package yggdrasil import ( "encoding/hex" "errors" "fmt" "io" "net" "net/url" "strings" "sync" //"sync/atomic" "time" "github.com/yggdrasil-network/yggdrasil-go/src/address" "github.com/yggdrasil-network/yggdrasil-go/src/crypto" "github.com/yggdrasil-network/yggdrasil-go/src/util" "golang.org/x/net/proxy" "github.com/Arceliar/phony" ) type links struct { core *Core mutex sync.RWMutex // protects links below links map[linkInfo]*link tcp tcp // TCP interface support stopped chan struct{} // TODO timeout (to remove from switch), read from config.ReadTimeout } type linkInfo struct { box crypto.BoxPubKey // Their encryption key sig crypto.SigPubKey // Their signing key linkType string // Type of link, e.g. TCP, AWDL local string // Local name or address remote string // Remote name or address } type linkMsgIO interface { readMsg() ([]byte, error) writeMsgs([][]byte) (int, error) close() error // These are temporary workarounds to stream semantics _sendMetaBytes([]byte) error _recvMetaBytes() ([]byte, error) } type link struct { lname string links *links peer *peer options linkOptions msgIO linkMsgIO info linkInfo incoming bool force bool closed chan struct{} reader linkReader // Reads packets, notifies this link, passes packets to switch writer linkWriter // Writes packets, notifies this link phony.Inbox // Protects the below sendTimer *time.Timer // Fires to signal that sending is blocked keepAliveTimer *time.Timer // Fires to send keep-alive traffic stallTimer *time.Timer // Fires to signal that no incoming traffic (including keep-alive) has been seen closeTimer *time.Timer // Fires when the link has been idle so long we need to close it readUnblocked bool // True if we've sent a read message unblocking this peer in the switch writeUnblocked bool // True if we've sent a write message unblocking this peer in the swithc shutdown bool // True if we're shutting down, avoids sending some messages that could race with new peers being crated in the same port } type linkOptions struct { pinnedCurve25519Keys map[crypto.BoxPubKey]struct{} pinnedEd25519Keys map[crypto.SigPubKey]struct{} } func (l *links) init(c *Core) error { l.core = c l.mutex.Lock() l.links = make(map[linkInfo]*link) l.mutex.Unlock() l.stopped = make(chan struct{}) if err := l.tcp.init(l); err != nil { c.log.Errorln("Failed to start TCP interface") return err } return nil } func (l *links) reconfigure() { l.tcp.reconfigure() } func (l *links) call(uri string, sintf string) error { u, err := url.Parse(uri) if err != nil { return fmt.Errorf("peer %s is not correctly formatted (%s)", uri, err) } pathtokens := strings.Split(strings.Trim(u.Path, "/"), "/") tcpOpts := tcpOptions{} if pubkeys, ok := u.Query()["curve25519"]; ok && len(pubkeys) > 0 { tcpOpts.pinnedCurve25519Keys = make(map[crypto.BoxPubKey]struct{}) for _, pubkey := range pubkeys { if boxPub, err := hex.DecodeString(pubkey); err == nil { var boxPubKey crypto.BoxPubKey copy(boxPubKey[:], boxPub) tcpOpts.pinnedCurve25519Keys[boxPubKey] = struct{}{} } } } if pubkeys, ok := u.Query()["ed25519"]; ok && len(pubkeys) > 0 { tcpOpts.pinnedEd25519Keys = make(map[crypto.SigPubKey]struct{}) for _, pubkey := range pubkeys { if sigPub, err := hex.DecodeString(pubkey); err == nil { var sigPubKey crypto.SigPubKey copy(sigPubKey[:], sigPub) tcpOpts.pinnedEd25519Keys[sigPubKey] = struct{}{} } } } switch u.Scheme { case "tcp": l.tcp.call(u.Host, tcpOpts, sintf) case "socks": tcpOpts.socksProxyAddr = u.Host if u.User != nil { tcpOpts.socksProxyAuth = &proxy.Auth{} tcpOpts.socksProxyAuth.User = u.User.Username() tcpOpts.socksProxyAuth.Password, _ = u.User.Password() } l.tcp.call(pathtokens[0], tcpOpts, sintf) case "tls": tcpOpts.upgrade = l.tcp.tls.forDialer l.tcp.call(u.Host, tcpOpts, sintf) default: return errors.New("unknown call scheme: " + u.Scheme) } return nil } func (l *links) listen(uri string) error { u, err := url.Parse(uri) if err != nil { return fmt.Errorf("listener %s is not correctly formatted (%s)", uri, err) } switch u.Scheme { case "tcp": _, err := l.tcp.listen(u.Host, nil) return err case "tls": _, err := l.tcp.listen(u.Host, l.tcp.tls.forListener) return err default: return errors.New("unknown listen scheme: " + u.Scheme) } } func (l *links) create(msgIO linkMsgIO, name, linkType, local, remote string, incoming, force bool, options linkOptions) (*link, error) { // Technically anything unique would work for names, but let's pick something human readable, just for debugging intf := link{ lname: name, links: l, options: options, msgIO: msgIO, info: linkInfo{ linkType: linkType, local: local, remote: remote, }, incoming: incoming, force: force, } intf.writer.intf = &intf intf.writer.worker = make(chan [][]byte, 1) intf.reader.intf = &intf intf.reader.err = make(chan error) return &intf, nil } func (l *links) stop() error { close(l.stopped) if err := l.tcp.stop(); err != nil { return err } return nil } func (intf *link) handler() error { // TODO split some of this into shorter functions, so it's easier to read, and for the FIXME duplicate peer issue mentioned later go func() { for bss := range intf.writer.worker { intf.msgIO.writeMsgs(bss) } }() defer intf.writer.Act(nil, func() { intf.writer.closed = true close(intf.writer.worker) }) myLinkPub, myLinkPriv := crypto.NewBoxKeys() meta := version_getBaseMetadata() meta.box = intf.links.core.boxPub meta.sig = intf.links.core.sigPub meta.link = *myLinkPub metaBytes := meta.encode() // TODO timeouts on send/recv (goroutine for send/recv, channel select w/ timer) var err error if !util.FuncTimeout(func() { err = intf.msgIO._sendMetaBytes(metaBytes) }, 30*time.Second) { return errors.New("timeout on metadata send") } if err != nil { return err } if !util.FuncTimeout(func() { metaBytes, err = intf.msgIO._recvMetaBytes() }, 30*time.Second) { return errors.New("timeout on metadata recv") } if err != nil { return err } meta = version_metadata{} if !meta.decode(metaBytes) || !meta.check() { return errors.New("failed to decode metadata") } base := version_getBaseMetadata() if meta.ver > base.ver || meta.ver == base.ver && meta.minorVer > base.minorVer { intf.links.core.log.Errorln("Failed to connect to node: " + intf.lname + " version: " + fmt.Sprintf("%d.%d", meta.ver, meta.minorVer)) return errors.New("failed to connect: wrong version") } // Check if the remote side matches the keys we expected. This is a bit of a weak // check - in future versions we really should check a signature or something like that. if pinned := intf.options.pinnedCurve25519Keys; pinned != nil { if _, allowed := pinned[meta.box]; !allowed { intf.links.core.log.Errorf("Failed to connect to node: %q sent curve25519 key that does not match pinned keys", intf.name) return fmt.Errorf("failed to connect: host sent curve25519 key that does not match pinned keys") } } if pinned := intf.options.pinnedEd25519Keys; pinned != nil { if _, allowed := pinned[meta.sig]; !allowed { intf.links.core.log.Errorf("Failed to connect to node: %q sent ed25519 key that does not match pinned keys", intf.name) return fmt.Errorf("failed to connect: host sent ed25519 key that does not match pinned keys") } } // Check if we're authorized to connect to this key / IP if intf.incoming && !intf.force && !intf.links.core.peers.isAllowedEncryptionPublicKey(&meta.box) { intf.links.core.log.Warnf("%s connection from %s forbidden: AllowedEncryptionPublicKeys does not contain key %s", strings.ToUpper(intf.info.linkType), intf.info.remote, hex.EncodeToString(meta.box[:])) intf.msgIO.close() return nil } // Check if we already have a link to this node intf.info.box = meta.box intf.info.sig = meta.sig intf.links.mutex.Lock() if _, isIn := intf.links.links[intf.info]; isIn { intf.links.mutex.Unlock() // FIXME we should really return an error and let the caller block instead // That lets them do things like close connections on its own, avoid printing a connection message in the first place, etc. intf.links.core.log.Debugln("DEBUG: found existing interface for", intf.name) intf.msgIO.close() return nil } else { intf.closed = make(chan struct{}) intf.links.links[intf.info] = intf defer func() { intf.links.mutex.Lock() delete(intf.links.links, intf.info) intf.links.mutex.Unlock() close(intf.closed) }() intf.links.core.log.Debugln("DEBUG: registered interface for", intf.name) } intf.links.mutex.Unlock() // Create peer shared := crypto.GetSharedKey(myLinkPriv, &meta.link) phony.Block(&intf.links.core.peers, func() { // FIXME don't use phony.Block, it's bad practice, even if it's safe here intf.peer = intf.links.core.peers._newPeer(&meta.box, &meta.sig, shared, intf) }) if intf.peer == nil { return errors.New("failed to create peer") } defer func() { // More cleanup can go here intf.Act(nil, func() { intf.shutdown = true intf.peer.Act(intf, intf.peer._removeSelf) }) }() themAddr := address.AddrForNodeID(crypto.GetNodeID(&intf.info.box)) themAddrString := net.IP(themAddr[:]).String() themString := fmt.Sprintf("%s@%s", themAddrString, intf.info.remote) intf.links.core.log.Infof("Connected %s: %s, source %s", strings.ToUpper(intf.info.linkType), themString, intf.info.local) // Start things go intf.peer.start() intf.Act(nil, intf._notifyIdle) intf.reader.Act(nil, intf.reader._read) // Wait for the reader to finish // TODO find a way to do this without keeping live goroutines around done := make(chan struct{}) defer close(done) go func() { select { case <-intf.links.stopped: intf.msgIO.close() case <-done: } }() err = <-intf.reader.err // TODO don't report an error if it's just a 'use of closed network connection' if err != nil { intf.links.core.log.Infof("Disconnected %s: %s, source %s; error: %s", strings.ToUpper(intf.info.linkType), themString, intf.info.local, err) } else { intf.links.core.log.Infof("Disconnected %s: %s, source %s", strings.ToUpper(intf.info.linkType), themString, intf.info.local) } return err } //////////////////////////////////////////////////////////////////////////////// // link needs to match the linkInterface type needed by the peers type linkInterface interface { out([][]byte) linkOut([]byte) close() // These next ones are only used by the API name() string local() string remote() string interfaceType() string } func (intf *link) out(bss [][]byte) { intf.Act(nil, func() { // nil to prevent it from blocking if the link is somehow frozen // this is safe because another packet won't be sent until the link notifies // the peer that it's ready for one intf.writer.sendFrom(nil, bss) }) } func (intf *link) linkOut(bs []byte) { intf.Act(nil, func() { // nil to prevent it from blocking if the link is somehow frozen // FIXME this is hypothetically not safe, the peer shouldn't be sending // additional packets until this one finishes, otherwise this could leak // memory if writing happens slower than link packets are generated... // that seems unlikely, so it's a lesser evil than deadlocking for now intf.writer.sendFrom(nil, [][]byte{bs}) }) } func (intf *link) close() { intf.Act(nil, func() { intf.msgIO.close() }) } func (intf *link) name() string { return intf.lname } func (intf *link) local() string { return intf.info.local } func (intf *link) remote() string { return intf.info.remote } func (intf *link) interfaceType() string { return intf.info.linkType } //////////////////////////////////////////////////////////////////////////////// const ( sendTime = 1 * time.Second // How long to wait before deciding a send is blocked keepAliveTime = 2 * time.Second // How long to wait before sending a keep-alive response if we have no real traffic to send stallTime = 6 * time.Second // How long to wait for response traffic before deciding the connection has stalled closeTime = 2 * switch_timeout // How long to wait before closing the link ) // notify the intf that we're currently sending func (intf *link) notifySending(size int) { intf.Act(&intf.writer, func() { intf.sendTimer = time.AfterFunc(sendTime, intf.notifyBlockedSend) if intf.keepAliveTimer != nil { intf.keepAliveTimer.Stop() intf.keepAliveTimer = nil } intf.peer.notifyBlocked(intf) }) } // This gets called from a time.AfterFunc, and notifies the switch that we appear // to have gotten blocked on a write, so the switch should start routing traffic // through other links, if alternatives exist func (intf *link) notifyBlockedSend() { intf.Act(nil, func() { if intf.sendTimer != nil { //As far as we know, we're still trying to send, and the timer fired. intf.sendTimer.Stop() intf.sendTimer = nil if !intf.shutdown && intf.writeUnblocked { intf.writeUnblocked = false intf.links.core.switchTable.blockPeer(intf, intf.peer.port, true) } } }) } // notify the intf that we've finished sending, returning the peer to the switch func (intf *link) notifySent(size int) { intf.Act(&intf.writer, func() { if intf.sendTimer != nil { intf.sendTimer.Stop() intf.sendTimer = nil } if intf.keepAliveTimer != nil { // TODO? unset this when we start sending, not when we finish... intf.keepAliveTimer.Stop() intf.keepAliveTimer = nil } intf._notifyIdle() if size > 0 && intf.stallTimer == nil { intf.stallTimer = time.AfterFunc(stallTime, intf.notifyStalled) } if !intf.shutdown && !intf.writeUnblocked { intf.writeUnblocked = true intf.links.core.switchTable.unblockPeer(intf, intf.peer.port, true) } }) } // Notify the peer that we're ready for more traffic func (intf *link) _notifyIdle() { intf.peer.Act(intf, intf.peer._handleIdle) } // Set the peer as stalled, to prevent them from returning to the switch until a read succeeds func (intf *link) notifyStalled() { intf.Act(nil, func() { // Sent from a time.AfterFunc if intf.stallTimer != nil { intf.stallTimer.Stop() intf.stallTimer = nil if !intf.shutdown && intf.readUnblocked { intf.readUnblocked = false intf.links.core.switchTable.blockPeer(intf, intf.peer.port, false) } } }) } // reset the close timer func (intf *link) notifyReading() { intf.Act(&intf.reader, func() { intf.closeTimer = time.AfterFunc(closeTime, func() { intf.msgIO.close() }) }) } // wake up the link if it was stalled, and (if size > 0) prepare to send keep-alive traffic func (intf *link) notifyRead(size int) { intf.Act(&intf.reader, func() { intf.closeTimer.Stop() if intf.stallTimer != nil { intf.stallTimer.Stop() intf.stallTimer = nil } if size > 0 && intf.keepAliveTimer == nil { intf.keepAliveTimer = time.AfterFunc(keepAliveTime, intf.notifyDoKeepAlive) } if !intf.shutdown && !intf.readUnblocked { intf.readUnblocked = true intf.links.core.switchTable.unblockPeer(intf, intf.peer.port, false) } }) } // We need to send keep-alive traffic now func (intf *link) notifyDoKeepAlive() { intf.Act(nil, func() { // Sent from a time.AfterFunc if intf.keepAliveTimer != nil { intf.keepAliveTimer.Stop() intf.keepAliveTimer = nil intf.writer.sendFrom(nil, [][]byte{nil}) // Empty keep-alive traffic } }) } //////////////////////////////////////////////////////////////////////////////// type linkWriter struct { phony.Inbox intf *link worker chan [][]byte closed bool } func (w *linkWriter) sendFrom(from phony.Actor, bss [][]byte) { w.Act(from, func() { if w.closed { return } var size int for _, bs := range bss { size += len(bs) } w.intf.notifySending(size) w.worker <- bss w.intf.notifySent(size) }) } //////////////////////////////////////////////////////////////////////////////// type linkReader struct { phony.Inbox intf *link err chan error } func (r *linkReader) _read() { r.intf.notifyReading() msg, err := r.intf.msgIO.readMsg() r.intf.notifyRead(len(msg)) if len(msg) > 0 { r.intf.peer.handlePacketFrom(r, msg) } if err != nil { if err != io.EOF { r.err <- err } close(r.err) return } // Now try to read again r.Act(nil, r._read) }