mirror of
https://github.com/tailscale/tailscale.git
synced 2024-11-25 19:15:34 +00:00
f580f4484f
It doesn't make a ton of sense for disablement to be communicated as an AUM, because any failure in the AUM or chain mechanism will mean disablement wont function. Instead, tracking of the disablement secrets remains inside the state machine, but actual disablement and communication of the disablement secret is done by the caller. Signed-off-by: Tom DNetto <tom@tailscale.com>
256 lines
7.0 KiB
Go
256 lines
7.0 KiB
Go
// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package tka
|
|
|
|
import (
|
|
"bytes"
|
|
"errors"
|
|
"fmt"
|
|
|
|
"golang.org/x/crypto/argon2"
|
|
"tailscale.com/types/tkatype"
|
|
)
|
|
|
|
// ErrNoSuchKey is returned if the key referenced by a KeyID does not exist.
|
|
var ErrNoSuchKey = errors.New("key not found")
|
|
|
|
// State describes Tailnet Key Authority state at an instant in time.
|
|
//
|
|
// State is mutated by applying Authority Update Messages (AUMs), resulting
|
|
// in a new State.
|
|
type State struct {
|
|
// LastAUMHash is the blake2s digest of the last-applied AUM.
|
|
// Because AUMs are strictly ordered and form a hash chain, we
|
|
// check the previous AUM hash in an update we are applying
|
|
// is the same as the LastAUMHash.
|
|
LastAUMHash *AUMHash `cbor:"1,keyasint"`
|
|
|
|
// DisablementSecrets are KDF-derived values which can be used
|
|
// to turn off the TKA in the event of a consensus-breaking bug.
|
|
// An AUM of type DisableNL should contain a secret when results
|
|
// in one of these values when run through the disablement KDF.
|
|
//
|
|
// TODO(tom): This is an alpha feature, remove this mechanism once
|
|
// we have confidence in our implementation.
|
|
DisablementSecrets [][]byte `cbor:"2,keyasint"`
|
|
|
|
// Keys are the public keys currently trusted by the TKA.
|
|
Keys []Key `cbor:"3,keyasint"`
|
|
}
|
|
|
|
// GetKey returns the trusted key with the specified KeyID.
|
|
func (s State) GetKey(key tkatype.KeyID) (Key, error) {
|
|
for _, k := range s.Keys {
|
|
if bytes.Equal(k.ID(), key) {
|
|
return k, nil
|
|
}
|
|
}
|
|
|
|
return Key{}, ErrNoSuchKey
|
|
}
|
|
|
|
// Clone makes an independent copy of State.
|
|
//
|
|
// NOTE: There is a difference between a nil slice and an empty
|
|
// slice for encoding purposes, so an implementation of Clone()
|
|
// must take care to preserve this.
|
|
func (s State) Clone() State {
|
|
out := State{}
|
|
|
|
if s.LastAUMHash != nil {
|
|
dupe := *s.LastAUMHash
|
|
out.LastAUMHash = &dupe
|
|
}
|
|
|
|
if s.DisablementSecrets != nil {
|
|
out.DisablementSecrets = make([][]byte, len(s.DisablementSecrets))
|
|
for i := range s.DisablementSecrets {
|
|
out.DisablementSecrets[i] = make([]byte, len(s.DisablementSecrets[i]))
|
|
copy(out.DisablementSecrets[i], s.DisablementSecrets[i])
|
|
}
|
|
}
|
|
|
|
if s.Keys != nil {
|
|
out.Keys = make([]Key, len(s.Keys))
|
|
for i := range s.Keys {
|
|
out.Keys[i] = s.Keys[i].Clone()
|
|
}
|
|
}
|
|
|
|
return out
|
|
}
|
|
|
|
// cloneForUpdate is like Clone, except LastAUMHash is set based
|
|
// on the hash of the given update.
|
|
func (s State) cloneForUpdate(update *AUM) State {
|
|
out := s.Clone()
|
|
aumHash := update.Hash()
|
|
out.LastAUMHash = &aumHash
|
|
return out
|
|
}
|
|
|
|
const disablementLength = 32
|
|
|
|
var disablementSalt = []byte("tailscale network-lock disablement salt")
|
|
|
|
func disablementKDF(secret []byte) []byte {
|
|
// time = 4 (3 recommended, booped to 4 to compensate for less memory)
|
|
// memory = 16 (32 recommended)
|
|
// threads = 4
|
|
// keyLen = 32 (256 bits)
|
|
return argon2.Key(secret, disablementSalt, 4, 16*1024, 4, disablementLength)
|
|
}
|
|
|
|
// checkDisablement returns true for a valid disablement secret.
|
|
func (s State) checkDisablement(secret []byte) bool {
|
|
derived := disablementKDF(secret)
|
|
for _, candidate := range s.DisablementSecrets {
|
|
if bytes.Equal(derived, candidate) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// parentMatches returns true if an AUM can chain to (be applied)
|
|
// to the current state.
|
|
//
|
|
// Specifically, the rules are:
|
|
// - The last AUM hash must match (transitively, this implies that this
|
|
// update follows the last update message applied to the state machine)
|
|
// - Or, the state machine knows no parent (its brand new).
|
|
func (s State) parentMatches(update AUM) bool {
|
|
if s.LastAUMHash == nil {
|
|
return true
|
|
}
|
|
return bytes.Equal(s.LastAUMHash[:], update.PrevAUMHash)
|
|
}
|
|
|
|
// applyVerifiedAUM computes a new state based on the update provided.
|
|
//
|
|
// The provided update MUST be verified: That is, the AUM must be well-formed
|
|
// (as defined by StaticValidate()), and signatures over the AUM must have
|
|
// been verified.
|
|
func (s State) applyVerifiedAUM(update AUM) (State, error) {
|
|
// Validate that the update message has the right parent.
|
|
if !s.parentMatches(update) {
|
|
return State{}, errors.New("parent AUMHash mismatch")
|
|
}
|
|
|
|
switch update.MessageKind {
|
|
case AUMNoOp:
|
|
out := s.cloneForUpdate(&update)
|
|
return out, nil
|
|
|
|
case AUMCheckpoint:
|
|
return update.State.cloneForUpdate(&update), nil
|
|
|
|
case AUMAddKey:
|
|
if update.Key == nil {
|
|
return State{}, errors.New("no key to add provided")
|
|
}
|
|
if _, err := s.GetKey(update.Key.ID()); err == nil {
|
|
return State{}, errors.New("key already exists")
|
|
}
|
|
out := s.cloneForUpdate(&update)
|
|
out.Keys = append(out.Keys, *update.Key)
|
|
return out, nil
|
|
|
|
case AUMUpdateKey:
|
|
k, err := s.GetKey(update.KeyID)
|
|
if err != nil {
|
|
return State{}, err
|
|
}
|
|
if update.Votes != nil {
|
|
k.Votes = *update.Votes
|
|
}
|
|
if update.Meta != nil {
|
|
k.Meta = update.Meta
|
|
}
|
|
out := s.cloneForUpdate(&update)
|
|
for i := range out.Keys {
|
|
if bytes.Equal(out.Keys[i].ID(), update.KeyID) {
|
|
out.Keys[i] = k
|
|
}
|
|
}
|
|
return out, nil
|
|
|
|
case AUMRemoveKey:
|
|
idx := -1
|
|
for i := range s.Keys {
|
|
if bytes.Equal(update.KeyID, s.Keys[i].ID()) {
|
|
idx = i
|
|
break
|
|
}
|
|
}
|
|
if idx < 0 {
|
|
return State{}, ErrNoSuchKey
|
|
}
|
|
out := s.cloneForUpdate(&update)
|
|
out.Keys = append(out.Keys[:idx], out.Keys[idx+1:]...)
|
|
return out, nil
|
|
|
|
default:
|
|
// TODO(tom): Instead of erroring, update lastHash and
|
|
// continue (to preserve future compatibility).
|
|
return State{}, fmt.Errorf("unhandled message: %v", update.MessageKind)
|
|
}
|
|
}
|
|
|
|
// Upper bound on checkpoint elements, chosen arbitrarily. Intended to
|
|
// cap out insanely large AUMs.
|
|
const (
|
|
maxDisablementSecrets = 32
|
|
maxKeys = 512
|
|
)
|
|
|
|
// staticValidateCheckpoint validates that the state is well-formed for
|
|
// inclusion in a checkpoint AUM.
|
|
func (s *State) staticValidateCheckpoint() error {
|
|
if s.LastAUMHash != nil {
|
|
return errors.New("cannot specify a parent AUM")
|
|
}
|
|
if len(s.DisablementSecrets) == 0 {
|
|
return errors.New("at least one disablement secret required")
|
|
}
|
|
if numDS := len(s.DisablementSecrets); numDS > maxDisablementSecrets {
|
|
return fmt.Errorf("too many disablement secrets (%d, max %d)", numDS, maxDisablementSecrets)
|
|
}
|
|
for i, ds := range s.DisablementSecrets {
|
|
if len(ds) != disablementLength {
|
|
return fmt.Errorf("disablement[%d]: invalid length (got %d, want %d)", i, len(ds), disablementLength)
|
|
}
|
|
for j, ds2 := range s.DisablementSecrets {
|
|
if i == j {
|
|
continue
|
|
}
|
|
if bytes.Equal(ds, ds2) {
|
|
return fmt.Errorf("disablement[%d]: duplicates disablement[%d]", i, j)
|
|
}
|
|
}
|
|
}
|
|
|
|
if len(s.Keys) == 0 {
|
|
return errors.New("at least one key is required")
|
|
}
|
|
if numKeys := len(s.Keys); numKeys > maxKeys {
|
|
return fmt.Errorf("too many keys (%d, max %d)", numKeys, maxKeys)
|
|
}
|
|
for i, k := range s.Keys {
|
|
if err := k.StaticValidate(); err != nil {
|
|
return fmt.Errorf("key[%d]: %v", i, err)
|
|
}
|
|
for j, k2 := range s.Keys {
|
|
if i == j {
|
|
continue
|
|
}
|
|
if bytes.Equal(k.ID(), k2.ID()) {
|
|
return fmt.Errorf("key[%d]: duplicates key[%d]", i, j)
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|