tailscale/util/winutil/restartmgr_windows.go
Aaron Klotz db39a43f06 util/winutil: add support for restarting Windows processes in specific sessions
This PR is all about adding functionality that will enable the installer's
upgrade sequence to terminate processes belonging to the previous version,
and then subsequently restart instances belonging to the new version within
the session(s) corresponding to the processes that were killed.

There are multiple parts to this:

* We add support for the Restart Manager APIs, which allow us to query the
  OS for a list of processes locking specific files;
* We add the RestartableProcess and RestartableProcesses types that query
  additional information about the running processes that will allow us
  to correctly restart them in the future. These types also provide the
  ability to terminate the processes.
* We add the StartProcessInSession family of APIs that permit us to create
  new processes within specific sessions. This is needed in order to
  properly attach a new GUI process to the same RDP session and desktop that
  its previously-terminated counterpart would have been running in.
* I tweaked the winutil token APIs again.
* A lot of this stuff is pretty hard to test without a very elaborate
  harness, but I added a unit test for the most complicated part (though it
  requires LocalSystem to run).

Updates https://github.com/tailscale/corp/issues/13998

Signed-off-by: Aaron Klotz <aaron@tailscale.com>
2023-11-30 14:04:27 -08:00

837 lines
25 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package winutil
import (
"bytes"
"errors"
"fmt"
"io"
"os"
"path/filepath"
"runtime"
"strings"
"time"
"unicode/utf16"
"unsafe"
"github.com/dblohm7/wingoes"
"golang.org/x/sys/windows"
"tailscale.com/types/logger"
"tailscale.com/util/multierr"
)
var (
ErrDefunctProcess = errors.New("process is defunct")
ErrProcessNotRestartable = errors.New("process is not restartable")
)
// Implementation note: the code in this file will be invoked from within
// MSI custom actions, so please try to return windows.Errno error codes
// whenever possible; this makes the action return more accurate errors to
// the installer engine.
const (
_RESTART_NO_CRASH = 1
_RESTART_NO_HANG = 2
_RESTART_NO_PATCH = 4
_RESTART_NO_REBOOT = 8
)
func registerForRestart(opts RegisterForRestartOpts) error {
var flags uint32
if !opts.RestartOnCrash {
flags |= _RESTART_NO_CRASH
}
if !opts.RestartOnHang {
flags |= _RESTART_NO_HANG
}
if !opts.RestartOnUpgrade {
flags |= _RESTART_NO_PATCH
}
if !opts.RestartOnReboot {
flags |= _RESTART_NO_REBOOT
}
var cmdLine *uint16
if opts.UseCmdLineArgs {
if len(opts.CmdLineArgs) == 0 {
// re-use our current args, excluding the exe name itself
opts.CmdLineArgs = os.Args[1:]
}
var b strings.Builder
for _, arg := range opts.CmdLineArgs {
if b.Len() > 0 {
b.WriteByte(' ')
}
b.WriteString(windows.EscapeArg(arg))
}
if b.Len() > 0 {
var err error
cmdLine, err = windows.UTF16PtrFromString(b.String())
if err != nil {
return err
}
}
}
hr := registerApplicationRestart(cmdLine, flags)
if e := wingoes.ErrorFromHRESULT(hr); e.Failed() {
return e
}
return nil
}
type _RMHANDLE uint32
// See https://web.archive.org/web/20231128212837/https://learn.microsoft.com/en-us/windows/win32/rstmgr/using-restart-manager-with-a-secondary-installer
const _INVALID_RMHANDLE = ^_RMHANDLE(0)
type _RM_UNIQUE_PROCESS struct {
PID uint32
ProcessStartTime windows.Filetime
}
type _RM_APP_TYPE int32
const (
_RmUnknownApp _RM_APP_TYPE = 0
_RmMainWindow _RM_APP_TYPE = 1
_RmOtherWindow _RM_APP_TYPE = 2
_RmService _RM_APP_TYPE = 3
_RmExplorer _RM_APP_TYPE = 4
_RmConsole _RM_APP_TYPE = 5
_RmCritical _RM_APP_TYPE = 1000
)
type _RM_APP_STATUS uint32
const (
_RmStatusUnknown _RM_APP_STATUS = 0x0
_RmStatusRunning _RM_APP_STATUS = 0x1
_RmStatusStopped _RM_APP_STATUS = 0x2
_RmStatusStoppedOther _RM_APP_STATUS = 0x4
_RmStatusRestarted _RM_APP_STATUS = 0x8
_RmStatusErrorOnStop _RM_APP_STATUS = 0x10
_RmStatusErrorOnRestart _RM_APP_STATUS = 0x20
_RmStatusShutdownMasked _RM_APP_STATUS = 0x40
_RmStatusRestartMasked _RM_APP_STATUS = 0x80
)
type _RM_PROCESS_INFO struct {
Process _RM_UNIQUE_PROCESS
AppName [256]uint16
ServiceShortName [64]uint16
AppType _RM_APP_TYPE
AppStatus _RM_APP_STATUS
TSSessionID uint32
Restartable int32 // Win32 BOOL
}
// RestartManagerSession represents an open Restart Manager session.
type RestartManagerSession interface {
io.Closer
// AddPaths adds the fully-qualified paths in fqPaths to the set of binaries
// that will be monitored by this restart manager session. NOTE: This
// method is expensive to call, so it is better to make a single call with
// a larger slice than to make multiple calls with smaller slices.
AddPaths(fqPaths []string) error
// AffectedProcesses returns the UniqueProcess information for all running
// processes that utilize the binaries previously specified by calls to
// AddPaths.
AffectedProcesses() ([]UniqueProcess, error)
// Key returns the session key associated with this instance.
Key() string
}
// rmSession encapsulates the necessary information to represent an open
// restart manager session.
//
// Implementation note: rmSession methods that return errors should use
// windows.Errno codes whenever possible, as we call them from the custom
// action DLL. MSI custom actions are expected to return windows.Errno values;
// to ensure our compliance with this expectation, we should also use those
// values. Failure to do so will result in a generic windows.Errno being
// returned to the Windows Installer, which obviously is less than ideal.
type rmSession struct {
session _RMHANDLE
key string
logf logger.Logf
}
const _CCH_RM_SESSION_KEY = 32 // (excludes NUL terminator)
// NewRestartManagerSession creates a new RestartManagerSession that utilizes
// logf for logging.
func NewRestartManagerSession(logf logger.Logf) (RestartManagerSession, error) {
var sessionKeyBuf [_CCH_RM_SESSION_KEY + 1]uint16
result := rmSession{
logf: logf,
}
if err := rmStartSession(&result.session, 0, &sessionKeyBuf[0]); err != nil {
return nil, err
}
result.key = windows.UTF16ToString(sessionKeyBuf[:_CCH_RM_SESSION_KEY])
return &result, nil
}
// AttachRestartManagerSession opens a connection to an existing session
// specified by sessionKey, using logf for logging.
func AttachRestartManagerSession(logf logger.Logf, sessionKey string) (RestartManagerSession, error) {
sessionKey16, err := windows.UTF16PtrFromString(sessionKey)
if err != nil {
return nil, err
}
result := rmSession{
key: sessionKey,
logf: logf,
}
if err := rmJoinSession(&result.session, sessionKey16); err != nil {
return nil, err
}
return &result, nil
}
func (rms *rmSession) Close() error {
if rms == nil || rms.session == _INVALID_RMHANDLE {
return nil
}
if err := rmEndSession(rms.session); err != nil {
return err
}
rms.session = _INVALID_RMHANDLE
return nil
}
func (rms *rmSession) Key() string {
return rms.key
}
func (rms *rmSession) AffectedProcesses() ([]UniqueProcess, error) {
infos, err := rms.processList()
if err != nil {
return nil, err
}
result := make([]UniqueProcess, 0, len(infos))
for _, info := range infos {
result = append(result, UniqueProcess{
_RM_UNIQUE_PROCESS: info.Process,
CanReceiveGUIMsgs: info.AppType == _RmMainWindow || info.AppType == _RmOtherWindow,
})
}
return result, nil
}
func (rms *rmSession) processList() ([]_RM_PROCESS_INFO, error) {
const maxAttempts = 5
var avail, rebootReasons uint32
needed := uint32(1)
var buf []_RM_PROCESS_INFO
err := error(windows.ERROR_MORE_DATA)
numAttempts := 0
for err == windows.ERROR_MORE_DATA && numAttempts < maxAttempts {
numAttempts++
buf = make([]_RM_PROCESS_INFO, needed)
avail = needed
err = rmGetList(rms.session, &needed, &avail, unsafe.SliceData(buf), &rebootReasons)
}
if err != nil {
if err == windows.ERROR_SESSION_CREDENTIAL_CONFLICT {
// Add some more context about the meaning of this error.
err = fmt.Errorf("%w (the Restart Manager does not permit calling RmGetList from a process that did not originally create the session)", err)
}
return nil, err
}
return buf[:avail], nil
}
func (rms *rmSession) AddPaths(fqPaths []string) error {
if len(fqPaths) == 0 {
return nil
}
fqPaths16 := make([]*uint16, 0, len(fqPaths))
for _, fqPath := range fqPaths {
if !filepath.IsAbs(fqPath) {
return fmt.Errorf("%w: paths must be fully-qualified", windows.ERROR_BAD_PATHNAME)
}
fqPath16, err := windows.UTF16PtrFromString(fqPath)
if err != nil {
return err
}
fqPaths16 = append(fqPaths16, fqPath16)
}
return rmRegisterResources(rms.session, uint32(len(fqPaths16)), unsafe.SliceData(fqPaths16), 0, nil, 0, nil)
}
// UniqueProcess contains the necessary information to uniquely identify a
// process in the face of potential PID reuse.
type UniqueProcess struct {
_RM_UNIQUE_PROCESS
// CanReceiveGUIMsgs is true when the process has open top-level windows.
CanReceiveGUIMsgs bool
}
// AsRestartableProcess obtains a RestartableProcess populated using the
// information obtained from up.
func (up *UniqueProcess) AsRestartableProcess() (*RestartableProcess, error) {
// We need PROCESS_QUERY_INFORMATION instead of PROCESS_QUERY_LIMITED_INFORMATION
// in order for ProcessImageName to be able to work from within a privileged
// Windows Installer process.
// We need PROCESS_VM_READ for GetApplicationRestartSettings.
// We need PROCESS_TERMINATE and SYNCHRONIZE to terminate the process and
// to be able to wait for the terminated process's handle to signal.
access := uint32(windows.PROCESS_QUERY_INFORMATION | windows.PROCESS_TERMINATE | windows.PROCESS_VM_READ | windows.SYNCHRONIZE)
h, err := windows.OpenProcess(access, false, up.PID)
if err != nil {
return nil, fmt.Errorf("OpenProcess(%d[%#X]): %w", up.PID, up.PID, err)
}
defer func() {
if h == 0 {
return
}
windows.CloseHandle(h)
}()
var creationTime, exitTime, kernelTime, userTime windows.Filetime
if err := windows.GetProcessTimes(h, &creationTime, &exitTime, &kernelTime, &userTime); err != nil {
return nil, fmt.Errorf("GetProcessTimes: %w", err)
}
if creationTime != up.ProcessStartTime {
// The PID has been reused and does not actually reference the original process.
return nil, ErrDefunctProcess
}
var tok windows.Token
if err := windows.OpenProcessToken(h, windows.TOKEN_QUERY, &tok); err != nil {
return nil, fmt.Errorf("OpenProcessToken: %w", err)
}
defer tok.Close()
tsSessionID, err := TSSessionID(tok)
if err != nil {
return nil, fmt.Errorf("TSSessionID: %w", err)
}
logonSessionID, err := LogonSessionID(tok)
if err != nil {
return nil, fmt.Errorf("LogonSessionID: %w", err)
}
img, err := ProcessImageName(h)
if err != nil {
return nil, fmt.Errorf("ProcessImageName: %w", err)
}
const _RESTART_MAX_CMD_LINE = 1024
var cmdLine [_RESTART_MAX_CMD_LINE]uint16
cmdLineLen := uint32(len(cmdLine))
var rmFlags uint32
hr := getApplicationRestartSettings(h, &cmdLine[0], &cmdLineLen, &rmFlags)
// Not found is not an error; it just means that the app never set any restart settings.
if e := wingoes.ErrorFromHRESULT(hr); e.Failed() && e != wingoes.ErrorFromErrno(windows.ERROR_NOT_FOUND) {
return nil, fmt.Errorf("GetApplicationRestartSettings: %w", error(e))
}
if (rmFlags & _RESTART_NO_PATCH) != 0 {
// The application explicitly stated that it cannot be restarted during
// an upgrade.
return nil, ErrProcessNotRestartable
}
var logonSID string
// Non-fatal, so we'll proceed with best-effort.
if tokenGroups, err := tok.GetTokenGroups(); err == nil {
for _, group := range tokenGroups.AllGroups() {
if (group.Attributes & windows.SE_GROUP_LOGON_ID) != 0 {
logonSID = group.Sid.String()
break
}
}
}
var userSID string
// Non-fatal, so we'll proceed with best-effort.
if tokenUser, err := tok.GetTokenUser(); err == nil {
// Save the user's SID so that we can later check it against the currently
// logged-in Tailscale profile.
userSID = tokenUser.User.Sid.String()
}
result := &RestartableProcess{
Process: *up,
SessionInfo: SessionID{
LogonSession: logonSessionID,
TSSession: tsSessionID,
},
CommandLineInfo: CommandLineInfo{
ExePath: img,
Args: windows.UTF16ToString(cmdLine[:cmdLineLen]),
},
LogonSID: logonSID,
UserSID: userSID,
handle: h,
}
runtime.SetFinalizer(result, func(rp *RestartableProcess) { rp.Close() })
h = 0
return result, nil
}
// RestartableProcess contains the necessary information to uniquely identify
// an existing process, as well as the necessary information to be able to
// terminate it and later start a new instance in the identical logon session
// to the previous instance.
type RestartableProcess struct {
// Process uniquely identifies the existing process.
Process UniqueProcess
// SessionInfo uniquely identifies the Terminal Services (RDP) and logon
// sessions the existing process is running under.
SessionInfo SessionID
// CommandLineInfo contains the command line information necessary for restarting.
CommandLineInfo CommandLineInfo
// LogonSID contains the stringified SID of the existing process's token's logon session.
LogonSID string
// UserSID contains the stringified SID of the existing process's token's user.
UserSID string
// handle specifies the Win32 HANDLE associated with the existing process.
// When non-zero, it includes access rights for querying, terminating, and synchronizing.
handle windows.Handle
// hasExitCode is true when the exitCode field is valid.
hasExitCode bool
// exitCode contains exit code returned by this RestartableProcess once
// its termination has been recorded by (RestartableProcesses).Terminate.
// It is only valid when hasExitCode == true.
exitCode uint32
}
func (rp *RestartableProcess) Close() error {
if rp.handle == 0 {
return nil
}
windows.CloseHandle(rp.handle)
runtime.SetFinalizer(rp, nil)
rp.handle = 0
return nil
}
// RestartableProcesses is a map of PID to *RestartableProcess instance.
type RestartableProcesses map[uint32]*RestartableProcess
// NewRestartableProcesses instantiates a new RestartableProcesses.
func NewRestartableProcesses() RestartableProcesses {
return make(RestartableProcesses)
}
// Add inserts rp into rps.
func (rps RestartableProcesses) Add(rp *RestartableProcess) {
if rp != nil {
rps[rp.Process.PID] = rp
}
}
// Delete removes rp from rps.
func (rps RestartableProcesses) Delete(rp *RestartableProcess) {
if rp != nil {
delete(rps, rp.Process.PID)
}
}
// Close invokes (*RestartableProcess).Close on every value in rps, and then
// clears rps.
func (rps RestartableProcesses) Close() error {
for _, v := range rps {
v.Close()
}
clear(rps)
return nil
}
// _MAXIMUM_WAIT_OBJECTS is the Win32 constant for the maximum number of
// handles that a call to WaitForMultipleObjects may receive at once.
const _MAXIMUM_WAIT_OBJECTS = 64
// Terminate forcibly terminates all processes in rps using exitCode, and then
// waits for their process handles to signal, up to timeout.
func (rps RestartableProcesses) Terminate(logf logger.Logf, exitCode uint32, timeout time.Duration) error {
if len(rps) == 0 {
return nil
}
millis, err := wingoes.DurationToTimeoutMilliseconds(timeout)
if err != nil {
return err
}
errs := make([]error, 0, len(rps))
procs := make([]*RestartableProcess, 0, len(rps))
handles := make([]windows.Handle, 0, len(rps))
for _, v := range rps {
if err := windows.TerminateProcess(v.handle, exitCode); err != nil {
if err == windows.ERROR_ACCESS_DENIED {
// If v terminated before we attempted to terminate, we'll receive
// ERROR_ACCESS_DENIED, which is not really an error worth reporting in
// our use case. Just obtain the exit code and then close the process.
if err := windows.GetExitCodeProcess(v.handle, &v.exitCode); err != nil {
logf("GetExitCodeProcess failed: %v", err)
} else {
v.hasExitCode = true
}
v.Close()
} else {
errs = append(errs, &terminationError{rp: v, err: err})
}
continue
}
procs = append(procs, v)
handles = append(handles, v.handle)
}
for len(handles) > 0 {
// WaitForMultipleObjects can only wait on _MAXIMUM_WAIT_OBJECTS handles per
// call, so we batch them as necessary.
count := uint32(min(len(handles), _MAXIMUM_WAIT_OBJECTS))
waitCode, err := windows.WaitForMultipleObjects(handles[:count], true, millis)
if err != nil {
errs = append(errs, fmt.Errorf("waiting on terminated process handles: %w", err))
break
}
if e := windows.Errno(waitCode); e == windows.WAIT_TIMEOUT {
errs = append(errs, fmt.Errorf("waiting on terminated process handles: %w", error(e)))
break
}
if waitCode >= windows.WAIT_OBJECT_0 && waitCode < (windows.WAIT_OBJECT_0+count) {
// The first count process handles have all been signaled. Close them out.
for _, proc := range procs[:count] {
if err := windows.GetExitCodeProcess(proc.handle, &proc.exitCode); err != nil {
logf("GetExitCodeProcess failed: %v", err)
} else {
proc.hasExitCode = true
}
proc.Close()
}
procs = procs[count:]
handles = handles[count:]
continue
}
// We really shouldn't be reaching this point
panic(fmt.Sprintf("unexpected state from WaitForMultipleObjects: %d", waitCode))
}
if len(errs) != 0 {
return multierr.New(errs...)
}
return nil
}
type terminationError struct {
rp *RestartableProcess
err error
}
func (te *terminationError) Error() string {
pid := te.rp.Process.PID
return fmt.Sprintf("terminating process %d (%#X): %v", pid, pid, te.err)
}
func (te *terminationError) Unwrap() error {
return te.err
}
// SessionID encapsulates the necessary information for uniquely identifying
// sessions. In particular, SessionID contains enough information to detect
// reuse of Terminal Service session IDs.
type SessionID struct {
// LogonSession is the NT logon session ID.
LogonSession windows.LUID
// TSSession is the terminal services session ID.
TSSession uint32
}
// OpenToken obtains the security token associated with sessID.
func (sessID *SessionID) OpenToken() (windows.Token, error) {
var token windows.Token
if err := windows.WTSQueryUserToken(sessID.TSSession, &token); err != nil {
return 0, err
}
var err error
defer func() {
if err != nil {
token.Close()
}
}()
tokenLogonSession, err := LogonSessionID(token)
if err != nil {
return 0, err
}
if tokenLogonSession != sessID.LogonSession {
err = windows.ERROR_NO_SUCH_LOGON_SESSION
return 0, err
}
return token, nil
}
// ContainsToken determines whether token is contained within sessID.
func (sessID *SessionID) ContainsToken(token windows.Token) (bool, error) {
tokenTSSessionID, err := TSSessionID(token)
if err != nil {
return false, err
}
if tokenTSSessionID != sessID.TSSession {
return false, nil
}
tokenLogonSession, err := LogonSessionID(token)
if err != nil {
return false, err
}
return tokenLogonSession == sessID.LogonSession, nil
}
// This is the Window Station and Desktop within a particular session that must
// be specified for interactive processes: "Winsta0\\default\x00"
var defaultDesktop = unsafe.SliceData([]uint16{'W', 'i', 'n', 's', 't', 'a', '0', '\\', 'd', 'e', 'f', 'a', 'u', 'l', 't', 0})
// CommandLineInfo manages the necessary information for creating a Win32
// process using a specific command line.
type CommandLineInfo struct {
// ExePath must be a fully-qualified path to a Windows executable binary.
ExePath string
// Args must be any arguments supplied to the process, excluding the
// path to the binary itself. Args must be properly quoted according to
// Windows path rules. To create a properly quoted Args from scratch, call the
// SetArgs method instead.
Args string `json:",omitempty"`
}
// SetArgs converts args to a string quoted as necessary to satisfy the rules
// for Win32 command lines, and sets cli.Args to that string.
func (cli *CommandLineInfo) SetArgs(args []string) {
var buf strings.Builder
for _, arg := range args {
if buf.Len() > 0 {
buf.WriteByte(' ')
}
buf.WriteString(windows.EscapeArg(arg))
}
cli.Args = buf.String()
}
// Validate ensures that cli.ExePath contains an absolute path.
func (cli *CommandLineInfo) Validate() error {
if cli == nil {
return windows.ERROR_INVALID_PARAMETER
}
if !filepath.IsAbs(cli.ExePath) {
return fmt.Errorf("%w: CommandLineInfo requires absolute ExePath", windows.ERROR_BAD_PATHNAME)
}
return nil
}
// Resolve converts the information in cli to a format compatible with the Win32
// CreateProcess* family of APIs, as pointers to C-style UTF-16 strings. It also
// returns the full command line as a Go string for logging purposes.
func (cli *CommandLineInfo) Resolve() (exePath *uint16, cmdLine *uint16, cmdLineStr string, err error) {
// Resolve cmdLine first since that also does a Validate.
cmdLineStr, cmdLine, err = cli.resolveArgsAsUTF16Ptr()
if err != nil {
return nil, nil, "", err
}
exePath, err = windows.UTF16PtrFromString(cli.ExePath)
if err != nil {
return nil, nil, "", err
}
return exePath, cmdLine, cmdLineStr, nil
}
// resolveArgs quotes cli.ExePath as necessary, appends Args, and returns the result.
func (cli *CommandLineInfo) resolveArgs() (string, error) {
if err := cli.Validate(); err != nil {
return "", err
}
var cmdLineBuf strings.Builder
cmdLineBuf.WriteString(windows.EscapeArg(cli.ExePath))
if args := cli.Args; args != "" {
cmdLineBuf.WriteByte(' ')
cmdLineBuf.WriteString(args)
}
return cmdLineBuf.String(), nil
}
func (cli *CommandLineInfo) resolveArgsAsUTF16Ptr() (string, *uint16, error) {
s, err := cli.resolveArgs()
if err != nil {
return "", nil, err
}
s16, err := windows.UTF16PtrFromString(s)
if err != nil {
return "", nil, err
}
return s, s16, nil
}
// StartProcessInSession creates a new process using cmdLineInfo that will
// reside inside the session identified by sessID, with the security token whose
// logon is associated with sessID. The child process's environment will be
// inherited from the session token's environment.
func StartProcessInSession(sessID SessionID, cmdLineInfo CommandLineInfo) error {
return StartProcessInSessionWithHandler(sessID, cmdLineInfo, nil)
}
// PostCreateProcessHandler is a function that is invoked by
// StartProcessInSessionWithHandler when the child process has been successfully
// created. It is the responsibility of the handler to close the pi.Thread and
// pi.Process handles.
type PostCreateProcessHandler func(pi *windows.ProcessInformation)
// StartProcessInSessionWithHandler creates a new process using cmdLineInfo that
// will reside inside the session identified by sessID, with the security token
// whose logon is associated with sessID. The child process's environment will be
// inherited from the session token's environment. When the child process has
// been successfully created, handler is invoked with the windows.ProcessInformation
// that was returned by the OS.
func StartProcessInSessionWithHandler(sessID SessionID, cmdLineInfo CommandLineInfo, handler PostCreateProcessHandler) error {
pi, err := startProcessInSessionInternal(sessID, cmdLineInfo, 0)
if err != nil {
return err
}
if handler != nil {
handler(pi)
return nil
}
windows.CloseHandle(pi.Process)
windows.CloseHandle(pi.Thread)
return nil
}
// RunProcessInSession creates a new process and waits up to timeout for that
// child process to complete its execution. The process is created using
// cmdLineInfo and will reside inside the session identified by sessID, with the
// security token whose logon is associated with sessID. The child process's
// environment will be inherited from the session token's environment.
func RunProcessInSession(sessID SessionID, cmdLineInfo CommandLineInfo, timeout time.Duration) (uint32, error) {
timeoutMillis, err := wingoes.DurationToTimeoutMilliseconds(timeout)
if err != nil {
return 1, err
}
pi, err := startProcessInSessionInternal(sessID, cmdLineInfo, 0)
if err != nil {
return 1, err
}
windows.CloseHandle(pi.Thread)
defer windows.CloseHandle(pi.Process)
waitCode, err := windows.WaitForSingleObject(pi.Process, timeoutMillis)
if err != nil {
return 1, fmt.Errorf("WaitForSingleObject: %w", err)
}
if e := windows.Errno(waitCode); e == windows.WAIT_TIMEOUT {
return 1, e
}
if waitCode != windows.WAIT_OBJECT_0 {
// This should not be possible; log
return 1, fmt.Errorf("unexpected state from WaitForSingleObject: %d", waitCode)
}
var exitCode uint32
if err := windows.GetExitCodeProcess(pi.Process, &exitCode); err != nil {
return 1, err
}
return exitCode, nil
}
func startProcessInSessionInternal(sessID SessionID, cmdLineInfo CommandLineInfo, extraFlags uint32) (*windows.ProcessInformation, error) {
if err := cmdLineInfo.Validate(); err != nil {
return nil, err
}
token, err := sessID.OpenToken()
if err != nil {
return nil, fmt.Errorf("(*SessionID).OpenToken: %w", err)
}
defer token.Close()
exePath16, commandLine16, _, err := cmdLineInfo.Resolve()
if err != nil {
return nil, fmt.Errorf("(*CommandLineInfo).Resolve(): %w", err)
}
wd16, err := windows.UTF16PtrFromString(filepath.Dir(cmdLineInfo.ExePath))
if err != nil {
return nil, fmt.Errorf("UTF16PtrFromString(wd): %w", err)
}
env, err := token.Environ(false)
if err != nil {
return nil, fmt.Errorf("token environment: %w", err)
}
env16 := newEnvBlock(env)
// The privileges in privNames are required for CreateProcessAsUser to be
// able to start processes as other users in other logon sessions.
privNames := []string{
"SeAssignPrimaryTokenPrivilege",
"SeIncreaseQuotaPrivilege",
}
dropPrivs, err := EnableCurrentThreadPrivileges(privNames)
if err != nil {
return nil, fmt.Errorf("EnableCurrentThreadPrivileges(%#v): %w", privNames, err)
}
defer dropPrivs()
createFlags := extraFlags | windows.CREATE_UNICODE_ENVIRONMENT | windows.DETACHED_PROCESS
si := windows.StartupInfo{
Cb: uint32(unsafe.Sizeof(windows.StartupInfo{})),
Desktop: defaultDesktop,
}
var pi windows.ProcessInformation
if err := windows.CreateProcessAsUser(token, exePath16, commandLine16, nil, nil,
false, createFlags, env16, wd16, &si, &pi); err != nil {
return nil, fmt.Errorf("CreateProcessAsUser: %w", err)
}
return &pi, nil
}
func newEnvBlock(env []string) *uint16 {
// Intentionally using bytes.Buffer here because we're writing nul bytes (the standard library does this too).
var buf bytes.Buffer
for _, v := range env {
buf.WriteString(v)
buf.WriteByte(0)
}
if buf.Len() == 0 {
// So that we end with a double-null in the empty env case
buf.WriteByte(0)
}
buf.WriteByte(0)
return unsafe.SliceData(utf16.Encode([]rune(string(buf.Bytes()))))
}