zitadel/internal/api/grpc/user/v2/integration_test/passkey_test.go

601 lines
14 KiB
Go
Raw Normal View History

//go:build integration
package user_test
import (
"context"
"testing"
"time"
"github.com/muhlemmer/gu"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"google.golang.org/protobuf/types/known/structpb"
"google.golang.org/protobuf/types/known/timestamppb"
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
"github.com/zitadel/zitadel/internal/integration"
"github.com/zitadel/zitadel/pkg/grpc/object/v2"
"github.com/zitadel/zitadel/pkg/grpc/user/v2"
)
func TestServer_RegisterPasskey(t *testing.T) {
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
userID := Instance.CreateHumanUser(CTX).GetUserId()
reg, err := Client.CreatePasskeyRegistrationLink(CTX, &user.CreatePasskeyRegistrationLinkRequest{
UserId: userID,
Medium: &user.CreatePasskeyRegistrationLinkRequest_ReturnCode{},
})
require.NoError(t, err)
// We also need a user session
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
Instance.RegisterUserPasskey(CTX, userID)
_, sessionToken, _, _ := Instance.CreateVerifiedWebAuthNSession(t, CTX, userID)
type args struct {
ctx context.Context
req *user.RegisterPasskeyRequest
}
tests := []struct {
name string
args args
want *user.RegisterPasskeyResponse
wantErr bool
}{
{
name: "missing user id",
args: args{
ctx: CTX,
req: &user.RegisterPasskeyRequest{},
},
wantErr: true,
},
{
name: "register code",
args: args{
ctx: CTX,
req: &user.RegisterPasskeyRequest{
UserId: userID,
Code: reg.GetCode(),
Authenticator: user.PasskeyAuthenticator_PASSKEY_AUTHENTICATOR_PLATFORM,
},
},
want: &user.RegisterPasskeyResponse{
Details: &object.Details{
ChangeDate: timestamppb.Now(),
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
ResourceOwner: Instance.DefaultOrg.Id,
},
},
},
{
name: "reuse code (not allowed)",
args: args{
ctx: CTX,
req: &user.RegisterPasskeyRequest{
UserId: userID,
Code: reg.GetCode(),
Authenticator: user.PasskeyAuthenticator_PASSKEY_AUTHENTICATOR_PLATFORM,
},
},
wantErr: true,
},
{
name: "wrong code",
args: args{
ctx: CTX,
req: &user.RegisterPasskeyRequest{
UserId: userID,
Code: &user.PasskeyRegistrationCode{
Id: reg.GetCode().GetId(),
Code: "foobar",
},
Authenticator: user.PasskeyAuthenticator_PASSKEY_AUTHENTICATOR_CROSS_PLATFORM,
},
},
wantErr: true,
},
{
name: "user mismatch",
args: args{
ctx: CTX,
req: &user.RegisterPasskeyRequest{
UserId: userID,
},
},
wantErr: true,
},
{
name: "user setting its own passkey",
args: args{
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
ctx: integration.WithAuthorizationToken(CTX, sessionToken),
req: &user.RegisterPasskeyRequest{
UserId: userID,
},
},
want: &user.RegisterPasskeyResponse{
Details: &object.Details{
ChangeDate: timestamppb.Now(),
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
ResourceOwner: Instance.DefaultOrg.Id,
},
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got, err := Client.RegisterPasskey(tt.args.ctx, tt.args.req)
if tt.wantErr {
require.Error(t, err)
return
}
require.NoError(t, err)
require.NotNil(t, got)
integration.AssertDetails(t, tt.want, got)
if tt.want != nil {
assert.NotEmpty(t, got.GetPasskeyId())
assert.NotEmpty(t, got.GetPublicKeyCredentialCreationOptions())
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
_, err = Instance.WebAuthN.CreateAttestationResponse(got.GetPublicKeyCredentialCreationOptions())
require.NoError(t, err)
}
})
}
}
func TestServer_VerifyPasskeyRegistration(t *testing.T) {
userID, pkr := userWithPasskeyRegistered(t)
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
attestationResponse, err := Instance.WebAuthN.CreateAttestationResponse(pkr.GetPublicKeyCredentialCreationOptions())
require.NoError(t, err)
type args struct {
ctx context.Context
req *user.VerifyPasskeyRegistrationRequest
}
tests := []struct {
name string
args args
want *user.VerifyPasskeyRegistrationResponse
wantErr bool
}{
{
name: "missing user id",
args: args{
ctx: CTX,
req: &user.VerifyPasskeyRegistrationRequest{
PasskeyId: pkr.GetPasskeyId(),
PublicKeyCredential: attestationResponse,
PasskeyName: "nice name",
},
},
wantErr: true,
},
{
name: "success",
args: args{
ctx: CTX,
req: &user.VerifyPasskeyRegistrationRequest{
UserId: userID,
PasskeyId: pkr.GetPasskeyId(),
PublicKeyCredential: attestationResponse,
PasskeyName: "nice name",
},
},
want: &user.VerifyPasskeyRegistrationResponse{
Details: &object.Details{
ChangeDate: timestamppb.Now(),
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
ResourceOwner: Instance.DefaultOrg.Id,
},
},
},
{
name: "wrong credential",
args: args{
ctx: CTX,
req: &user.VerifyPasskeyRegistrationRequest{
UserId: userID,
PasskeyId: pkr.GetPasskeyId(),
PublicKeyCredential: &structpb.Struct{
Fields: map[string]*structpb.Value{"foo": {Kind: &structpb.Value_StringValue{StringValue: "bar"}}},
},
PasskeyName: "nice name",
},
},
wantErr: true,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got, err := Client.VerifyPasskeyRegistration(tt.args.ctx, tt.args.req)
if tt.wantErr {
require.Error(t, err)
return
}
require.NoError(t, err)
require.NotNil(t, got)
integration.AssertDetails(t, tt.want, got)
})
}
}
func TestServer_CreatePasskeyRegistrationLink(t *testing.T) {
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
userID := Instance.CreateHumanUser(CTX).GetUserId()
type args struct {
ctx context.Context
req *user.CreatePasskeyRegistrationLinkRequest
}
tests := []struct {
name string
args args
want *user.CreatePasskeyRegistrationLinkResponse
wantCode bool
wantErr bool
}{
{
name: "missing user id",
args: args{
ctx: CTX,
req: &user.CreatePasskeyRegistrationLinkRequest{},
},
wantErr: true,
},
{
name: "send default mail",
args: args{
ctx: CTX,
req: &user.CreatePasskeyRegistrationLinkRequest{
UserId: userID,
},
},
want: &user.CreatePasskeyRegistrationLinkResponse{
Details: &object.Details{
ChangeDate: timestamppb.Now(),
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
ResourceOwner: Instance.DefaultOrg.Id,
},
},
},
{
name: "send custom url",
args: args{
ctx: CTX,
req: &user.CreatePasskeyRegistrationLinkRequest{
UserId: userID,
Medium: &user.CreatePasskeyRegistrationLinkRequest_SendLink{
SendLink: &user.SendPasskeyRegistrationLink{
UrlTemplate: gu.Ptr("https://example.com/passkey/register?userID={{.UserID}}&orgID={{.OrgID}}&codeID={{.CodeID}}&code={{.Code}}"),
},
},
},
},
want: &user.CreatePasskeyRegistrationLinkResponse{
Details: &object.Details{
ChangeDate: timestamppb.Now(),
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
ResourceOwner: Instance.DefaultOrg.Id,
},
},
},
{
name: "return code",
args: args{
ctx: CTX,
req: &user.CreatePasskeyRegistrationLinkRequest{
UserId: userID,
Medium: &user.CreatePasskeyRegistrationLinkRequest_ReturnCode{},
},
},
want: &user.CreatePasskeyRegistrationLinkResponse{
Details: &object.Details{
ChangeDate: timestamppb.Now(),
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
ResourceOwner: Instance.DefaultOrg.Id,
},
},
wantCode: true,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got, err := Client.CreatePasskeyRegistrationLink(tt.args.ctx, tt.args.req)
if tt.wantErr {
require.Error(t, err)
return
}
require.NoError(t, err)
require.NotNil(t, got)
integration.AssertDetails(t, tt.want, got)
if tt.wantCode {
assert.NotEmpty(t, got.GetCode().GetId())
assert.NotEmpty(t, got.GetCode().GetId())
}
})
}
}
func userWithPasskeyRegistered(t *testing.T) (string, *user.RegisterPasskeyResponse) {
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
userID := Instance.CreateHumanUser(CTX).GetUserId()
return userID, passkeyRegister(t, userID)
}
func userWithPasskeyVerified(t *testing.T) (string, string) {
userID, pkr := userWithPasskeyRegistered(t)
return userID, passkeyVerify(t, userID, pkr)
}
func passkeyRegister(t *testing.T, userID string) *user.RegisterPasskeyResponse {
reg, err := Client.CreatePasskeyRegistrationLink(CTX, &user.CreatePasskeyRegistrationLinkRequest{
UserId: userID,
Medium: &user.CreatePasskeyRegistrationLinkRequest_ReturnCode{},
})
require.NoError(t, err)
pkr, err := Client.RegisterPasskey(CTX, &user.RegisterPasskeyRequest{
UserId: userID,
Code: reg.GetCode(),
})
require.NoError(t, err)
require.NotEmpty(t, pkr.GetPasskeyId())
require.NotEmpty(t, pkr.GetPublicKeyCredentialCreationOptions())
return pkr
}
func passkeyVerify(t *testing.T, userID string, pkr *user.RegisterPasskeyResponse) string {
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
attestationResponse, err := Instance.WebAuthN.CreateAttestationResponse(pkr.GetPublicKeyCredentialCreationOptions())
require.NoError(t, err)
_, err = Client.VerifyPasskeyRegistration(CTX, &user.VerifyPasskeyRegistrationRequest{
UserId: userID,
PasskeyId: pkr.GetPasskeyId(),
PublicKeyCredential: attestationResponse,
PasskeyName: "nice name",
})
require.NoError(t, err)
return pkr.GetPasskeyId()
}
func TestServer_RemovePasskey(t *testing.T) {
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
userIDWithout := Instance.CreateHumanUser(CTX).GetUserId()
userIDRegistered, pkrRegistered := userWithPasskeyRegistered(t)
userIDVerified, passkeyIDVerified := userWithPasskeyVerified(t)
userIDVerifiedPermission, passkeyIDVerifiedPermission := userWithPasskeyVerified(t)
type args struct {
ctx context.Context
req *user.RemovePasskeyRequest
}
tests := []struct {
name string
args args
want *user.RemovePasskeyResponse
wantErr bool
}{
{
name: "missing user id",
args: args{
ctx: IamCTX,
req: &user.RemovePasskeyRequest{
PasskeyId: "123",
},
},
wantErr: true,
},
{
name: "missing passkey id",
args: args{
ctx: IamCTX,
req: &user.RemovePasskeyRequest{
UserId: "123",
},
},
wantErr: true,
},
{
name: "success, registered",
args: args{
ctx: IamCTX,
req: &user.RemovePasskeyRequest{
UserId: userIDRegistered,
PasskeyId: pkrRegistered.GetPasskeyId(),
},
},
want: &user.RemovePasskeyResponse{
Details: &object.Details{
ChangeDate: timestamppb.Now(),
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
ResourceOwner: Instance.DefaultOrg.Id,
},
},
},
{
name: "no passkey, error",
args: args{
ctx: IamCTX,
req: &user.RemovePasskeyRequest{
UserId: userIDWithout,
PasskeyId: pkrRegistered.GetPasskeyId(),
},
},
wantErr: true,
},
{
name: "success, verified",
args: args{
ctx: IamCTX,
req: &user.RemovePasskeyRequest{
UserId: userIDVerified,
PasskeyId: passkeyIDVerified,
},
},
want: &user.RemovePasskeyResponse{
Details: &object.Details{
ChangeDate: timestamppb.Now(),
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
ResourceOwner: Instance.DefaultOrg.Id,
},
},
},
{
name: "verified, permission error",
args: args{
ctx: UserCTX,
req: &user.RemovePasskeyRequest{
UserId: userIDVerifiedPermission,
PasskeyId: passkeyIDVerifiedPermission,
},
},
wantErr: true,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got, err := Client.RemovePasskey(tt.args.ctx, tt.args.req)
if tt.wantErr {
require.Error(t, err)
return
}
require.NoError(t, err)
require.NotNil(t, got)
integration.AssertDetails(t, tt.want, got)
})
}
}
func TestServer_ListPasskeys(t *testing.T) {
chore(tests): use a coverage server binary (#8407) # Which Problems Are Solved Use a single server instance for API integration tests. This optimizes the time taken for the integration test pipeline, because it allows running tests on multiple packages in parallel. Also, it saves time by not start and stopping a zitadel server for every package. # How the Problems Are Solved - Build a binary with `go build -race -cover ....` - Integration tests only construct clients. The server remains running in the background. - The integration package and tested packages now fully utilize the API. No more direct database access trough `query` and `command` packages. - Use Makefile recipes to setup, start and stop the server in the background. - The binary has the race detector enabled - Init and setup jobs are configured to halt immediately on race condition - Because the server runs in the background, races are only logged. When the server is stopped and race logs exist, the Makefile recipe will throw an error and print the logs. - Makefile recipes include logic to print logs and convert coverage reports after the server is stopped. - Some tests need a downstream HTTP server to make requests, like quota and milestones. A new `integration/sink` package creates an HTTP server and uses websockets to forward HTTP request back to the test packages. The package API uses Go channels for abstraction and easy usage. # Additional Changes - Integration test files already used the `//go:build integration` directive. In order to properly split integration from unit tests, integration test files need to be in a `integration_test` subdirectory of their package. - `UseIsolatedInstance` used to overwrite the `Tester.Client` for each instance. Now a `Instance` object is returned with a gRPC client that is connected to the isolated instance's hostname. - The `Tester` type is now `Instance`. The object is created for the first instance, used by default in any test. Isolated instances are also `Instance` objects and therefore benefit from the same methods and values. The first instance and any other us capable of creating an isolated instance over the system API. - All test packages run in an Isolated instance by calling `NewInstance()` - Individual tests that use an isolated instance use `t.Parallel()` # Additional Context - Closes #6684 - https://go.dev/doc/articles/race_detector - https://go.dev/doc/build-cover --------- Co-authored-by: Stefan Benz <46600784+stebenz@users.noreply.github.com>
2024-09-06 12:47:57 +00:00
userIDWithout := Instance.CreateHumanUser(CTX).GetUserId()
userIDRegistered, _ := userWithPasskeyRegistered(t)
userIDVerified, passkeyIDVerified := userWithPasskeyVerified(t)
userIDMulti, passkeyIDMulti1 := userWithPasskeyVerified(t)
passkeyIDMulti2 := passkeyVerify(t, userIDMulti, passkeyRegister(t, userIDMulti))
type args struct {
ctx context.Context
req *user.ListPasskeysRequest
}
tests := []struct {
name string
args args
want *user.ListPasskeysResponse
wantErr bool
}{
{
name: "list passkeys, no userID",
args: args{
IamCTX,
&user.ListPasskeysRequest{
UserId: "",
},
},
wantErr: true,
},
{
name: "list passkeys, no permission",
args: args{
UserCTX,
&user.ListPasskeysRequest{
UserId: userIDVerified,
},
},
wantErr: true,
},
{
name: "list passkeys, none",
args: args{
IamCTX,
&user.ListPasskeysRequest{
UserId: userIDWithout,
},
},
want: &user.ListPasskeysResponse{
Details: &object.ListDetails{
TotalResult: 0,
Timestamp: timestamppb.Now(),
},
Result: []*user.Passkey{},
},
},
{
name: "list passkeys, registered",
args: args{
IamCTX,
&user.ListPasskeysRequest{
UserId: userIDRegistered,
},
},
want: &user.ListPasskeysResponse{
Details: &object.ListDetails{
TotalResult: 0,
Timestamp: timestamppb.Now(),
},
Result: []*user.Passkey{},
},
},
{
name: "list passkeys, ok",
args: args{
IamCTX,
&user.ListPasskeysRequest{
UserId: userIDVerified,
},
},
want: &user.ListPasskeysResponse{
Details: &object.ListDetails{
TotalResult: 1,
Timestamp: timestamppb.Now(),
},
Result: []*user.Passkey{
{
Id: passkeyIDVerified,
State: user.AuthFactorState_AUTH_FACTOR_STATE_READY,
Name: "nice name",
},
},
},
},
{
name: "list idp links, multi, ok",
args: args{
IamCTX,
&user.ListPasskeysRequest{
UserId: userIDMulti,
},
},
want: &user.ListPasskeysResponse{
Details: &object.ListDetails{
TotalResult: 2,
Timestamp: timestamppb.Now(),
},
Result: []*user.Passkey{
{
Id: passkeyIDMulti1,
State: user.AuthFactorState_AUTH_FACTOR_STATE_READY,
Name: "nice name",
},
{
Id: passkeyIDMulti2,
State: user.AuthFactorState_AUTH_FACTOR_STATE_READY,
Name: "nice name",
},
},
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
retryDuration := time.Minute
if ctxDeadline, ok := CTX.Deadline(); ok {
retryDuration = time.Until(ctxDeadline)
}
require.EventuallyWithT(t, func(ttt *assert.CollectT) {
got, listErr := Client.ListPasskeys(tt.args.ctx, tt.args.req)
assertErr := assert.NoError
if tt.wantErr {
assertErr = assert.Error
}
assertErr(ttt, listErr)
if listErr != nil {
return
}
// always first check length, otherwise its failed anyway
assert.Len(ttt, got.Result, len(tt.want.Result))
for i := range tt.want.Result {
assert.Contains(ttt, got.Result, tt.want.Result[i])
}
integration.AssertListDetails(t, tt.want, got)
}, retryDuration, time.Millisecond*100, "timeout waiting for expected idplinks result")
})
}
}