package yggdrasil import ( "encoding/hex" "errors" "fmt" "io" "net" "net/url" "strings" "sync" //"sync/atomic" "time" "github.com/yggdrasil-network/yggdrasil-go/src/address" "github.com/yggdrasil-network/yggdrasil-go/src/crypto" "github.com/yggdrasil-network/yggdrasil-go/src/util" "golang.org/x/net/proxy" "github.com/Arceliar/phony" ) type link struct { core *Core mutex sync.RWMutex // protects interfaces below interfaces map[linkInfo]*linkInterface tcp tcp // TCP interface support stopped chan struct{} // TODO timeout (to remove from switch), read from config.ReadTimeout } type linkInfo struct { box crypto.BoxPubKey // Their encryption key sig crypto.SigPubKey // Their signing key linkType string // Type of link, e.g. TCP, AWDL local string // Local name or address remote string // Remote name or address } type linkInterfaceMsgIO interface { readMsg() ([]byte, error) writeMsgs([][]byte) (int, error) close() error // These are temporary workarounds to stream semantics _sendMetaBytes([]byte) error _recvMetaBytes() ([]byte, error) } type linkInterface struct { name string link *link peer *peer options linkOptions msgIO linkInterfaceMsgIO info linkInfo incoming bool force bool closed chan struct{} reader linkReader // Reads packets, notifies this linkInterface, passes packets to switch writer linkWriter // Writes packets, notifies this linkInterface phony.Inbox // Protects the below sendTimer *time.Timer // Fires to signal that sending is blocked keepAliveTimer *time.Timer // Fires to send keep-alive traffic stallTimer *time.Timer // Fires to signal that no incoming traffic (including keep-alive) has been seen closeTimer *time.Timer // Fires when the link has been idle so long we need to close it inSwitch bool // True if the switch is tracking this link stalled bool // True if we haven't been receiving any response traffic unstalled bool // False if an idle notification to the switch hasn't been sent because we stalled (or are first starting up) } type linkOptions struct { pinnedCurve25519Keys map[crypto.BoxPubKey]struct{} pinnedEd25519Keys map[crypto.SigPubKey]struct{} } func (l *link) init(c *Core) error { l.core = c l.mutex.Lock() l.interfaces = make(map[linkInfo]*linkInterface) l.mutex.Unlock() l.stopped = make(chan struct{}) if err := l.tcp.init(l); err != nil { c.log.Errorln("Failed to start TCP interface") return err } return nil } func (l *link) reconfigure() { l.tcp.reconfigure() } func (l *link) call(uri string, sintf string) error { u, err := url.Parse(uri) if err != nil { return fmt.Errorf("peer %s is not correctly formatted (%s)", uri, err) } pathtokens := strings.Split(strings.Trim(u.Path, "/"), "/") tcpOpts := tcpOptions{} if pubkeys, ok := u.Query()["curve25519"]; ok && len(pubkeys) > 0 { tcpOpts.pinnedCurve25519Keys = make(map[crypto.BoxPubKey]struct{}) for _, pubkey := range pubkeys { if boxPub, err := hex.DecodeString(pubkey); err != nil { var boxPubKey crypto.BoxPubKey copy(boxPubKey[:], boxPub) tcpOpts.pinnedCurve25519Keys[boxPubKey] = struct{}{} } } } if pubkeys, ok := u.Query()["ed25519"]; ok && len(pubkeys) > 0 { tcpOpts.pinnedEd25519Keys = make(map[crypto.SigPubKey]struct{}) for _, pubkey := range pubkeys { if sigPub, err := hex.DecodeString(pubkey); err != nil { var sigPubKey crypto.SigPubKey copy(sigPubKey[:], sigPub) tcpOpts.pinnedEd25519Keys[sigPubKey] = struct{}{} } } } switch u.Scheme { case "tcp": l.tcp.call(u.Host, tcpOpts, sintf) case "socks": tcpOpts.socksProxyAddr = u.Host if u.User != nil { tcpOpts.socksProxyAuth = &proxy.Auth{} tcpOpts.socksProxyAuth.User = u.User.Username() tcpOpts.socksProxyAuth.Password, _ = u.User.Password() } l.tcp.call(pathtokens[0], tcpOpts, sintf) case "tls": tcpOpts.upgrade = l.tcp.tls.forDialer l.tcp.call(u.Host, tcpOpts, sintf) default: return errors.New("unknown call scheme: " + u.Scheme) } return nil } func (l *link) listen(uri string) error { u, err := url.Parse(uri) if err != nil { return fmt.Errorf("listener %s is not correctly formatted (%s)", uri, err) } switch u.Scheme { case "tcp": _, err := l.tcp.listen(u.Host, nil) return err case "tls": _, err := l.tcp.listen(u.Host, l.tcp.tls.forListener) return err default: return errors.New("unknown listen scheme: " + u.Scheme) } } func (l *link) create(msgIO linkInterfaceMsgIO, name, linkType, local, remote string, incoming, force bool, options linkOptions) (*linkInterface, error) { // Technically anything unique would work for names, but let's pick something human readable, just for debugging intf := linkInterface{ name: name, link: l, options: options, msgIO: msgIO, info: linkInfo{ linkType: linkType, local: local, remote: remote, }, incoming: incoming, force: force, } intf.writer.intf = &intf intf.reader.intf = &intf intf.reader.err = make(chan error) return &intf, nil } func (l *link) stop() error { close(l.stopped) if err := l.tcp.stop(); err != nil { return err } return nil } func (intf *linkInterface) handler() error { // TODO split some of this into shorter functions, so it's easier to read, and for the FIXME duplicate peer issue mentioned later myLinkPub, myLinkPriv := crypto.NewBoxKeys() meta := version_getBaseMetadata() meta.box = intf.link.core.boxPub meta.sig = intf.link.core.sigPub meta.link = *myLinkPub metaBytes := meta.encode() // TODO timeouts on send/recv (goroutine for send/recv, channel select w/ timer) var err error if !util.FuncTimeout(func() { err = intf.msgIO._sendMetaBytes(metaBytes) }, 30*time.Second) { return errors.New("timeout on metadata send") } if err != nil { return err } if !util.FuncTimeout(func() { metaBytes, err = intf.msgIO._recvMetaBytes() }, 30*time.Second) { return errors.New("timeout on metadata recv") } if err != nil { return err } meta = version_metadata{} if !meta.decode(metaBytes) || !meta.check() { return errors.New("failed to decode metadata") } base := version_getBaseMetadata() if meta.ver > base.ver || meta.ver == base.ver && meta.minorVer > base.minorVer { intf.link.core.log.Errorln("Failed to connect to node: " + intf.name + " version: " + fmt.Sprintf("%d.%d", meta.ver, meta.minorVer)) return errors.New("failed to connect: wrong version") } // Check if the remote side matches the keys we expected. This is a bit of a weak // check - in future versions we really should check a signature or something like that. if pinned := intf.options.pinnedCurve25519Keys; pinned != nil { if _, allowed := pinned[meta.box]; !allowed { intf.link.core.log.Errorf("Failed to connect to node: %q sent curve25519 key that does not match pinned keys", intf.name) return fmt.Errorf("failed to connect: host sent curve25519 key that does not match pinned keys") } } if pinned := intf.options.pinnedEd25519Keys; pinned != nil { if _, allowed := pinned[meta.sig]; !allowed { intf.link.core.log.Errorf("Failed to connect to node: %q sent ed25519 key that does not match pinned keys", intf.name) return fmt.Errorf("failed to connect: host sent ed25519 key that does not match pinned keys") } } // Check if we're authorized to connect to this key / IP if intf.incoming && !intf.force && !intf.link.core.peers.isAllowedEncryptionPublicKey(&meta.box) { intf.link.core.log.Warnf("%s connection from %s forbidden: AllowedEncryptionPublicKeys does not contain key %s", strings.ToUpper(intf.info.linkType), intf.info.remote, hex.EncodeToString(meta.box[:])) intf.msgIO.close() return nil } // Check if we already have a link to this node intf.info.box = meta.box intf.info.sig = meta.sig intf.link.mutex.Lock() if oldIntf, isIn := intf.link.interfaces[intf.info]; isIn { intf.link.mutex.Unlock() // FIXME we should really return an error and let the caller block instead // That lets them do things like close connections on its own, avoid printing a connection message in the first place, etc. intf.link.core.log.Debugln("DEBUG: found existing interface for", intf.name) intf.msgIO.close() if !intf.incoming { // Block outgoing connection attempts until the existing connection closes <-oldIntf.closed } return nil } else { intf.closed = make(chan struct{}) intf.link.interfaces[intf.info] = intf defer func() { intf.link.mutex.Lock() delete(intf.link.interfaces, intf.info) intf.link.mutex.Unlock() close(intf.closed) }() intf.link.core.log.Debugln("DEBUG: registered interface for", intf.name) } intf.link.mutex.Unlock() // Create peer shared := crypto.GetSharedKey(myLinkPriv, &meta.link) intf.peer = intf.link.core.peers.newPeer(&meta.box, &meta.sig, shared, intf, func() { intf.msgIO.close() }) if intf.peer == nil { return errors.New("failed to create peer") } defer func() { // More cleanup can go here intf.link.core.peers.removePeer(intf.peer.port) }() intf.peer.out = func(msgs [][]byte) { intf.writer.sendFrom(intf.peer, msgs, false) } intf.peer.linkOut = func(bs []byte) { intf.writer.sendFrom(intf.peer, [][]byte{bs}, true) } themAddr := address.AddrForNodeID(crypto.GetNodeID(&intf.info.box)) themAddrString := net.IP(themAddr[:]).String() themString := fmt.Sprintf("%s@%s", themAddrString, intf.info.remote) intf.link.core.log.Infof("Connected %s: %s, source %s", strings.ToUpper(intf.info.linkType), themString, intf.info.local) // Start things go intf.peer.start() intf.reader.Act(nil, intf.reader._read) // Wait for the reader to finish // TODO find a way to do this without keeping live goroutines around done := make(chan struct{}) defer close(done) go func() { select { case <-intf.link.stopped: intf.msgIO.close() case <-done: } }() err = <-intf.reader.err // TODO don't report an error if it's just a 'use of closed network connection' if err != nil { intf.link.core.log.Infof("Disconnected %s: %s, source %s; error: %s", strings.ToUpper(intf.info.linkType), themString, intf.info.local, err) } else { intf.link.core.log.Infof("Disconnected %s: %s, source %s", strings.ToUpper(intf.info.linkType), themString, intf.info.local) } return err } //////////////////////////////////////////////////////////////////////////////// const ( sendTime = 1 * time.Second // How long to wait before deciding a send is blocked keepAliveTime = 2 * time.Second // How long to wait before sending a keep-alive response if we have no real traffic to send stallTime = 6 * time.Second // How long to wait for response traffic before deciding the connection has stalled closeTime = 2 * switch_timeout // How long to wait before closing the link ) // notify the intf that we're currently sending func (intf *linkInterface) notifySending(size int, isLinkTraffic bool) { intf.Act(&intf.writer, func() { if !isLinkTraffic { intf.inSwitch = false } intf.sendTimer = time.AfterFunc(sendTime, intf.notifyBlockedSend) intf._cancelStallTimer() }) } // called by an AfterFunc if we seem to be blocked in a send syscall for a long time func (intf *linkInterface) _notifySyscall() { intf.link.core.switchTable.Act(intf, func() { intf.link.core.switchTable._sendingIn(intf.peer.port) }) } // we just sent something, so cancel any pending timer to send keep-alive traffic func (intf *linkInterface) _cancelStallTimer() { if intf.stallTimer != nil { intf.stallTimer.Stop() intf.stallTimer = nil } } // This gets called from a time.AfterFunc, and notifies the switch that we appear // to have gotten blocked on a write, so the switch should start routing traffic // through other links, if alternatives exist func (intf *linkInterface) notifyBlockedSend() { intf.Act(nil, func() { if intf.sendTimer != nil { //As far as we know, we're still trying to send, and the timer fired. intf.link.core.switchTable.blockPeer(intf.peer.port) } }) } // notify the intf that we've finished sending, returning the peer to the switch func (intf *linkInterface) notifySent(size int, isLinkTraffic bool) { intf.Act(&intf.writer, func() { intf.sendTimer.Stop() intf.sendTimer = nil if !isLinkTraffic { intf._notifySwitch() } if size > 0 && intf.stallTimer == nil { intf.stallTimer = time.AfterFunc(stallTime, intf.notifyStalled) } }) } // Notify the switch that we're ready for more traffic, assuming we're not in a stalled state func (intf *linkInterface) _notifySwitch() { if !intf.inSwitch { if intf.stalled { intf.unstalled = false } else { intf.inSwitch = true intf.link.core.switchTable.Act(intf, func() { intf.link.core.switchTable._idleIn(intf.peer.port) }) } } } // Set the peer as stalled, to prevent them from returning to the switch until a read succeeds func (intf *linkInterface) notifyStalled() { intf.Act(nil, func() { // Sent from a time.AfterFunc if intf.stallTimer != nil { intf.stallTimer.Stop() intf.stallTimer = nil intf.stalled = true intf.link.core.switchTable.blockPeer(intf.peer.port) } }) } // reset the close timer func (intf *linkInterface) notifyReading() { intf.Act(&intf.reader, func() { if intf.closeTimer != nil { intf.closeTimer.Stop() } intf.closeTimer = time.AfterFunc(closeTime, func() { intf.msgIO.close() }) }) } // wake up the link if it was stalled, and (if size > 0) prepare to send keep-alive traffic func (intf *linkInterface) notifyRead(size int) { intf.Act(&intf.reader, func() { if intf.stallTimer != nil { intf.stallTimer.Stop() intf.stallTimer = nil } intf.stalled = false if !intf.unstalled { intf._notifySwitch() intf.unstalled = true } if size > 0 && intf.stallTimer == nil { intf.stallTimer = time.AfterFunc(keepAliveTime, intf.notifyDoKeepAlive) } }) } // We need to send keep-alive traffic now func (intf *linkInterface) notifyDoKeepAlive() { intf.Act(nil, func() { // Sent from a time.AfterFunc if intf.stallTimer != nil { intf.stallTimer.Stop() intf.stallTimer = nil intf.writer.sendFrom(nil, [][]byte{nil}, true) // Empty keep-alive traffic } }) } //////////////////////////////////////////////////////////////////////////////// type linkWriter struct { phony.Inbox intf *linkInterface } func (w *linkWriter) sendFrom(from phony.Actor, bss [][]byte, isLinkTraffic bool) { w.Act(from, func() { var size int for _, bs := range bss { size += len(bs) } w.intf.notifySending(size, isLinkTraffic) // start a timer that will fire if we get stuck in writeMsgs for an oddly long time var once sync.Once timer := time.AfterFunc(time.Millisecond, func() { // 1 ms is kind of arbitrary // the rationale is that this should be very long compared to a syscall // but it's still short compared to end-to-end latency or human perception once.Do(func() { w.intf.Act(nil, w.intf._notifySyscall) }) }) w.intf.msgIO.writeMsgs(bss) // Make sure we either stop the timer from doing anything or wait until it's done once.Do(func() { timer.Stop() }) w.intf.notifySent(size, isLinkTraffic) // Cleanup for _, bs := range bss { util.PutBytes(bs) } }) } //////////////////////////////////////////////////////////////////////////////// type linkReader struct { phony.Inbox intf *linkInterface err chan error } func (r *linkReader) _read() { r.intf.notifyReading() msg, err := r.intf.msgIO.readMsg() r.intf.notifyRead(len(msg)) if len(msg) > 0 { r.intf.peer.handlePacketFrom(r, msg) } if err != nil { if err != io.EOF { r.err <- err } close(r.err) return } // Now try to read again r.Act(nil, r._read) }