.3.2.1:22")},
dnsname.FQDN("b."): {netip.MustParseAddrPort("8.8.8.8:11"), netip.MustParseAddrPort("9.9.9.9:22")},
dnsname.FQDN("c."): {netip.MustParseAddrPort("8.8.8.8:12"), netip.MustParseAddrPort("9.9.9.9:23")},
dnsname.FQDN("d."): {netip.MustParseAddrPort("8.8.8.8:13"), netip.MustParseAddrPort("9.9.9.9:24")},
dnsname.FQDN("e."): {netip.MustParseAddrPort("8.8.8.8:14"), netip.MustParseAddrPort("9.9.9.9:25")},
},
map[key.DiscoPublic]bool{
key.DiscoPublicFromRaw32(mem.B([]byte{1: 1, 31: 0})): true,
key.DiscoPublicFromRaw32(mem.B([]byte{1: 2, 31: 0})): false,
key.DiscoPublicFromRaw32(mem.B([]byte{1: 3, 31: 0})): true,
key.DiscoPublicFromRaw32(mem.B([]byte{1: 4, 31: 0})): false,
},
&tailcfg.MapResponse{
DERPMap: &tailcfg.DERPMap{
Regions: map[int]*tailcfg.DERPRegion{
1: {
RegionID: 1,
RegionCode: "foo",
Nodes: []*tailcfg.DERPNode{
{
Name: "n1",
RegionID: 1,
HostName: "foo.com",
},
{
Name: "n2",
RegionID: 1,
HostName: "bar.com",
},
},
},
},
},
DNSConfig: &tailcfg.DNSConfig{
Resolvers: []*dnstype.Resolver{
{Addr: "10.0.0.1"},
},
},
PacketFilter: []tailcfg.FilterRule{
{
SrcIPs: []string{"1.2.3.4"},
DstPorts: []tailcfg.NetPortRange{
{
IP: "1.2.3.4/32",
Ports: tailcfg.PortRange{First: 1, Last: 2},
},
},
},
},
Peers: []*tailcfg.Node{
{
ID: 1,
},
{
ID: 2,
},
},
UserProfiles: []tailcfg.UserProfile{
{ID: 1, LoginName: "foo@bar.com"},
{ID: 2, LoginName: "bar@foo.com"},
},
},
filter.Match{
IPProto: []ipproto.Proto{1, 2, 3},
},
}
}
type IntThenByte struct {
i int
b byte
}
type TwoInts struct{ a, b int }
type IntIntByteInt struct {
i1, i2 int32
b byte // padding after
i3 int32
}
func u8(n uint8) string { return string([]byte{n}) }
func u16(n uint16) string { return string(binary.LittleEndian.AppendUint16(nil, n)) }
func u32(n uint32) string { return string(binary.LittleEndian.AppendUint32(nil, n)) }
func u64(n uint64) string { return string(binary.LittleEndian.AppendUint64(nil, n)) }
func ux(n uint) string {
if bits.UintSize == 32 {
return u32(uint32(n))
} else {
return u64(uint64(n))
}
}
func TestGetTypeHasher(t *testing.T) {
switch runtime.GOARCH {
case "amd64", "arm64", "arm", "386", "riscv64":
default:
// Test outputs below are specifically for little-endian machines.
// Just skip everything else for now. Feel free to add more above if
// you have the hardware to test and it's little-endian.
t.Skipf("skipping on %v", runtime.GOARCH)
}
type typedString string
var (
someInt = int('A')
someComplex128 = complex128(1 + 2i)
someIP = netip.MustParseAddr("1.2.3.4")
)
tests := []struct {
name string
val any
out string
out32 string // overwrites out if 32-bit
}{
{
name: "int",
val: int(1),
out: ux(1),
},
{
name: "int_negative",
val: int(-1),
out: ux(math.MaxUint),
},
{
name: "int8",
val: int8(1),
out: "\x01",
},
{
name: "float64",
val: float64(1.0),
out: "\x00\x00\x00\x00\x00\x00\xf0?",
},
{
name: "float32",
val: float32(1.0),
out: "\x00\x00\x80?",
},
{
name: "string",
val: "foo",
out: "\x03\x00\x00\x00\x00\x00\x00\x00foo",
},
{
name: "typedString",
val: typedString("foo"),
out: "\x03\x00\x00\x00\x00\x00\x00\x00foo",
},
{
name: "string_slice",
val: []string{"foo", "bar"},
out: "\x01\x02\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00foo\x03\x00\x00\x00\x00\x00\x00\x00bar",
},
{
name: "int_slice",
val: []int{1, 0, -1},
out: "\x01\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff",
out32: "\x01\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff",
},
{
name: "struct",
val: struct {
a, b int
c uint16
}{1, -1, 2},
out: "\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x02\x00",
out32: "\x01\x00\x00\x00\xff\xff\xff\xff\x02\x00",
},
{
name: "nil_int_ptr",
val: (*int)(nil),
out: "\x00",
},
{
name: "int_ptr",
val: &someInt,
out: "\x01A\x00\x00\x00\x00\x00\x00\x00",
out32: "\x01A\x00\x00\x00",
},
{
name: "nil_uint32_ptr",
val: (*uint32)(nil),
out: "\x00",
},
{
name: "complex128_ptr",
val: &someComplex128,
out: "\x01\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x00@",
},
{
name: "packet_filter",
val: filterRules,
out: "\x01\x04\x00\x00\x00\x00\x00\x00\x00\x01\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00*\v\x00\x00\x00\x00\x00\x00\x0010.1.3.4/32\v\x00\x00\x00\x00\x00\x00\x0010.0.0.0/24\x01\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\n\x00\x00\x00\x00\x00\x00\x001.2.3.4/32\x01 \x00\x00\x00\x00\x00\x00\x00\x01\x00\x02\x00\x01\x04\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04 \x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00foo\x01\x01\x00\x00\x00\x00\x00\x00\x00\v\x00\x00\x00\x00\x00\x00\x00foooooooooo\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\f\x00\x00\x00\x00\x00\x00\x00baaaaaarrrrr\x00\x01\x00\x02\x00\x00\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\v\x00\x00\x00\x00\x00\x00\x00foooooooooo\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\f\x00\x00\x00\x00\x00\x00\x00baaaaaarrrrr\x00\x01\x00\x02\x00\x00\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\v\x00\x00\x00\x00\x00\x00\x00foooooooooo\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\f\x00\x00\x00\x00\x00\x00\x00baaaaaarrrrr\x00\x01\x00\x02\x00\x00\x00",
out32: "\x01\x04\x00\x00\x00\x00\x00\x00\x00\x01\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00*\v\x00\x00\x00\x00\x00\x00\x0010.1.3.4/32\v\x00\x00\x00\x00\x00\x00\x0010.0.0.0/24\x01\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\n\x00\x00\x00\x00\x00\x00\x001.2.3.4/32\x01 \x00\x00\x00\x01\x00\x02\x00\x01\x04\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04 \x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00foo\x01\x01\x00\x00\x00\x00\x00\x00\x00\v\x00\x00\x00\x00\x00\x00\x00foooooooooo\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\f\x00\x00\x00\x00\x00\x00\x00baaaaaarrrrr\x00\x01\x00\x02\x00\x00\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\v\x00\x00\x00\x00\x00\x00\x00foooooooooo\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\f\x00\x00\x00\x00\x00\x00\x00baaaaaarrrrr\x00\x01\x00\x02\x00\x00\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\v\x00\x00\x00\x00\x00\x00\x00foooooooooo\x00\x01\x01\x00\x00\x00\x00\x00\x00\x00\f\x00\x00\x00\x00\x00\x00\x00baaaaaarrrrr\x00\x01\x00\x02\x00\x00\x00",
},
{
name: "netip.Addr",
val: netip.MustParseAddr("fe80::123%foo"),
out: u64(16+3) + u64(0x80fe) + u64(0x2301<<48) + "foo",
},
{
name: "ptr-netip.Addr",
val: &someIP,
out: u8(1) + u64(4) + u32(0x04030201),
},
{
name: "ptr-nil-netip.Addr",
val: (*netip.Addr)(nil),
out: "\x00",
},
{
name: "time",
val: time.Unix(1234, 5678).In(time.UTC),
out: u64(1234) + u32(5678) + u32(0),
},
{
name: "time_ptr", // addressable, as opposed to "time" test above
val: ptr.To(time.Unix(1234, 5678).In(time.UTC)),
out: u8(1) + u64(1234) + u32(5678) + u32(0),
},
{
name: "time_ptr_via_unexported",
val: testtype.NewUnexportedAddressableTime(time.Unix(1234, 5678).In(time.UTC)),
out: u8(1) + u64(1234) + u32(5678) + u32(0),
},
{
name: "time_ptr_via_unexported_value",
val: *testtype.NewUnexportedAddressableTime(time.Unix(1234, 5678).In(time.UTC)),
out: u64(1234) + u32(5678) + u32(0),
},
{
name: "time_custom_zone",
val: time.Unix(1655311822, 0).In(time.FixedZone("FOO", -60*60)),
out: u64(1655311822) + u32(0) + u32(math.MaxUint32-60*60+1),
},
{
name: "time_nil",
val: (*time.Time)(nil),
out: "\x00",
},
{
name: "array_memhash",
val: [4]byte{1, 2, 3, 4},
out: "\x01\x02\x03\x04",
},
{
name: "array_ptr_memhash",
val: ptr.To([4]byte{1, 2, 3, 4}),
out: "\x01\x01\x02\x03\x04",
},
{
name: "ptr_to_struct_partially_memhashable",
val: &struct {
A int16
B int16
C *int
}{5, 6, nil},
out: "\x01\x05\x00\x06\x00\x00",
},
{
name: "struct_partially_memhashable_but_cant_addr",
val: struct {
A int16
B int16
C *int
}{5, 6, nil},
out: "\x05\x00\x06\x00\x00",
},
{
name: "array_elements",
val: [4]byte{1, 2, 3, 4},
out: "\x01\x02\x03\x04",
},
{
name: "bool",
val: true,
out: "\x01",
},
{
name: "IntIntByteInt",
val: IntIntByteInt{1, 2, 3, 4},
out: "\x01\x00\x00\x00\x02\x00\x00\x00\x03\x04\x00\x00\x00",
},
{
name: "IntIntByteInt-canaddr",
val: &IntIntByteInt{1, 2, 3, 4},
out: "\x01\x01\x00\x00\x00\x02\x00\x00\x00\x03\x04\x00\x00\x00",
},
{
name: "array-IntIntByteInt",
val: [2]IntIntByteInt{
{1, 2, 3, 4},
{5, 6, 7, 8},
},
out: "\x01\x00\x00\x00\x02\x00\x00\x00\x03\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\a\b\x00\x00\x00",
},
{
name: "array-IntIntByteInt-canaddr",
val: &[2]IntIntByteInt{
{1, 2, 3, 4},
{5, 6, 7, 8},
},
out: "\x01\x01\x00\x00\x00\x02\x00\x00\x00\x03\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\a\b\x00\x00\x00",
},
{
name: "tailcfg.Node",
val: &tailcfg.Node{},
out: "\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\tn\x88\xf1\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\tn\x88\xf1\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
out32: "\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\tn\x88\xf1\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\tn\x88\xf1\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
rv := reflect.ValueOf(tt.val)
va := reflect.New(rv.Type()).Elem()
va.Set(rv)
fn := lookupTypeHasher(va.Type())
hb := &hashBuffer{Hash: sha256.New()}
h := new(hasher)
h.Block512.Hash = hb
fn(h, pointerOf(va.Addr()))
const ptrSize = 32 << uintptr(^uintptr(0)>>63)
if tt.out32 != "" && ptrSize == 32 {
tt.out = tt.out32
}
h.sum()
if got := string(hb.B); got != tt.out {
t.Fatalf("got %q; want %q", got, tt.out)
}
})
}
}
func TestSliceCycle(t *testing.T) {
type S []S
c := qt.New(t)
a := make(S, 1) // cyclic graph of 1 node
a[0] = a
b := make(S, 1) // cyclic graph of 1 node
b[0] = b
ha := Hash(&a)
hb := Hash(&b)
c.Assert(ha, qt.Equals, hb)
c1 := make(S, 1) // cyclic graph of 2 nodes
c2 := make(S, 1) // cyclic graph of 2 nodes
c1[0] = c2
c2[0] = c1
hc1 := Hash(&c1)
hc2 := Hash(&c2)
c.Assert(hc1, qt.Equals, hc2)
c.Assert(ha, qt.Not(qt.Equals), hc1)
c.Assert(hb, qt.Not(qt.Equals), hc2)
c3 := make(S, 1) // graph of 1 node pointing to cyclic graph of 2 nodes
c3[0] = c1
hc3 := Hash(&c3)
c.Assert(hc1, qt.Not(qt.Equals), hc3)
c4 := make(S, 2) // cyclic graph of 3 nodes
c5 := make(S, 2) // cyclic graph of 3 nodes
c4[0] = nil
c4[1] = c4
c5[0] = c5
c5[1] = nil
hc4 := Hash(&c4)
hc5 := Hash(&c5)
c.Assert(hc4, qt.Not(qt.Equals), hc5) // cycle occurs through different indexes
}
func TestMapCycle(t *testing.T) {
type M map[string]M
c := qt.New(t)
a := make(M) // cyclic graph of 1 node
a["self"] = a
b := make(M) // cyclic graph of 1 node
b["self"] = b
ha := Hash(&a)
hb := Hash(&b)
c.Assert(ha, qt.Equals, hb)
c1 := make(M) // cyclic graph of 2 nodes
c2 := make(M) // cyclic graph of 2 nodes
c1["peer"] = c2
c2["peer"] = c1
hc1 := Hash(&c1)
hc2 := Hash(&c2)
c.Assert(hc1, qt.Equals, hc2)
c.Assert(ha, qt.Not(qt.Equals), hc1)
c.Assert(hb, qt.Not(qt.Equals), hc2)
c3 := make(M) // graph of 1 node pointing to cyclic graph of 2 nodes
c3["child"] = c1
hc3 := Hash(&c3)
c.Assert(hc1, qt.Not(qt.Equals), hc3)
c4 := make(M) // cyclic graph of 3 nodes
c5 := make(M) // cyclic graph of 3 nodes
c4["0"] = nil
c4["1"] = c4
c5["0"] = c5
c5["1"] = nil
hc4 := Hash(&c4)
hc5 := Hash(&c5)
c.Assert(hc4, qt.Not(qt.Equals), hc5) // cycle occurs through different keys
}
func TestPointerCycle(t *testing.T) {
type P *P
c := qt.New(t)
a := new(P) // cyclic graph of 1 node
*a = a
b := new(P) // cyclic graph of 1 node
*b = b
ha := Hash(&a)
hb := Hash(&b)
c.Assert(ha, qt.Equals, hb)
c1 := new(P) // cyclic graph of 2 nodes
c2 := new(P) // cyclic graph of 2 nodes
*c1 = c2
*c2 = c1
hc1 := Hash(&c1)
hc2 := Hash(&c2)
c.Assert(hc1, qt.Equals, hc2)
c.Assert(ha, qt.Not(qt.Equals), hc1)
c.Assert(hb, qt.Not(qt.Equals), hc2)
c3 := new(P) // graph of 1 node pointing to cyclic graph of 2 nodes
*c3 = c1
hc3 := Hash(&c3)
c.Assert(hc1, qt.Not(qt.Equals), hc3)
}
func TestInterfaceCycle(t *testing.T) {
type I struct{ v any }
c := qt.New(t)
a := new(I) // cyclic graph of 1 node
a.v = a
b := new(I) // cyclic graph of 1 node
b.v = b
ha := Hash(&a)
hb := Hash(&b)
c.Assert(ha, qt.Equals, hb)
c1 := new(I) // cyclic graph of 2 nodes
c2 := new(I) // cyclic graph of 2 nodes
c1.v = c2
c2.v = c1
hc1 := Hash(&c1)
hc2 := Hash(&c2)
c.Assert(hc1, qt.Equals, hc2)
c.Assert(ha, qt.Not(qt.Equals), hc1)
c.Assert(hb, qt.Not(qt.Equals), hc2)
c3 := new(I) // graph of 1 node pointing to cyclic graph of 2 nodes
c3.v = c1
hc3 := Hash(&c3)
c.Assert(hc1, qt.Not(qt.Equals), hc3)
}
var sink Sum
func BenchmarkHash(b *testing.B) {
b.ReportAllocs()
v := getVal()
for i := 0; i < b.N; i++ {
sink = Hash(v)
}
}
// filterRules is a packet filter that has both everything populated (in its
// first element) and also a few entries that are the typical shape for regular
// packet filters as sent to clients.
var filterRules = []tailcfg.FilterRule{
{
SrcIPs: []string{"*", "10.1.3.4/32", "10.0.0.0/24"},
SrcBits: []int{1, 2, 3},
DstPorts: []tailcfg.NetPortRange{{
IP: "1.2.3.4/32",
Bits: ptr.To(32),
Ports: tailcfg.PortRange{First: 1, Last: 2},
}},
IPProto: []int{1, 2, 3, 4},
CapGrant: []tailcfg.CapGrant{{
Dsts: []netip.Prefix{netip.MustParsePrefix("1.2.3.4/32")},
Caps: []string{"foo"},
}},
},
{
SrcIPs: []string{"foooooooooo"},
DstPorts: []tailcfg.NetPortRange{{
IP: "baaaaaarrrrr",
Ports: tailcfg.PortRange{First: 1, Last: 2},
}},
},
{
SrcIPs: []string{"foooooooooo"},
DstPorts: []tailcfg.NetPortRange{{
IP: "baaaaaarrrrr",
Ports: tailcfg.PortRange{First: 1, Last: 2},
}},
},
{
SrcIPs: []string{"foooooooooo"},
DstPorts: []tailcfg.NetPortRange{{
IP: "baaaaaarrrrr",
Ports: tailcfg.PortRange{First: 1, Last: 2},
}},
},
}
func BenchmarkHashPacketFilter(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
sink = Hash(&filterRules)
}
}
func TestHashMapAcyclic(t *testing.T) {
m := map[int]string{}
for i := 0; i < 100; i++ {
m[i] = fmt.Sprint(i)
}
got := map[string]bool{}
hb := &hashBuffer{Hash: sha256.New()}
hash := lookupTypeHasher(reflect.TypeOf(m))
for i := 0; i < 20; i++ {
va := reflect.ValueOf(&m).Elem()
hb.Reset()
h := new(hasher)
h.Block512.Hash = hb
hash(h, pointerOf(va.Addr()))
h.sum()
if got[string(hb.B)] {
continue
}
got[string(hb.B)] = true
}
if len(got) != 1 {
t.Errorf("got %d results; want 1", len(got))
}
}
func TestPrintArray(t *testing.T) {
type T struct {
X [32]byte
}
x := T{X: [32]byte{1: 1, 31: 31}}
hb := &hashBuffer{Hash: sha256.New()}
h := new(hasher)
h.Block512.Hash = hb
va := reflect.ValueOf(&x).Elem()
hash := lookupTypeHasher(va.Type())
hash(h, pointerOf(va.Addr()))
h.sum()
const want = "\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1f"
if got := hb.B; string(got) != want {
t.Errorf("wrong:\n got: %q\nwant: %q\n", got, want)
}
}
func BenchmarkHashMapAcyclic(b *testing.B) {
b.ReportAllocs()
m := map[int]string{}
for i := 0; i < 100; i++ {
m[i] = fmt.Sprint(i)
}
hb := &hashBuffer{Hash: sha256.New()}
va := reflect.ValueOf(&m).Elem()
hash := lookupTypeHasher(va.Type())
h := new(hasher)
h.Block512.Hash = hb
for i := 0; i < b.N; i++ {
h.Reset()
hash(h, pointerOf(va.Addr()))
}
}
func BenchmarkTailcfgNode(b *testing.B) {
b.ReportAllocs()
node := new(tailcfg.Node)
for i := 0; i < b.N; i++ {
sink = Hash(node)
}
}
func TestExhaustive(t *testing.T) {
seen := make(map[Sum]bool)
for i := 0; i < 100000; i++ {
s := Hash(&i)
if seen[s] {
t.Fatalf("hash collision %v", i)
}
seen[s] = true
}
}
// verify this doesn't loop forever, as it used to (Issue 2340)
func TestMapCyclicFallback(t *testing.T) {
type T struct {
M map[string]any
}
v := &T{
M: map[string]any{},
}
v.M["m"] = v.M
Hash(v)
}
func TestArrayAllocs(t *testing.T) {
if version.IsRace() {
t.Skip("skipping test under race detector")
}
// In theory, there should be no allocations. However, escape analysis on
// certain architectures fails to detect that certain cases do not escape.
// This discrepancy currently affects sha256.digest.Sum.
// Measure the number of allocations in sha256 to ensure that Hash does
// not allocate on top of its usage of sha256.
// See https://golang.org/issue/48055.
var b []byte
h := sha256.New()
want := int(testing.AllocsPerRun(1000, func() {
b = h.Sum(b[:0])
}))
switch runtime.GOARCH {
case "amd64", "arm64":
want = 0 // ensure no allocations on popular architectures
}
type T struct {
X [32]byte
}
x := &T{X: [32]byte{1: 1, 2: 2, 3: 3, 4: 4}}
got := int(testing.AllocsPerRun(1000, func() {
sink = Hash(x)
}))
if got > want {
t.Errorf("allocs = %v; want %v", got, want)
}
}
// Test for http://go/corp/6311 issue.
func TestHashThroughView(t *testing.T) {
type sshPolicyOut struct {
Rules []tailcfg.SSHRuleView
}
type mapResponseOut struct {
SSHPolicy *sshPolicyOut
}
// Just test we don't panic:
_ = Hash(&mapResponseOut{
SSHPolicy: &sshPolicyOut{
Rules: []tailcfg.SSHRuleView{
(&tailcfg.SSHRule{
RuleExpires: ptr.To(time.Unix(123, 0)),
}).View(),
},
},
})
}
func BenchmarkHashArray(b *testing.B) {
b.ReportAllocs()
type T struct {
X [32]byte
}
x := &T{X: [32]byte{1: 1, 2: 2, 3: 3, 4: 4}}
for i := 0; i < b.N; i++ {
sink = Hash(x)
}
}
// hashBuffer is a hash.Hash that buffers all written data.
type hashBuffer struct {
hash.Hash
B []byte
}
func (h *hashBuffer) Write(b []byte) (int, error) {
n, err := h.Hash.Write(b)
h.B = append(h.B, b[:n]...)
return n, err
}
func (h *hashBuffer) Reset() {
h.Hash.Reset()
h.B = h.B[:0]
}
func FuzzTime(f *testing.F) {
f.Add(int64(0), int64(0), false, "", 0, int64(0), int64(0), false, "", 0)
f.Add(int64(0), int64(0), false, "", 0, int64(0), int64(0), true, "", 0)
f.Add(int64(0), int64(0), false, "", 0, int64(0), int64(0), true, "hello", 0)
f.Add(int64(0), int64(0), false, "", 0, int64(0), int64(0), true, "", 1234)
f.Add(int64(0), int64(0), false, "", 0, int64(0), int64(0), true, "hello", 1234)
f.Add(int64(0), int64(0), false, "", 0, int64(0), int64(1), false, "", 0)
f.Add(int64(0), int64(0), false, "", 0, int64(0), int64(1), true, "", 0)
f.Add(int64(0), int64(0), false, "", 0, int64(0), int64(1), true, "hello", 0)
f.Add(int64(0), int64(0), false, "", 0, int64(0), int64(1), true, "", 1234)
f.Add(int64(0), int64(0), false, "", 0, int64(0), int64(1), true, "hello", 1234)
f.Add(int64(math.MaxInt64), int64(math.MaxInt64), false, "", 0, int64(math.MaxInt64), int64(math.MaxInt64), false, "", 0)
f.Add(int64(math.MaxInt64), int64(math.MaxInt64), false, "", 0, int64(math.MaxInt64), int64(math.MaxInt64), true, "", 0)
f.Add(int64(math.MaxInt64), int64(math.MaxInt64), false, "", 0, int64(math.MaxInt64), int64(math.MaxInt64), true, "hello", 0)
f.Add(int64(math.MaxInt64), int64(math.MaxInt64), false, "", 0, int64(math.MaxInt64), int64(math.MaxInt64), true, "", 1234)
f.Add(int64(math.MaxInt64), int64(math.MaxInt64), false, "", 0, int64(math.MaxInt64), int64(math.MaxInt64), true, "hello", 1234)
f.Add(int64(math.MinInt64), int64(math.MinInt64), false, "", 0, int64(math.MinInt64), int64(math.MinInt64), false, "", 0)
f.Add(int64(math.MinInt64), int64(math.MinInt64), false, "", 0, int64(math.MinInt64), int64(math.MinInt64), true, "", 0)
f.Add(int64(math.MinInt64), int64(math.MinInt64), false, "", 0, int64(math.MinInt64), int64(math.MinInt64), true, "hello", 0)
f.Add(int64(math.MinInt64), int64(math.MinInt64), false, "", 0, int64(math.MinInt64), int64(math.MinInt64), true, "", 1234)
f.Add(int64(math.MinInt64), int64(math.MinInt64), false, "", 0, int64(math.MinInt64), int64(math.MinInt64), true, "hello", 1234)
f.Fuzz(func(t *testing.T,
s1, ns1 int64, loc1 bool, name1 string, off1 int,
s2, ns2 int64, loc2 bool, name2 string, off2 int,
) {
t1 := time.Unix(s1, ns1)
if loc1 {
_ = t1.In(time.FixedZone(name1, off1))
}
t2 := time.Unix(s2, ns2)
if loc2 {
_ = t2.In(time.FixedZone(name2, off2))
}
got := Hash(&t1) == Hash(&t2)
want := t1.Format(time.RFC3339Nano) == t2.Format(time.RFC3339Nano)
if got != want {
t.Errorf("time.Time(%s) == time.Time(%s) mismatches hash equivalent", t1.Format(time.RFC3339Nano), t2.Format(time.RFC3339Nano))
}
})
}
func FuzzAddr(f *testing.F) {
f.Fuzz(func(t *testing.T,
u1a, u1b uint64, zone1 string,
u2a, u2b uint64, zone2 string,
) {
var b1, b2 [16]byte
binary.LittleEndian.PutUint64(b1[:8], u1a)
binary.LittleEndian.PutUint64(b1[8:], u1b)
binary.LittleEndian.PutUint64(b2[:8], u2a)
binary.LittleEndian.PutUint64(b2[8:], u2b)
var ips [4]netip.Addr
ips[0] = netip.AddrFrom4(*(*[4]byte)(b1[:]))
ips[1] = netip.AddrFrom4(*(*[4]byte)(b2[:]))
ips[2] = netip.AddrFrom16(b1)
if zone1 != "" {
ips[2] = ips[2].WithZone(zone1)
}
ips[3] = netip.AddrFrom16(b2)
if zone2 != "" {
ips[3] = ips[2].WithZone(zone2)
}
for _, ip1 := range ips[:] {
for _, ip2 := range ips[:] {
got := Hash(&ip1) == Hash(&ip2)
want := ip1 == ip2
if got != want {
t.Errorf("netip.Addr(%s) == netip.Addr(%s) mismatches hash equivalent", ip1.String(), ip2.String())
}
}
}
})
}
func TestAppendTo(t *testing.T) {
v := getVal()
h := Hash(v)
sum := h.AppendTo(nil)
if s := h.String(); s != string(sum) {
t.Errorf("hash sum mismatch; h.String()=%q h.AppendTo()=%q", s, string(sum))
}
}
func BenchmarkAppendTo(b *testing.B) {
b.ReportAllocs()
v := getVal()
h := Hash(v)
hashBuf := make([]byte, 0, 100)
b.ResetTimer()
for i := 0; i < b.N; i++ {
hashBuf = h.AppendTo(hashBuf[:0])
}
}