tailscale/net/art/table_test.go
Brad Fitzpatrick 0ff474ff37 all: fix new lint warnings from bumping staticcheck
In prep for updating to new staticcheck required for Go 1.23.

Updates #12912

Change-Id: If77892a023b79c6fa798f936fc80428fd4ce0673
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
2024-08-22 12:31:08 -07:00

1219 lines
33 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package art
import (
crand "crypto/rand"
"fmt"
"math/rand"
"net/netip"
"runtime"
"strconv"
"testing"
"time"
)
func TestRegression(t *testing.T) {
// These tests are specific triggers for subtle correctness issues
// that came up during initial implementation. Even if they seem
// arbitrary, please do not clean them up. They are checking edge
// cases that are very easy to get wrong, and quite difficult for
// the other statistical tests to trigger promptly.
t.Run("prefixes_aligned_on_stride_boundary", func(t *testing.T) {
// Regression test for computePrefixSplit called with equal
// arguments.
tbl := &Table[int]{}
slow := slowPrefixTable[int]{}
p := netip.MustParsePrefix
tbl.Insert(p("226.205.197.0/24"), 1)
slow.insert(p("226.205.197.0/24"), 1)
tbl.Insert(p("226.205.0.0/16"), 2)
slow.insert(p("226.205.0.0/16"), 2)
probe := netip.MustParseAddr("226.205.121.152")
got, gotOK := tbl.Get(probe)
want, wantOK := slow.get(probe)
if !getsEqual(got, gotOK, want, wantOK) {
t.Fatalf("got (%v, %v), want (%v, %v)", got, gotOK, want, wantOK)
}
})
t.Run("parent_prefix_inserted_in_different_orders", func(t *testing.T) {
// Regression test for the off-by-one correction applied
// within computePrefixSplit.
t1, t2 := &Table[int]{}, &Table[int]{}
p := netip.MustParsePrefix
t1.Insert(p("136.20.0.0/16"), 1)
t1.Insert(p("136.20.201.62/32"), 2)
t2.Insert(p("136.20.201.62/32"), 2)
t2.Insert(p("136.20.0.0/16"), 1)
a := netip.MustParseAddr("136.20.54.139")
got1, ok1 := t1.Get(a)
got2, ok2 := t2.Get(a)
if !getsEqual(got1, ok1, got2, ok2) {
t.Errorf("Get(%q) is insertion order dependent: t1=(%v, %v), t2=(%v, %v)", a, got1, ok1, got2, ok2)
}
})
}
func TestComputePrefixSplit(t *testing.T) {
// These tests are partially redundant with other tests. Please
// keep them anyway. computePrefixSplit's behavior is remarkably
// subtle, and all the test cases listed below come from
// hard-earned debugging of malformed route tables.
var tests = []struct {
// prefixA can be a /8, /16 or /24 (v4).
// prefixB can be anything /9 or more specific.
prefixA, prefixB string
lastCommon string
aStride, bStride uint8
}{
{"192.168.1.0/24", "192.168.5.5/32", "192.168.0.0/16", 1, 5},
{"192.168.129.0/24", "192.168.128.0/17", "192.168.0.0/16", 129, 128},
{"192.168.5.0/24", "192.168.0.0/16", "192.0.0.0/8", 168, 168},
{"192.168.0.0/16", "192.168.0.0/16", "192.0.0.0/8", 168, 168},
{"ff:aaaa:aaaa::1/128", "ff:aaaa::/120", "ff:aaaa::/32", 170, 0},
}
for _, test := range tests {
a, b := netip.MustParsePrefix(test.prefixA), netip.MustParsePrefix(test.prefixB)
gotLastCommon, gotAStride, gotBStride := computePrefixSplit(a, b)
if want := netip.MustParsePrefix(test.lastCommon); gotLastCommon != want || gotAStride != test.aStride || gotBStride != test.bStride {
t.Errorf("computePrefixSplit(%q, %q) = %s, %d, %d; want %s, %d, %d", a, b, gotLastCommon, gotAStride, gotBStride, want, test.aStride, test.bStride)
}
}
}
func TestInsert(t *testing.T) {
tbl := &Table[int]{}
p := netip.MustParsePrefix
// Create a new leaf strideTable, with compressed path
tbl.Insert(p("192.168.0.1/32"), 1)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", -1},
{"192.168.0.3", -1},
{"192.168.0.255", -1},
{"192.168.1.1", -1},
{"192.170.1.1", -1},
{"192.180.0.1", -1},
{"192.180.3.5", -1},
{"10.0.0.5", -1},
{"10.0.0.15", -1},
})
// Insert into previous leaf, no tree changes
tbl.Insert(p("192.168.0.2/32"), 2)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", -1},
{"192.168.0.255", -1},
{"192.168.1.1", -1},
{"192.170.1.1", -1},
{"192.180.0.1", -1},
{"192.180.3.5", -1},
{"10.0.0.5", -1},
{"10.0.0.15", -1},
})
// Insert into previous leaf, unaligned prefix covering the /32s
tbl.Insert(p("192.168.0.0/26"), 7)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", -1},
{"192.168.1.1", -1},
{"192.170.1.1", -1},
{"192.180.0.1", -1},
{"192.180.3.5", -1},
{"10.0.0.5", -1},
{"10.0.0.15", -1},
})
// Create a different leaf elsewhere
tbl.Insert(p("10.0.0.0/27"), 3)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", -1},
{"192.168.1.1", -1},
{"192.170.1.1", -1},
{"192.180.0.1", -1},
{"192.180.3.5", -1},
{"10.0.0.5", 3},
{"10.0.0.15", 3},
})
// Insert that creates a new intermediate table and a new child
tbl.Insert(p("192.168.1.1/32"), 4)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", -1},
{"192.168.1.1", 4},
{"192.170.1.1", -1},
{"192.180.0.1", -1},
{"192.180.3.5", -1},
{"10.0.0.5", 3},
{"10.0.0.15", 3},
})
// Insert that creates a new intermediate table but no new child
tbl.Insert(p("192.170.0.0/16"), 5)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", -1},
{"192.168.1.1", 4},
{"192.170.1.1", 5},
{"192.180.0.1", -1},
{"192.180.3.5", -1},
{"10.0.0.5", 3},
{"10.0.0.15", 3},
})
// New leaf in a different subtree, so the next insert can test a
// variant of decompression.
tbl.Insert(p("192.180.0.1/32"), 8)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", -1},
{"192.168.1.1", 4},
{"192.170.1.1", 5},
{"192.180.0.1", 8},
{"192.180.3.5", -1},
{"10.0.0.5", 3},
{"10.0.0.15", 3},
})
// Insert that creates a new intermediate table but no new child,
// with an unaligned intermediate
tbl.Insert(p("192.180.0.0/21"), 9)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", -1},
{"192.168.1.1", 4},
{"192.170.1.1", 5},
{"192.180.0.1", 8},
{"192.180.3.5", 9},
{"10.0.0.5", 3},
{"10.0.0.15", 3},
})
// Insert a default route, those have their own codepath.
tbl.Insert(p("0.0.0.0/0"), 6)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", 6},
{"192.168.1.1", 4},
{"192.170.1.1", 5},
{"192.180.0.1", 8},
{"192.180.3.5", 9},
{"10.0.0.5", 3},
{"10.0.0.15", 3},
})
// Now all of the above again, but for IPv6.
// Create a new leaf strideTable, with compressed path
tbl.Insert(p("ff:aaaa::1/128"), 1)
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", -1},
{"ff:aaaa::3", -1},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", -1},
{"ff:aaaa:aaaa:bbbb::1", -1},
{"ff:cccc::1", -1},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", -1},
{"ffff:bbbb::15", -1},
})
// Insert into previous leaf, no tree changes
tbl.Insert(p("ff:aaaa::2/128"), 2)
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", -1},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", -1},
{"ff:aaaa:aaaa:bbbb::1", -1},
{"ff:cccc::1", -1},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", -1},
{"ffff:bbbb::15", -1},
})
// Insert into previous leaf, unaligned prefix covering the /128s
tbl.Insert(p("ff:aaaa::/125"), 7)
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", -1},
{"ff:aaaa:aaaa:bbbb::1", -1},
{"ff:cccc::1", -1},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", -1},
{"ffff:bbbb::15", -1},
})
// Create a different leaf elsewhere
tbl.Insert(p("ffff:bbbb::/120"), 3)
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", -1},
{"ff:aaaa:aaaa:bbbb::1", -1},
{"ff:cccc::1", -1},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", 3},
{"ffff:bbbb::15", 3},
})
// Insert that creates a new intermediate table and a new child
tbl.Insert(p("ff:aaaa:aaaa::1/128"), 4)
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", 4},
{"ff:aaaa:aaaa:bbbb::1", -1},
{"ff:cccc::1", -1},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", 3},
{"ffff:bbbb::15", 3},
})
// Insert that creates a new intermediate table but no new child
tbl.Insert(p("ff:aaaa:aaaa:bb00::/56"), 5)
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", 4},
{"ff:aaaa:aaaa:bbbb::1", 5},
{"ff:cccc::1", -1},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", 3},
{"ffff:bbbb::15", 3},
})
// New leaf in a different subtree, so the next insert can test a
// variant of decompression.
tbl.Insert(p("ff:cccc::1/128"), 8)
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", 4},
{"ff:aaaa:aaaa:bbbb::1", 5},
{"ff:cccc::1", 8},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", 3},
{"ffff:bbbb::15", 3},
})
// Insert that creates a new intermediate table but no new child,
// with an unaligned intermediate
tbl.Insert(p("ff:cccc::/37"), 9)
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", 4},
{"ff:aaaa:aaaa:bbbb::1", 5},
{"ff:cccc::1", 8},
{"ff:cccc::ff", 9},
{"ffff:bbbb::5", 3},
{"ffff:bbbb::15", 3},
})
// Insert a default route, those have their own codepath.
tbl.Insert(p("::/0"), 6)
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", 6},
{"ff:aaaa:aaaa::1", 4},
{"ff:aaaa:aaaa:bbbb::1", 5},
{"ff:cccc::1", 8},
{"ff:cccc::ff", 9},
{"ffff:bbbb::5", 3},
{"ffff:bbbb::15", 3},
})
}
func TestDelete(t *testing.T) {
t.Parallel()
p := netip.MustParsePrefix
t.Run("prefix_in_root", func(t *testing.T) {
// Add/remove prefix from root table.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("10.0.0.0/8"), 1)
checkRoutes(t, tbl, []tableTest{
{"10.0.0.1", 1},
{"255.255.255.255", -1},
})
checkSize(t, tbl, 2)
tbl.Delete(p("10.0.0.0/8"))
checkRoutes(t, tbl, []tableTest{
{"10.0.0.1", -1},
{"255.255.255.255", -1},
})
checkSize(t, tbl, 2)
})
t.Run("prefix_in_leaf", func(t *testing.T) {
// Create, then delete a single leaf table.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), 1)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"255.255.255.255", -1},
})
checkSize(t, tbl, 3)
tbl.Delete(p("192.168.0.1/32"))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", -1},
{"255.255.255.255", -1},
})
checkSize(t, tbl, 2)
})
t.Run("intermediate_no_routes", func(t *testing.T) {
// Create an intermediate with 2 children, then delete one leaf.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), 1)
tbl.Insert(p("192.180.0.1/32"), 2)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.180.0.1", 2},
{"192.40.0.1", -1},
})
checkSize(t, tbl, 5) // 2 roots, 1 intermediate, 2 leaves
tbl.Delete(p("192.180.0.1/32"))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.180.0.1", -1},
{"192.40.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
})
t.Run("intermediate_with_route", func(t *testing.T) {
// Same, but the intermediate carries a route as well.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), 1)
tbl.Insert(p("192.180.0.1/32"), 2)
tbl.Insert(p("192.0.0.0/10"), 3)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.180.0.1", 2},
{"192.40.0.1", 3},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 5) // 2 roots, 1 intermediate, 2 leaves
tbl.Delete(p("192.180.0.1/32"))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.180.0.1", -1},
{"192.40.0.1", 3},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 4) // 2 roots, 1 intermediate w/route, 1 leaf
})
t.Run("intermediate_many_leaves", func(t *testing.T) {
// Intermediate with 3 leaves, then delete one leaf.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), 1)
tbl.Insert(p("192.180.0.1/32"), 2)
tbl.Insert(p("192.200.0.1/32"), 3)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.180.0.1", 2},
{"192.200.0.1", 3},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 6) // 2 roots, 1 intermediate, 3 leaves
tbl.Delete(p("192.180.0.1/32"))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.180.0.1", -1},
{"192.200.0.1", 3},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 5) // 2 roots, 1 intermediate, 2 leaves
})
t.Run("nosuchprefix_missing_child", func(t *testing.T) {
// Delete non-existent prefix, missing strideTable path.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), 1)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
tbl.Delete(p("200.0.0.0/32")) // lookup miss in root
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
})
t.Run("nosuchprefix_wrong_turn", func(t *testing.T) {
// Delete non-existent prefix, strideTable path exists but
// with a wrong turn.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), 1)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
tbl.Delete(p("192.40.0.0/32")) // finds wrong child
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
})
t.Run("nosuchprefix_not_in_leaf", func(t *testing.T) {
// Delete non-existent prefix, strideTable path exists but
// leaf doesn't contain route.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), 1)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
tbl.Delete(p("192.168.0.5/32")) // right leaf, no route
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
})
t.Run("intermediate_with_deleted_route", func(t *testing.T) {
// Intermediate table loses its last route and becomes
// compactable.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), 1)
tbl.Insert(p("192.168.0.0/22"), 2)
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 4) // 2 roots, 1 intermediate w/route, 1 leaf
tbl.Delete(p("192.168.0.0/22"))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", -1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
})
t.Run("default_route", func(t *testing.T) {
// Default routes have a special case in the code.
tbl := &Table[int]{}
tbl.Insert(p("0.0.0.0/0"), 1)
tbl.Delete(p("0.0.0.0/0"))
checkRoutes(t, tbl, []tableTest{
{"1.2.3.4", -1},
})
checkSize(t, tbl, 2) // 2 roots
})
}
func TestInsertCompare(t *testing.T) {
// Create large route tables repeatedly, and compare Table's
// behavior to a naive and slow but correct implementation.
t.Parallel()
pfxs := randomPrefixes(10_000)
slow := slowPrefixTable[int]{pfxs}
fast := Table[int]{}
for _, pfx := range pfxs {
fast.Insert(pfx.pfx, pfx.val)
}
if debugInsert {
t.Log(fast.debugSummary())
}
seenVals4 := map[int]bool{}
seenVals6 := map[int]bool{}
for range 10_000 {
a := randomAddr()
slowVal, slowOK := slow.get(a)
fastVal, fastOK := fast.Get(a)
if !getsEqual(slowVal, slowOK, fastVal, fastOK) {
t.Fatalf("get(%q) = (%v, %v), want (%v, %v)", a, fastVal, fastOK, slowVal, slowOK)
}
if a.Is6() {
seenVals6[fastVal] = true
} else {
seenVals4[fastVal] = true
}
}
// Empirically, 10k probes into 5k v4 prefixes and 5k v6 prefixes results in
// ~1k distinct values for v4 and ~300 for v6. distinct routes. This sanity
// check that we didn't just return a single route for everything should be
// very generous indeed.
if cnt := len(seenVals4); cnt < 10 {
t.Fatalf("saw %d distinct v4 route results, statistically expected ~1000", cnt)
}
if cnt := len(seenVals6); cnt < 10 {
t.Fatalf("saw %d distinct v6 route results, statistically expected ~300", cnt)
}
}
func TestInsertShuffled(t *testing.T) {
// The order in which you insert prefixes into a route table
// should not matter, as long as you're inserting the same set of
// routes. Verify that this is true, because ART does execute
// vastly different code depending on the order of insertion, even
// if the end result is identical.
//
// If you're here because this package's tests are slow and you
// want to make them faster, please do not delete this test (or
// any test, really). It may seem excessive to test this, but
// these shuffle tests found a lot of very nasty edge cases during
// development, and you _really_ don't want to be debugging a
// faulty route table in production.
t.Parallel()
pfxs := randomPrefixes(1000)
var pfxs2 []slowPrefixEntry[int]
defer func() {
if t.Failed() {
t.Logf("pre-shuffle: %#v", pfxs)
t.Logf("post-shuffle: %#v", pfxs2)
}
}()
for range 10 {
pfxs2 := append([]slowPrefixEntry[int](nil), pfxs...)
rand.Shuffle(len(pfxs2), func(i, j int) { pfxs2[i], pfxs2[j] = pfxs2[j], pfxs2[i] })
addrs := make([]netip.Addr, 0, 10_000)
for range 10_000 {
addrs = append(addrs, randomAddr())
}
rt := Table[int]{}
rt2 := Table[int]{}
for _, pfx := range pfxs {
rt.Insert(pfx.pfx, pfx.val)
}
for _, pfx := range pfxs2 {
rt2.Insert(pfx.pfx, pfx.val)
}
for _, a := range addrs {
val1, ok1 := rt.Get(a)
val2, ok2 := rt2.Get(a)
if !getsEqual(val1, ok1, val2, ok2) {
t.Fatalf("get(%q) = (%v, %v), want (%v, %v)", a, val2, ok2, val1, ok1)
}
}
}
}
func TestDeleteCompare(t *testing.T) {
// Create large route tables repeatedly, delete half of their
// prefixes, and compare Table's behavior to a naive and slow but
// correct implementation.
t.Parallel()
const (
numPrefixes = 10_000 // total prefixes to insert (test deletes 50% of them)
numPerFamily = numPrefixes / 2
deleteCut = numPerFamily / 2
numProbes = 10_000 // random addr lookups to do
)
// We have to do this little dance instead of just using allPrefixes,
// because we want pfxs and toDelete to be non-overlapping sets.
all4, all6 := randomPrefixes4(numPerFamily), randomPrefixes6(numPerFamily)
pfxs := append([]slowPrefixEntry[int](nil), all4[:deleteCut]...)
pfxs = append(pfxs, all6[:deleteCut]...)
toDelete := append([]slowPrefixEntry[int](nil), all4[deleteCut:]...)
toDelete = append(toDelete, all6[deleteCut:]...)
defer func() {
if t.Failed() {
for _, pfx := range pfxs {
fmt.Printf("%q, ", pfx.pfx)
}
fmt.Println("")
for _, pfx := range toDelete {
fmt.Printf("%q, ", pfx.pfx)
}
fmt.Println("")
}
}()
slow := slowPrefixTable[int]{pfxs}
fast := Table[int]{}
for _, pfx := range pfxs {
fast.Insert(pfx.pfx, pfx.val)
}
for _, pfx := range toDelete {
fast.Insert(pfx.pfx, pfx.val)
}
for _, pfx := range toDelete {
fast.Delete(pfx.pfx)
}
seenVals4 := map[int]bool{}
seenVals6 := map[int]bool{}
for range numProbes {
a := randomAddr()
slowVal, slowOK := slow.get(a)
fastVal, fastOK := fast.Get(a)
if !getsEqual(slowVal, slowOK, fastVal, fastOK) {
t.Fatalf("get(%q) = (%v, %v), want (%v, %v)", a, fastVal, fastOK, slowVal, slowOK)
}
if a.Is6() {
seenVals6[fastVal] = true
} else {
seenVals4[fastVal] = true
}
}
// Empirically, 10k probes into 5k v4 prefixes and 5k v6 prefixes results in
// ~1k distinct values for v4 and ~300 for v6. distinct routes. This sanity
// check that we didn't just return a single route for everything should be
// very generous indeed.
if cnt := len(seenVals4); cnt < 10 {
t.Fatalf("saw %d distinct v4 route results, statistically expected ~1000", cnt)
}
if cnt := len(seenVals6); cnt < 10 {
t.Fatalf("saw %d distinct v6 route results, statistically expected ~300", cnt)
}
}
func TestDeleteShuffled(t *testing.T) {
// The order in which you delete prefixes from a route table
// should not matter, as long as you're deleting the same set of
// routes. Verify that this is true, because ART does execute
// vastly different code depending on the order of deletions, even
// if the end result is identical.
//
// If you're here because this package's tests are slow and you
// want to make them faster, please do not delete this test (or
// any test, really). It may seem excessive to test this, but
// these shuffle tests found a lot of very nasty edge cases during
// development, and you _really_ don't want to be debugging a
// faulty route table in production.
t.Parallel()
const (
numPrefixes = 10_000 // prefixes to insert (test deletes 50% of them)
numPerFamily = numPrefixes / 2
deleteCut = numPerFamily / 2
numProbes = 10_000 // random addr lookups to do
)
// We have to do this little dance instead of just using allPrefixes,
// because we want pfxs and toDelete to be non-overlapping sets.
all4, all6 := randomPrefixes4(numPerFamily), randomPrefixes6(numPerFamily)
pfxs := append([]slowPrefixEntry[int](nil), all4[:deleteCut]...)
pfxs = append(pfxs, all6[:deleteCut]...)
toDelete := append([]slowPrefixEntry[int](nil), all4[deleteCut:]...)
toDelete = append(toDelete, all6[deleteCut:]...)
rt := Table[int]{}
for _, pfx := range pfxs {
rt.Insert(pfx.pfx, pfx.val)
}
for _, pfx := range toDelete {
rt.Insert(pfx.pfx, pfx.val)
}
for _, pfx := range toDelete {
rt.Delete(pfx.pfx)
}
for range 10 {
pfxs2 := append([]slowPrefixEntry[int](nil), pfxs...)
toDelete2 := append([]slowPrefixEntry[int](nil), toDelete...)
rand.Shuffle(len(toDelete2), func(i, j int) { toDelete2[i], toDelete2[j] = toDelete2[j], toDelete2[i] })
rt2 := Table[int]{}
for _, pfx := range pfxs2 {
rt2.Insert(pfx.pfx, pfx.val)
}
for _, pfx := range toDelete2 {
rt2.Insert(pfx.pfx, pfx.val)
}
for _, pfx := range toDelete2 {
rt2.Delete(pfx.pfx)
}
// Diffing a deep tree of tables gives cmp.Diff a nervous breakdown, so
// test for equivalence statistically with random probes instead.
for range numProbes {
a := randomAddr()
val1, ok1 := rt.Get(a)
val2, ok2 := rt2.Get(a)
if !getsEqual(val1, ok1, val2, ok2) {
t.Errorf("get(%q) = (%v, %v), want (%v, %v)", a, val2, ok2, val1, ok1)
}
}
}
}
func TestDeleteIsReverseOfInsert(t *testing.T) {
// Insert N prefixes, then delete those same prefixes in reverse
// order. Each deletion should exactly undo the internal structure
// changes that each insert did.
const N = 100
var tab Table[int]
prefixes := randomPrefixes(N)
defer func() {
if t.Failed() {
fmt.Printf("the prefixes that fail the test: %v\n", prefixes)
}
}()
want := make([]string, 0, len(prefixes))
for _, p := range prefixes {
want = append(want, tab.debugSummary())
tab.Insert(p.pfx, p.val)
}
for i := len(prefixes) - 1; i >= 0; i-- {
tab.Delete(prefixes[i].pfx)
if got := tab.debugSummary(); got != want[i] {
t.Fatalf("after delete %d, mismatch:\n\n got: %s\n\nwant: %s", i, got, want[i])
}
}
}
type tableTest struct {
// addr is an IP address string to look up in a route table.
addr string
// want is the expected >=0 value associated with the route, or -1
// if we expect a lookup miss.
want int
}
// checkRoutes verifies that the route lookups in tt return the
// expected results on tbl.
func checkRoutes(t *testing.T, tbl *Table[int], tt []tableTest) {
t.Helper()
for _, tc := range tt {
v, ok := tbl.Get(netip.MustParseAddr(tc.addr))
if !ok && tc.want != -1 {
t.Errorf("lookup %q got (%v, %v), want (_, false)", tc.addr, v, ok)
}
if ok && v != tc.want {
t.Errorf("lookup %q got (%v, %v), want (%v, true)", tc.addr, v, ok, tc.want)
}
}
}
// 100k routes for IPv6, at the current size of strideTable and strideEntry, is
// in the ballpark of 4GiB if you assume worst-case prefix distribution. Future
// optimizations will knock down the memory consumption by over an order of
// magnitude, so for now just skip the 100k benchmarks to stay well away of
// OOMs.
//
// TODO(go/bug/7781): reenable larger table tests once memory utilization is
// optimized.
var benchRouteCount = []int{10, 100, 1000, 10_000} //, 100_000}
// forFamilyAndCount runs the benchmark fn with different sets of
// routes.
//
// fn is called once for each combination of {addr_family, num_routes},
// where addr_family is ipv4 or ipv6, num_routes is the values in
// benchRouteCount.
func forFamilyAndCount(b *testing.B, fn func(b *testing.B, routes []slowPrefixEntry[int])) {
for _, fam := range []string{"ipv4", "ipv6"} {
rng := randomPrefixes4
if fam == "ipv6" {
rng = randomPrefixes6
}
b.Run(fam, func(b *testing.B) {
for _, nroutes := range benchRouteCount {
routes := rng(nroutes)
b.Run(fmt.Sprint(nroutes), func(b *testing.B) {
fn(b, routes)
})
}
})
}
}
func BenchmarkTableInsertion(b *testing.B) {
forFamilyAndCount(b, func(b *testing.B, routes []slowPrefixEntry[int]) {
b.StopTimer()
b.ResetTimer()
var startMem, endMem runtime.MemStats
runtime.ReadMemStats(&startMem)
b.StartTimer()
for range b.N {
var rt Table[int]
for _, route := range routes {
rt.Insert(route.pfx, route.val)
}
}
b.StopTimer()
runtime.ReadMemStats(&endMem)
inserts := float64(b.N) * float64(len(routes))
allocs := float64(endMem.Mallocs - startMem.Mallocs)
bytes := float64(endMem.TotalAlloc - startMem.TotalAlloc)
elapsed := float64(b.Elapsed().Nanoseconds())
elapsedSec := b.Elapsed().Seconds()
b.ReportMetric(elapsed/inserts, "ns/op")
b.ReportMetric(inserts/elapsedSec, "routes/s")
b.ReportMetric(roundFloat64(allocs/inserts), "avg-allocs/op")
b.ReportMetric(roundFloat64(bytes/inserts), "avg-B/op")
})
}
func BenchmarkTableDelete(b *testing.B) {
forFamilyAndCount(b, func(b *testing.B, routes []slowPrefixEntry[int]) {
// Collect memstats for one round of insertions, so we can remove it
// from the total at the end and get only the deletion alloc count.
insertAllocs, insertBytes := getMemCost(func() {
var rt Table[int]
for _, route := range routes {
rt.Insert(route.pfx, route.val)
}
})
insertAllocs *= float64(b.N)
insertBytes *= float64(b.N)
var t runningTimer
allocs, bytes := getMemCost(func() {
for range b.N {
var rt Table[int]
for _, route := range routes {
rt.Insert(route.pfx, route.val)
}
t.Start()
for _, route := range routes {
rt.Delete(route.pfx)
}
t.Stop()
}
})
inserts := float64(b.N) * float64(len(routes))
allocs -= insertAllocs
bytes -= insertBytes
elapsed := float64(t.Elapsed().Nanoseconds())
elapsedSec := t.Elapsed().Seconds()
b.ReportMetric(elapsed/inserts, "ns/op")
b.ReportMetric(inserts/elapsedSec, "routes/s")
b.ReportMetric(roundFloat64(allocs/inserts), "avg-allocs/op")
b.ReportMetric(roundFloat64(bytes/inserts), "avg-B/op")
})
}
func BenchmarkTableGet(b *testing.B) {
forFamilyAndCount(b, func(b *testing.B, routes []slowPrefixEntry[int]) {
genAddr := randomAddr4
if routes[0].pfx.Addr().Is6() {
genAddr = randomAddr6
}
var rt Table[int]
for _, route := range routes {
rt.Insert(route.pfx, route.val)
}
addrAllocs, addrBytes := getMemCost(func() {
// Have to run genAddr more than once, otherwise the reported
// cost is 16 bytes - presumably due to some amortized costs in
// the memory allocator? Either way, empirically 100 iterations
// reliably reports the correct cost.
for range 100 {
_ = genAddr()
}
})
addrAllocs /= 100
addrBytes /= 100
var t runningTimer
allocs, bytes := getMemCost(func() {
for range b.N {
addr := genAddr()
t.Start()
writeSink, _ = rt.Get(addr)
t.Stop()
}
})
b.ReportAllocs() // Enables the output, but we report manually below
allocs -= (addrAllocs * float64(b.N))
bytes -= (addrBytes * float64(b.N))
lookups := float64(b.N)
elapsed := float64(t.Elapsed().Nanoseconds())
elapsedSec := float64(t.Elapsed().Seconds())
b.ReportMetric(elapsed/lookups, "ns/op")
b.ReportMetric(lookups/elapsedSec, "addrs/s")
b.ReportMetric(allocs/lookups, "allocs/op")
b.ReportMetric(bytes/lookups, "B/op")
})
}
// getMemCost runs fn 100 times and returns the number of allocations and bytes
// allocated by each call to fn.
//
// Note that if your fn allocates very little memory (less than ~16 bytes), you
// should make fn run its workload ~100 times and divide the results of
// getMemCost yourself. Otherwise, the byte count you get will be rounded up due
// to the memory allocator's bucketing granularity.
func getMemCost(fn func()) (allocs, bytes float64) {
var start, end runtime.MemStats
runtime.ReadMemStats(&start)
fn()
runtime.ReadMemStats(&end)
return float64(end.Mallocs - start.Mallocs), float64(end.TotalAlloc - start.TotalAlloc)
}
// runningTimer is a timer that keeps track of the cumulative time it's spent
// running since creation. A newly created runningTimer is stopped.
//
// This timer exists because some of our benchmarks have to interleave costly
// ancillary logic in each benchmark iteration, rather than being able to
// front-load all the work before a single b.ResetTimer().
//
// As it turns out, b.StartTimer() and b.StopTimer() are expensive function
// calls, because they do costly memory allocation accounting on every call.
// Starting and stopping the benchmark timer in every b.N loop iteration slows
// the benchmarks down by orders of magnitude.
//
// So, rather than rely on testing.B's timing facility, we use this very
// lightweight timer combined with getMemCost to do our own accounting more
// efficiently.
type runningTimer struct {
cumulative time.Duration
start time.Time
}
func (t *runningTimer) Start() {
t.Stop()
t.start = time.Now()
}
func (t *runningTimer) Stop() {
if t.start.IsZero() {
return
}
t.cumulative += time.Since(t.start)
t.start = time.Time{}
}
func (t *runningTimer) Elapsed() time.Duration {
return t.cumulative
}
func checkSize(t *testing.T, tbl *Table[int], want int) {
t.Helper()
if got := tbl.numStrides(); got != want {
t.Errorf("wrong table size, got %d strides want %d", got, want)
}
}
func (t *Table[T]) numStrides() int {
seen := map[*strideTable[T]]bool{}
return t.numStridesRec(seen, &t.v4) + t.numStridesRec(seen, &t.v6)
}
func (t *Table[T]) numStridesRec(seen map[*strideTable[T]]bool, st *strideTable[T]) int {
ret := 1
if st.childRefs == 0 {
return ret
}
for _, c := range st.children {
if c == nil || seen[c] {
continue
}
seen[c] = true
ret += t.numStridesRec(seen, c)
}
return ret
}
// slowPrefixTable is a routing table implemented as a set of prefixes that are
// explicitly scanned in full for every route lookup. It is very slow, but also
// reasonably easy to verify by inspection, and so a good correctness reference
// for Table.
type slowPrefixTable[T any] struct {
prefixes []slowPrefixEntry[T]
}
type slowPrefixEntry[T any] struct {
pfx netip.Prefix
val T
}
func (t *slowPrefixTable[T]) insert(pfx netip.Prefix, val T) {
pfx = pfx.Masked()
for i, ent := range t.prefixes {
if ent.pfx == pfx {
t.prefixes[i].val = val
return
}
}
t.prefixes = append(t.prefixes, slowPrefixEntry[T]{pfx, val})
}
func (t *slowPrefixTable[T]) get(addr netip.Addr) (ret T, ok bool) {
bestLen := -1
for _, pfx := range t.prefixes {
if pfx.pfx.Contains(addr) && pfx.pfx.Bits() > bestLen {
ret = pfx.val
bestLen = pfx.pfx.Bits()
}
}
return ret, bestLen != -1
}
// randomPrefixes returns n randomly generated prefixes and associated values,
// distributed equally between IPv4 and IPv6.
func randomPrefixes(n int) []slowPrefixEntry[int] {
pfxs := randomPrefixes4(n / 2)
pfxs = append(pfxs, randomPrefixes6(n-len(pfxs))...)
return pfxs
}
// randomPrefixes4 returns n randomly generated IPv4 prefixes and associated values.
func randomPrefixes4(n int) []slowPrefixEntry[int] {
pfxs := map[netip.Prefix]bool{}
for len(pfxs) < n {
len := rand.Intn(33)
pfx, err := randomAddr4().Prefix(len)
if err != nil {
panic(err)
}
pfxs[pfx] = true
}
ret := make([]slowPrefixEntry[int], 0, len(pfxs))
for pfx := range pfxs {
ret = append(ret, slowPrefixEntry[int]{pfx, rand.Int()})
}
return ret
}
// randomPrefixes6 returns n randomly generated IPv4 prefixes and associated values.
func randomPrefixes6(n int) []slowPrefixEntry[int] {
pfxs := map[netip.Prefix]bool{}
for len(pfxs) < n {
len := rand.Intn(129)
pfx, err := randomAddr6().Prefix(len)
if err != nil {
panic(err)
}
pfxs[pfx] = true
}
ret := make([]slowPrefixEntry[int], 0, len(pfxs))
for pfx := range pfxs {
ret = append(ret, slowPrefixEntry[int]{pfx, rand.Int()})
}
return ret
}
// randomAddr returns a randomly generated IP address.
func randomAddr() netip.Addr {
if rand.Intn(2) == 1 {
return randomAddr6()
} else {
return randomAddr4()
}
}
// randomAddr4 returns a randomly generated IPv4 address.
func randomAddr4() netip.Addr {
var b [4]byte
if _, err := crand.Read(b[:]); err != nil {
panic(err)
}
return netip.AddrFrom4(b)
}
// randomAddr6 returns a randomly generated IPv6 address.
func randomAddr6() netip.Addr {
var b [16]byte
if _, err := crand.Read(b[:]); err != nil {
panic(err)
}
return netip.AddrFrom16(b)
}
// roundFloat64 rounds f to 2 decimal places, for display.
//
// It round-trips through a float->string->float conversion, so should not be
// used in a performance critical setting.
func roundFloat64(f float64) float64 {
s := fmt.Sprintf("%.2f", f)
ret, err := strconv.ParseFloat(s, 64)
if err != nil {
panic(err)
}
return ret
}