538 lines
17 KiB
Go

package yggdrasil
// This part does most of the work to handle packets to/from yourself
// It also manages crypto and dht info
// TODO clean up old/unused code, maybe improve comments on whatever is left
// Send:
// Receive a packet from the adapter
// Look up session (if none exists, trigger a search)
// Hand off to session (which encrypts, etc)
// Session will pass it back to router.out, which hands it off to the self peer
// The self peer triggers a lookup to find which peer to send to next
// And then passes it to that's peer's peer.out function
// The peer.out function sends it over the wire to the matching peer
// Recv:
// A packet comes in off the wire, and goes to a peer.handlePacket
// The peer does a lookup, sees no better peer than the self
// Hands it to the self peer.out, which passes it to router.in
// If it's dht/seach/etc. traffic, the router passes it to that part
// If it's an encapsulated IPv6 packet, the router looks up the session for it
// The packet is passed to the session, which decrypts it, router.recvPacket
// The router then runs some sanity checks before passing it to the adapter
import (
"bytes"
"time"
"github.com/yggdrasil-network/yggdrasil-go/src/address"
"github.com/yggdrasil-network/yggdrasil-go/src/crypto"
"github.com/yggdrasil-network/yggdrasil-go/src/util"
)
// The router struct has channels to/from the adapter device and a self peer (0), which is how messages are passed between this node and the peers/switch layer.
// The router's mainLoop goroutine is responsible for managing all information related to the dht, searches, and crypto sessions.
type router struct {
core *Core
reconfigure chan chan error
addr address.Address
subnet address.Subnet
in <-chan []byte // packets we received from the network, link to peer's "out"
out func([]byte) // packets we're sending to the network, link to peer's "in"
toRecv chan router_recvPacket // packets to handle via recvPacket()
recv chan<- []byte // place where the adapter pulls received packets from
send <-chan []byte // place where the adapter puts outgoing packets
reject chan<- RejectedPacket // place where we send error packets back to adapter
reset chan struct{} // signal that coords changed (re-init sessions/dht)
admin chan func() // pass a lambda for the admin socket to query stuff
cryptokey cryptokey
nodeinfo nodeinfo
}
// Packet and session info, used to check that the packet matches a valid IP range or CKR prefix before sending to the adapter.
type router_recvPacket struct {
bs []byte
sinfo *sessionInfo
}
// RejectedPacketReason is the type code used to represent the reason that a
// packet was rejected.
type RejectedPacketReason int
const (
// The router rejected the packet because it exceeds the session MTU for the
// given destination. In TUN/TAP, this results in the generation of an ICMPv6
// Packet Too Big message.
PacketTooBig = 1 + iota
)
// RejectedPacket represents a rejected packet from the router. This is passed
// back to the adapter so that the adapter can respond appropriately, e.g. in
// the case of TUN/TAP, a "PacketTooBig" reason can be used to generate an
// ICMPv6 Packet Too Big response.
type RejectedPacket struct {
Reason RejectedPacketReason
Packet []byte
Detail interface{}
}
// Initializes the router struct, which includes setting up channels to/from the adapter.
func (r *router) init(core *Core) {
r.core = core
r.reconfigure = make(chan chan error, 1)
r.addr = *address.AddrForNodeID(&r.core.dht.nodeID)
r.subnet = *address.SubnetForNodeID(&r.core.dht.nodeID)
in := make(chan []byte, 1) // TODO something better than this...
self := linkInterface{
name: "(self)",
info: linkInfo{
local: "(self)",
remote: "(self)",
linkType: "self",
},
}
p := r.core.peers.newPeer(&r.core.boxPub, &r.core.sigPub, &crypto.BoxSharedKey{}, &self, nil)
p.out = func(packet []byte) { in <- packet }
r.in = in
out := make(chan []byte, 32)
go func() {
for packet := range out {
p.handlePacket(packet)
}
}()
out2 := make(chan []byte, 32)
go func() {
// This worker makes sure r.out never blocks
// It will buffer traffic long enough for the switch worker to take it
// If (somehow) you can send faster than the switch can receive, then this would use unbounded memory
// But crypto slows sends enough that the switch should always be able to take the packets...
var buf [][]byte
for {
buf = append(buf, <-out2)
for len(buf) > 0 {
select {
case bs := <-out2:
buf = append(buf, bs)
case out <- buf[0]:
buf = buf[1:]
}
}
}
}()
r.out = func(packet []byte) { out2 <- packet }
r.toRecv = make(chan router_recvPacket, 32)
recv := make(chan []byte, 32)
send := make(chan []byte, 32)
reject := make(chan RejectedPacket, 32)
r.recv = recv
r.send = send
r.reject = reject
r.reset = make(chan struct{}, 1)
r.admin = make(chan func(), 32)
r.nodeinfo.init(r.core)
r.core.config.Mutex.RLock()
r.nodeinfo.setNodeInfo(r.core.config.Current.NodeInfo, r.core.config.Current.NodeInfoPrivacy)
r.core.config.Mutex.RUnlock()
r.cryptokey.init(r.core)
}
// Starts the mainLoop goroutine.
func (r *router) start() error {
r.core.log.Infoln("Starting router")
go r.mainLoop()
return nil
}
// Takes traffic from the adapter and passes it to router.send, or from r.in and handles incoming traffic.
// Also adds new peer info to the DHT.
// Also resets the DHT and sesssions in the event of a coord change.
// Also does periodic maintenance stuff.
func (r *router) mainLoop() {
ticker := time.NewTicker(time.Second)
defer ticker.Stop()
for {
select {
case rp := <-r.toRecv:
r.recvPacket(rp.bs, rp.sinfo)
case p := <-r.in:
r.handleIn(p)
case p := <-r.send:
r.sendPacket(p)
case info := <-r.core.dht.peers:
r.core.dht.insertPeer(info)
case <-r.reset:
r.core.sessions.resetInits()
r.core.dht.reset()
case <-ticker.C:
{
// Any periodic maintenance stuff goes here
r.core.switchTable.doMaintenance()
r.core.dht.doMaintenance()
r.core.sessions.cleanup()
util.GetBytes() // To slowly drain things
}
case f := <-r.admin:
f()
case e := <-r.reconfigure:
current, _ := r.core.config.Get()
e <- r.nodeinfo.setNodeInfo(current.NodeInfo, current.NodeInfoPrivacy)
}
}
}
// Checks a packet's to/from address to make sure it's in the allowed range.
// If a session to the destination exists, gets the session and passes the packet to it.
// If no session exists, it triggers (or continues) a search.
// If the session hasn't responded recently, it triggers a ping or search to keep things alive or deal with broken coords *relatively* quickly.
// It also deals with oversized packets if there are MTU issues by calling into icmpv6.go to spoof PacketTooBig traffic, or DestinationUnreachable if the other side has their adapter disabled.
func (r *router) sendPacket(bs []byte) {
var sourceAddr address.Address
var destAddr address.Address
var destSnet address.Subnet
var destPubKey *crypto.BoxPubKey
var destNodeID *crypto.NodeID
var addrlen int
if bs[0]&0xf0 == 0x60 {
// Check if we have a fully-sized header
if len(bs) < 40 {
panic("Tried to send a packet shorter than an IPv6 header...")
}
// IPv6 address
addrlen = 16
copy(sourceAddr[:addrlen], bs[8:])
copy(destAddr[:addrlen], bs[24:])
copy(destSnet[:addrlen/2], bs[24:])
} else if bs[0]&0xf0 == 0x40 {
// Check if we have a fully-sized header
if len(bs) < 20 {
panic("Tried to send a packet shorter than an IPv4 header...")
}
// IPv4 address
addrlen = 4
copy(sourceAddr[:addrlen], bs[12:])
copy(destAddr[:addrlen], bs[16:])
} else {
// Unknown address length
return
}
if !r.cryptokey.isValidSource(sourceAddr, addrlen) {
// The packet had a source address that doesn't belong to us or our
// configured crypto-key routing source subnets
return
}
if !destAddr.IsValid() && !destSnet.IsValid() {
// The addresses didn't match valid Yggdrasil node addresses so let's see
// whether it matches a crypto-key routing range instead
if key, err := r.cryptokey.getPublicKeyForAddress(destAddr, addrlen); err == nil {
// A public key was found, get the node ID for the search
destPubKey = &key
destNodeID = crypto.GetNodeID(destPubKey)
// Do a quick check to ensure that the node ID refers to a vaild Yggdrasil
// address or subnet - this might be superfluous
addr := *address.AddrForNodeID(destNodeID)
copy(destAddr[:], addr[:])
copy(destSnet[:], addr[:])
if !destAddr.IsValid() && !destSnet.IsValid() {
return
}
} else {
// No public key was found in the CKR table so we've exhausted our options
return
}
}
searchCompleted := func(sinfo *sessionInfo, err error) {
if err != nil {
r.core.log.Debugln("DHT search failed:", err)
return
}
}
doSearch := func(packet []byte) {
var nodeID, mask *crypto.NodeID
switch {
case destNodeID != nil:
// We already know the full node ID, probably because it's from a CKR
// route in which the public key is known ahead of time
nodeID = destNodeID
var m crypto.NodeID
for i := range m {
m[i] = 0xFF
}
mask = &m
case destAddr.IsValid():
// We don't know the full node ID - try and use the address to generate
// a truncated node ID
nodeID, mask = destAddr.GetNodeIDandMask()
case destSnet.IsValid():
// We don't know the full node ID - try and use the subnet to generate
// a truncated node ID
nodeID, mask = destSnet.GetNodeIDandMask()
default:
return
}
sinfo, isIn := r.core.searches.searches[*nodeID]
if !isIn {
sinfo = r.core.searches.newIterSearch(nodeID, mask, searchCompleted)
}
if packet != nil {
sinfo.packet = packet
}
r.core.searches.continueSearch(sinfo)
}
var sinfo *sessionInfo
var isIn bool
if destAddr.IsValid() {
sinfo, isIn = r.core.sessions.getByTheirAddr(&destAddr)
}
if destSnet.IsValid() {
sinfo, isIn = r.core.sessions.getByTheirSubnet(&destSnet)
}
sTime := sinfo.time.Load().(time.Time)
pingTime := sinfo.pingTime.Load().(time.Time)
pingSend := sinfo.pingSend.Load().(time.Time)
switch {
case !isIn || !sinfo.init.Load().(bool):
// No or unintiialized session, so we need to search first
doSearch(bs)
case time.Since(sTime) > 6*time.Second:
if sTime.Before(pingTime) && time.Since(pingTime) > 6*time.Second {
// We haven't heard from the dest in a while
// We tried pinging but didn't get a response
// They may have changed coords
// Try searching to discover new coords
// Note that search spam is throttled internally
doSearch(nil)
} else {
// We haven't heard about the dest in a while
now := time.Now()
if !sTime.Before(pingTime) {
// Update pingTime to start the clock for searches (above)
sinfo.pingTime.Store(now)
}
if time.Since(pingSend) > time.Second {
// Send at most 1 ping per second
sinfo.pingSend.Store(now)
r.core.sessions.sendPingPong(sinfo, false)
}
}
fallthrough // Also send the packet
default:
// If we know the public key ahead of time (i.e. a CKR route) then check
// if the session perm pub key matches before we send the packet to it
if destPubKey != nil {
if !bytes.Equal((*destPubKey)[:], sinfo.theirPermPub[:]) {
return
}
}
// Drop packets if the session MTU is 0 - this means that one or other
// side probably has their TUN adapter disabled
if sinfo.getMTU() == 0 {
// Don't continue - drop the packet
return
}
// Generate an ICMPv6 Packet Too Big for packets larger than session MTU
if len(bs) > int(sinfo.getMTU()) {
// Get the size of the oversized payload, up to a max of 900 bytes
window := 900
if int(sinfo.getMTU()) < window {
window = int(sinfo.getMTU())
}
// Send the error back to the adapter
r.reject <- RejectedPacket{
Reason: PacketTooBig,
Packet: bs[:window],
Detail: int(sinfo.getMTU()),
}
// Don't continue - drop the packet
return
}
sinfo.send <- bs
}
}
// Called for incoming traffic by the session worker for that connection.
// Checks that the IP address is correct (matches the session) and passes the packet to the adapter.
func (r *router) recvPacket(bs []byte, sinfo *sessionInfo) {
// Note: called directly by the session worker, not the router goroutine
if len(bs) < 24 {
util.PutBytes(bs)
return
}
var sourceAddr address.Address
var dest address.Address
var snet address.Subnet
var addrlen int
if bs[0]&0xf0 == 0x60 {
// IPv6 address
addrlen = 16
copy(sourceAddr[:addrlen], bs[8:])
copy(dest[:addrlen], bs[24:])
copy(snet[:addrlen/2], bs[8:])
} else if bs[0]&0xf0 == 0x40 {
// IPv4 address
addrlen = 4
copy(sourceAddr[:addrlen], bs[12:])
copy(dest[:addrlen], bs[16:])
} else {
// Unknown address length
return
}
// Check that the packet is destined for either our Yggdrasil address or
// subnet, or that it matches one of the crypto-key routing source routes
if !r.cryptokey.isValidSource(dest, addrlen) {
util.PutBytes(bs)
return
}
// See whether the packet they sent should have originated from this session
switch {
case sourceAddr.IsValid() && sourceAddr == sinfo.theirAddr:
case snet.IsValid() && snet == sinfo.theirSubnet:
default:
key, err := r.cryptokey.getPublicKeyForAddress(sourceAddr, addrlen)
if err != nil || key != sinfo.theirPermPub {
util.PutBytes(bs)
return
}
}
//go func() { r.recv<-bs }()
r.recv <- bs
}
// Checks incoming traffic type and passes it to the appropriate handler.
func (r *router) handleIn(packet []byte) {
pType, pTypeLen := wire_decode_uint64(packet)
if pTypeLen == 0 {
return
}
switch pType {
case wire_Traffic:
r.handleTraffic(packet)
case wire_ProtocolTraffic:
r.handleProto(packet)
default:
}
}
// Handles incoming traffic, i.e. encapuslated ordinary IPv6 packets.
// Passes them to the crypto session worker to be decrypted and sent to the adapter.
func (r *router) handleTraffic(packet []byte) {
defer util.PutBytes(packet)
p := wire_trafficPacket{}
if !p.decode(packet) {
return
}
sinfo, isIn := r.core.sessions.getSessionForHandle(&p.Handle)
if !isIn {
return
}
sinfo.recv <- &p
}
// Handles protocol traffic by decrypting it, checking its type, and passing it to the appropriate handler for that traffic type.
func (r *router) handleProto(packet []byte) {
// First parse the packet
p := wire_protoTrafficPacket{}
if !p.decode(packet) {
return
}
// Now try to open the payload
var sharedKey *crypto.BoxSharedKey
if p.ToKey == r.core.boxPub {
// Try to open using our permanent key
sharedKey = r.core.sessions.getSharedKey(&r.core.boxPriv, &p.FromKey)
} else {
return
}
bs, isOK := crypto.BoxOpen(sharedKey, p.Payload, &p.Nonce)
if !isOK {
return
}
// Now do something with the bytes in bs...
// send dht messages to dht, sessionRefresh to sessions, data to adapter...
// For data, should check that key and IP match...
bsType, bsTypeLen := wire_decode_uint64(bs)
if bsTypeLen == 0 {
return
}
switch bsType {
case wire_SessionPing:
r.handlePing(bs, &p.FromKey)
case wire_SessionPong:
r.handlePong(bs, &p.FromKey)
case wire_NodeInfoRequest:
fallthrough
case wire_NodeInfoResponse:
r.handleNodeInfo(bs, &p.FromKey)
case wire_DHTLookupRequest:
r.handleDHTReq(bs, &p.FromKey)
case wire_DHTLookupResponse:
r.handleDHTRes(bs, &p.FromKey)
default:
util.PutBytes(packet)
}
}
// Decodes session pings from wire format and passes them to sessions.handlePing where they either create or update a session.
func (r *router) handlePing(bs []byte, fromKey *crypto.BoxPubKey) {
ping := sessionPing{}
if !ping.decode(bs) {
return
}
ping.SendPermPub = *fromKey
r.core.sessions.handlePing(&ping)
}
// Handles session pongs (which are really pings with an extra flag to prevent acknowledgement).
func (r *router) handlePong(bs []byte, fromKey *crypto.BoxPubKey) {
r.handlePing(bs, fromKey)
}
// Decodes dht requests and passes them to dht.handleReq to trigger a lookup/response.
func (r *router) handleDHTReq(bs []byte, fromKey *crypto.BoxPubKey) {
req := dhtReq{}
if !req.decode(bs) {
return
}
req.Key = *fromKey
r.core.dht.handleReq(&req)
}
// Decodes dht responses and passes them to dht.handleRes to update the DHT table and further pass them to the search code (if applicable).
func (r *router) handleDHTRes(bs []byte, fromKey *crypto.BoxPubKey) {
res := dhtRes{}
if !res.decode(bs) {
return
}
res.Key = *fromKey
r.core.dht.handleRes(&res)
}
// Decodes nodeinfo request
func (r *router) handleNodeInfo(bs []byte, fromKey *crypto.BoxPubKey) {
req := nodeinfoReqRes{}
if !req.decode(bs) {
return
}
req.SendPermPub = *fromKey
r.nodeinfo.handleNodeInfo(&req)
}
// Passed a function to call.
// This will send the function to r.admin and block until it finishes.
// It's used by the admin socket to ask the router mainLoop goroutine about information in the session or dht structs, which cannot be read safely from outside that goroutine.
func (r *router) doAdmin(f func()) {
// Pass this a function that needs to be run by the router's main goroutine
// It will pass the function to the router and wait for the router to finish
done := make(chan struct{})
newF := func() {
f()
close(done)
}
r.admin <- newF
<-done
}