tailscale/tka/sig.go
Tom DNetto be95aebabd tka: implement credential signatures (key material delegation)
This will be needed to support preauth-keys with network lock in the future,
so getting the core mechanics out of the way now.

Signed-off-by: Tom DNetto <tom@tailscale.com>
2022-08-31 10:13:13 -07:00

224 lines
7.3 KiB
Go

// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tka
import (
"bytes"
"crypto/ed25519"
"errors"
"fmt"
"github.com/fxamacker/cbor/v2"
"github.com/hdevalence/ed25519consensus"
"golang.org/x/crypto/blake2s"
"tailscale.com/types/key"
"tailscale.com/types/tkatype"
)
// SigKind describes valid NodeKeySignature types.
type SigKind uint8
const (
SigInvalid SigKind = iota
// SigDirect describes a signature over a specific node key, signed
// by a key in the tailnet key authority referenced by the specified keyID.
SigDirect
// SigRotation describes a signature over a specific node key, signed
// by the rotation key authorized by a nested NodeKeySignature structure.
//
// While it is possible to nest rotations multiple times up to the CBOR
// nesting limit, it is intended that nodes simply regenerate their outer
// SigRotation signature and sign it again with their rotation key. That
// way, SigRotation nesting should only be 2 deep in the common case.
SigRotation
// SigCredential describes a signature over a specifi public key, signed
// by a key in the tailnet key authority referenced by the specified keyID.
// In effect, SigCredential delegates the ability to make a signature to
// a different public/private key pair.
//
// It is intended that a different public/private key pair be generated
// for each different SigCredential that is created. Implementors must
// take care that the private side is only known to the entity that needs
// to generate the wrapping SigRotation signature, and it is immediately
// discarded after use.
//
// SigCredential is expected to be nested in a SigRotation signature.
SigCredential
)
func (s SigKind) String() string {
switch s {
case SigInvalid:
return "invalid"
case SigDirect:
return "direct"
case SigRotation:
return "rotation"
case SigCredential:
return "credential"
default:
return fmt.Sprintf("Sig?<%d>", int(s))
}
}
// NodeKeySignature encapsulates a signature that authorizes a specific
// node key, based on verification from keys in the tailnet key authority.
type NodeKeySignature struct {
// SigKind identifies the variety of signature.
SigKind SigKind `cbor:"1,keyasint"`
// Pubkey identifies the key.NodePublic which is being authorized.
// SigCredential signatures do not use this field.
Pubkey []byte `cbor:"2,keyasint,omitempty"`
// KeyID identifies which key in the tailnet key authority should
// be used to verify this signature. Only set for SigDirect and
// SigCredential signature kinds.
KeyID []byte `cbor:"3,keyasint,omitempty"`
// Signature is the packed (R, S) ed25519 signature over all other
// fields of the structure.
Signature []byte `cbor:"4,keyasint,omitempty"`
// Nested describes a NodeKeySignature which authorizes the node-key
// used as Pubkey. Only used for SigRotation signatures.
Nested *NodeKeySignature `cbor:"5,keyasint,omitempty"`
// WrappingPubkey specifies the ed25519 public key which must be used
// to sign a Signature which embeds this one.
//
// For SigRotation signatures multiple levels deep, intermediate
// signatures may omit this value, in which case the parent WrappingPubkey
// is used.
//
// SigCredential signatures use this field to specify the public key
// they are certifying, following the usual semanticsfor WrappingPubkey.
WrappingPubkey []byte `cbor:"6,keyasint,omitempty"`
}
// wrappingPublic returns the public key which must sign a signature which
// embeds this one, if any.
func (s NodeKeySignature) wrappingPublic() (pub ed25519.PublicKey, ok bool) {
if len(s.WrappingPubkey) > 0 {
return ed25519.PublicKey(s.WrappingPubkey), true
}
switch s.SigKind {
case SigRotation:
if s.Nested == nil {
return nil, false
}
return s.Nested.wrappingPublic()
default:
return nil, false
}
}
// SigHash returns the cryptographic digest which a signature
// is over.
//
// This is a hash of the serialized structure, sans the signature.
// Without this exclusion, the hash used for the signature
// would be circularly dependent on the signature.
func (s NodeKeySignature) SigHash() [blake2s.Size]byte {
dupe := s
dupe.Signature = nil
return blake2s.Sum256(dupe.Serialize())
}
// Serialize returns the given NKS in a serialized format.
//
// We would implement encoding.BinaryMarshaler, except that would
// unfortunately get called by the cbor marshaller resulting in infinite
// recursion.
func (s *NodeKeySignature) Serialize() tkatype.MarshaledSignature {
out := bytes.NewBuffer(make([]byte, 0, 128)) // 64byte sig + 32byte keyID + 32byte headroom
encoder, err := cbor.CTAP2EncOptions().EncMode()
if err != nil {
// Deterministic validation of encoding options, should
// never fail.
panic(err)
}
if err := encoder.NewEncoder(out).Encode(s); err != nil {
// Writing to a bytes.Buffer should never fail.
panic(err)
}
return out.Bytes()
}
// Unserialize decodes bytes representing a marshaled NKS.
//
// We would implement encoding.BinaryUnmarshaler, except that would
// unfortunately get called by the cbor unmarshaller resulting in infinite
// recursion.
func (s *NodeKeySignature) Unserialize(data []byte) error {
dec, _ := cborDecOpts.DecMode()
return dec.Unmarshal(data, s)
}
// verifySignature checks that the NodeKeySignature is authentic & certified
// by the given verificationKey. Additionally, SigDirect and SigRotation
// signatures are checked to ensure they authorize the given nodeKey.
func (s *NodeKeySignature) verifySignature(nodeKey key.NodePublic, verificationKey Key) error {
if s.SigKind != SigCredential {
nodeBytes, err := nodeKey.MarshalBinary()
if err != nil {
return fmt.Errorf("marshalling pubkey: %v", err)
}
if !bytes.Equal(nodeBytes, s.Pubkey) {
return errors.New("signature does not authorize nodeKey")
}
}
sigHash := s.SigHash()
switch s.SigKind {
case SigRotation:
if s.Nested == nil {
return errors.New("nested signatures must nest a signature")
}
// Verify the signature using the nested rotation key.
verifyPub, ok := s.Nested.wrappingPublic()
if !ok {
return errors.New("missing rotation key")
}
if !ed25519.Verify(ed25519.PublicKey(verifyPub[:]), sigHash[:], s.Signature) {
return errors.New("invalid signature")
}
// Recurse to verify the signature on the nested structure.
var nestedPub key.NodePublic
// SigCredential signatures certify an indirection key rather than a node
// key, so theres no need to check the node key.
if s.Nested.SigKind != SigCredential {
if err := nestedPub.UnmarshalBinary(s.Nested.Pubkey); err != nil {
return fmt.Errorf("nested pubkey: %v", err)
}
}
if err := s.Nested.verifySignature(nestedPub, verificationKey); err != nil {
return fmt.Errorf("nested: %v", err)
}
return nil
case SigDirect, SigCredential:
if s.Nested != nil {
return fmt.Errorf("invalid signature: signatures of type %v cannot nest another signature", s.SigKind)
}
switch verificationKey.Kind {
case Key25519:
if ed25519consensus.Verify(ed25519.PublicKey(verificationKey.Public), sigHash[:], s.Signature) {
return nil
}
return errors.New("invalid signature")
default:
return fmt.Errorf("unhandled key type: %v", verificationKey.Kind)
}
default:
return fmt.Errorf("unhandled signature type: %v", s.SigKind)
}
}