package yggdrasil // This thing manages search packets // The basic idea is as follows: // We may know a NodeID (with a mask) and want to connect // We begin a search by initializing a list of all nodes in our DHT, sorted by closest to the destination // We then iteratively ping nodes from the search, marking each pinged node as visited // We add any unvisited nodes from ping responses to the search, truncating to some maximum search size // This stops when we either run out of nodes to ping (we hit a dead end where we can't make progress without going back), or we reach the destination // A new search packet is sent immediately after receiving a response // A new search packet is sent periodically, once per second, in case a packet was dropped (this slowly causes the search to become parallel if the search doesn't timeout but also doesn't finish within 1 second for whatever reason) // TODO? // Some kind of max search steps, in case the node is offline, so we don't crawl through too much of the network looking for a destination that isn't there? import ( "errors" "sort" "time" "github.com/yggdrasil-network/yggdrasil-go/src/crypto" ) // This defines the maximum number of dhtInfo that we keep track of for nodes to query in an ongoing search. const search_MAX_SEARCH_SIZE = 16 // This defines the time after which we time out a search (so it can restart). const search_RETRY_TIME = 3 * time.Second // Information about an ongoing search. // Includes the target NodeID, the bitmask to match it to an IP, and the list of nodes to visit / already visited. type searchInfo struct { searches *searches dest crypto.NodeID mask crypto.NodeID time time.Time toVisit []*dhtInfo visited crypto.NodeID // Closest address visited so far callback func(*sessionInfo, error) // TODO context.Context for timeout and cancellation send uint64 // log number of requests sent recv uint64 // log number of responses received } // This stores a map of active searches. type searches struct { router *router searches map[crypto.NodeID]*searchInfo } // Initializes the searches struct. func (s *searches) init(r *router) { s.router = r s.searches = make(map[crypto.NodeID]*searchInfo) } func (s *searches) reconfigure() { // This is where reconfiguration would go, if we had anything to do } // Creates a new search info, adds it to the searches struct, and returns a pointer to the info. func (s *searches) createSearch(dest *crypto.NodeID, mask *crypto.NodeID, callback func(*sessionInfo, error)) *searchInfo { info := searchInfo{ searches: s, dest: *dest, mask: *mask, time: time.Now(), callback: callback, } s.searches[*dest] = &info return &info } //////////////////////////////////////////////////////////////////////////////// // Checks if there's an ongoing search related to a dhtRes. // If there is, it adds the response info to the search and triggers a new search step. // If there's no ongoing search, or we if the dhtRes finished the search (it was from the target node), then don't do anything more. func (sinfo *searchInfo) handleDHTRes(res *dhtRes) { sinfo.recv++ if res == nil || sinfo.checkDHTRes(res) { // Either we don't recognize this search, or we just finished it return } // Add to the search and continue sinfo.addToSearch(res) sinfo.doSearchStep() } // Adds the information from a dhtRes to an ongoing search. // Info about a node that has already been visited is not re-added to the search. // Duplicate information about nodes toVisit is deduplicated (the newest information is kept). func (sinfo *searchInfo) addToSearch(res *dhtRes) { for _, info := range res.Infos { if *info.getNodeID() == sinfo.visited { // dht_ordered could return true here, but we want to skip it in this case continue } if dht_ordered(&sinfo.dest, info.getNodeID(), &sinfo.visited) && *info.getNodeID() != sinfo.visited { // Response is closer to the destination sinfo.toVisit = append(sinfo.toVisit, info) } // Sort sort.SliceStable(sinfo.toVisit, func(i, j int) bool { // Should return true if i is closer to the destination than j return dht_ordered(&res.Dest, sinfo.toVisit[i].getNodeID(), sinfo.toVisit[j].getNodeID()) }) } } // If there are no nodes left toVisit, then this cleans up the search. // Otherwise, it pops the closest node to the destination (in keyspace) off of the toVisit list and sends a dht ping. func (sinfo *searchInfo) doSearchStep() { if len(sinfo.toVisit) == 0 { if time.Since(sinfo.time) > search_RETRY_TIME { // Dead end and no response in too long, do cleanup delete(sinfo.searches.searches, sinfo.dest) sinfo.callback(nil, errors.New("search reached dead end")) } return } // Send to the next search target for _, next := range sinfo.toVisit { rq := dhtReqKey{next.key, sinfo.dest} sinfo.searches.router.dht.addCallback(&rq, sinfo.handleDHTRes) sinfo.searches.router.dht.ping(next, &sinfo.dest) sinfo.time = time.Now() sinfo.send++ } sinfo.toVisit = sinfo.toVisit[:0] } // If we've recently sent a ping for this search, do nothing. // Otherwise, doSearchStep and schedule another continueSearch to happen after search_RETRY_TIME. func (sinfo *searchInfo) continueSearch() { sinfo.doSearchStep() // In case the search dies, try to spawn another thread later // Note that this will spawn multiple parallel searches as time passes // Any that die aren't restarted, but a new one will start later time.AfterFunc(search_RETRY_TIME, func() { sinfo.searches.router.Act(nil, func() { // FIXME this keeps the search alive forever if not for the searches map, fix that newSearchInfo := sinfo.searches.searches[sinfo.dest] if newSearchInfo != sinfo { return } sinfo.continueSearch() }) }) } // Calls create search, and initializes the iterative search parts of the struct before returning it. func (s *searches) newIterSearch(dest *crypto.NodeID, mask *crypto.NodeID, callback func(*sessionInfo, error)) *searchInfo { sinfo := s.createSearch(dest, mask, callback) sinfo.visited = s.router.dht.nodeID loc := s.router.core.switchTable.getLocator() sinfo.toVisit = append(sinfo.toVisit, &dhtInfo{ key: s.router.core.boxPub, coords: loc.getCoords(), }) // Start the search by asking ourself, useful if we're the destination return sinfo } // Checks if a dhtRes is good (called by handleDHTRes). // If the response is from the target, get/create a session, trigger a session ping, and return true. // Otherwise return false. func (sinfo *searchInfo) checkDHTRes(res *dhtRes) bool { from := dhtInfo{key: res.Key, coords: res.Coords} if dht_ordered(&sinfo.dest, from.getNodeID(), &sinfo.visited) { // Closer to the destination, so update visited sinfo.searches.router.core.log.Debugln("Updating search:", sinfo.dest, *from.getNodeID(), sinfo.send, sinfo.recv) sinfo.visited = *from.getNodeID() } them := from.getNodeID() var destMasked crypto.NodeID var themMasked crypto.NodeID for idx := 0; idx < crypto.NodeIDLen; idx++ { destMasked[idx] = sinfo.dest[idx] & sinfo.mask[idx] themMasked[idx] = them[idx] & sinfo.mask[idx] } if themMasked != destMasked { return false } finishSearch := func(sess *sessionInfo, err error) { if sess != nil { // FIXME (!) replay attacks could mess with coords? Give it a handle (tstamp)? sess.Act(sinfo.searches.router, func() { sess.coords = res.Coords }) sess.ping(sinfo.searches.router) } if err != nil { sinfo.callback(nil, err) } else { sinfo.callback(sess, nil) } // Cleanup delete(sinfo.searches.searches, res.Dest) } // They match, so create a session and send a sessionRequest var err error sess, isIn := sinfo.searches.router.sessions.getByTheirPerm(&res.Key) if !isIn { // Don't already have a session sess = sinfo.searches.router.sessions.createSession(&res.Key) if sess == nil { err = errors.New("session not allowed") } else if _, isIn := sinfo.searches.router.sessions.getByTheirPerm(&res.Key); !isIn { panic("This should never happen") } } else { err = errors.New("session already exists") } finishSearch(sess, err) return true }