mirror of
https://github.com/portapack-mayhem/mayhem-firmware.git
synced 2025-05-20 21:08:22 +00:00

* Adding_new_WFAX_GUI_mode_Audio_App * Wefax_APT_demodulation_structure * Solving REC Apt signal.wav from WFAX * clang format issues * correcting comments
172 lines
5.6 KiB
C++
172 lines
5.6 KiB
C++
/*
|
||
* Copyright (C) 2020 Belousov Oleg
|
||
*
|
||
* This file is part of PortaPack.
|
||
*
|
||
* This program is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 2, or (at your option)
|
||
* any later version.
|
||
*
|
||
* This program is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this program; see the file COPYING. If not, write to
|
||
* the Free Software Foundation, Inc., 51 Franklin Street,
|
||
* Boston, MA 02110-1301, USA.
|
||
*/
|
||
|
||
#include "dsp_hilbert.hpp"
|
||
#include "dsp_sos_config.hpp"
|
||
#include "utility_m4.hpp"
|
||
|
||
namespace dsp {
|
||
|
||
HilbertTransform::HilbertTransform() {
|
||
n = 0;
|
||
|
||
sos_input.configure(half_band_lpf_config);
|
||
sos_i.configure(half_band_lpf_config);
|
||
sos_q.configure(half_band_lpf_config);
|
||
}
|
||
|
||
void HilbertTransform::execute(float in, float& out_i, float& out_q) {
|
||
// Synthesized Hilbert Transform, it is implemented based on 1/2 band LPF and later freq shift fs/4, achieving a H.T_BW of transmitted = fs/2 ;
|
||
// Half_band LPF means a LP filter with f_cut_off = fs/4; Half band = Half max band = 1/2 * fs_max = 1/2 x f_Nyquist = 1/2 * fs/2 = fs/4
|
||
float a = 0, b = 0;
|
||
|
||
float in_filtered = sos_input.execute(in) * 1.0f; // Anti-aliasing LPF at fs/4 mic audio filter front-end.
|
||
|
||
switch (n) {
|
||
case 0:
|
||
a = in_filtered;
|
||
b = 0;
|
||
break;
|
||
case 1:
|
||
a = 0;
|
||
b = -in_filtered;
|
||
break;
|
||
case 2:
|
||
a = -in_filtered;
|
||
b = 0;
|
||
break;
|
||
case 3:
|
||
a = 0;
|
||
b = in_filtered;
|
||
break;
|
||
}
|
||
|
||
float i = sos_i.execute(a) * 2.0f;
|
||
float q = sos_q.execute(b) * 2.0f;
|
||
|
||
switch (n) {
|
||
case 0:
|
||
out_i = i;
|
||
out_q = q;
|
||
break;
|
||
case 1:
|
||
out_i = -q;
|
||
out_q = i;
|
||
break;
|
||
case 2:
|
||
out_i = -i;
|
||
out_q = -q;
|
||
break;
|
||
case 3:
|
||
out_i = q;
|
||
out_q = -i;
|
||
break;
|
||
}
|
||
|
||
n = (n + 1) % 4;
|
||
}
|
||
|
||
Real_to_Complex::Real_to_Complex() {
|
||
// No need to call a separate configuration method like "Real_to_Complex()" externally before using the execute() method
|
||
// This is the constructor for the Real_to_Complex class.
|
||
// It initializes the member variables and calls the configure function for the sos_input, sos_i, and sos_q filters.
|
||
// to ensure the object is ready to use right after instantiation.
|
||
|
||
n = 0;
|
||
|
||
sos_input.configure(full_band_lpf_config);
|
||
sos_i.configure(full_band_lpf_config);
|
||
sos_q.configure(full_band_lpf_config);
|
||
sos_mag_sq.configure(quarter_band_lpf_config); // for APT LPF subcarrier filter. (1/4 Nyquist fs/2 = 1/4 * 12Khz/2 = 1.5khz)
|
||
}
|
||
|
||
void Real_to_Complex::execute(float in, float& out_mag_sq_lpf) {
|
||
// Full_band LPF means a LP filter with f_cut_off = fs/2; Full band = Full max band = 1/2 * fs_max = 1.0 x f_Nyquist = 1 * fs/2 = fs/2
|
||
float a = 0, b = 0;
|
||
float out_i = 0, out_q = 0, out_mag_sq = 0;
|
||
// int32_t packed;
|
||
|
||
float in_filtered = sos_input.execute(in) * 1.0f; // Anti-aliasing full band LPF, fc = fs/2= 6k, audio filter front-end.
|
||
|
||
switch (n) {
|
||
case 0:
|
||
a = in_filtered;
|
||
b = 0;
|
||
break;
|
||
case 1:
|
||
a = 0;
|
||
b = -in_filtered;
|
||
break;
|
||
case 2:
|
||
a = -in_filtered;
|
||
b = 0;
|
||
break;
|
||
case 3:
|
||
a = 0;
|
||
b = in_filtered;
|
||
break;
|
||
}
|
||
|
||
float i = sos_i.execute(a) * 1.0f; // better keep <1.0f to minimize recorded APT(t) black level artifacts.-
|
||
float q = sos_q.execute(b) * 1.0f;
|
||
|
||
switch (n) { // shifting down -fs4 (fs = 12khz , fs/4 = 3khz)
|
||
case 0:
|
||
out_i = i;
|
||
out_q = q;
|
||
break;
|
||
case 1:
|
||
out_i = -q;
|
||
out_q = i;
|
||
break;
|
||
case 2:
|
||
out_i = -i;
|
||
out_q = -q;
|
||
break;
|
||
case 3:
|
||
out_i = q;
|
||
out_q = -i;
|
||
break;
|
||
}
|
||
|
||
n = (n + 1) % 4;
|
||
|
||
/* res = __smuad(val1,val2); p1 = val1[15:0] × val2[15:0]
|
||
p2 = val1[31:16] × val2[31:16]
|
||
res[31:0] = p1 + p2
|
||
return res; */
|
||
|
||
// Not strict Magnitude complex calculation, it is a cross multiplication (lower 16 bit real x lower 16 imag) + 0 (higher 16 bits comp),
|
||
// but better visual results comparing real magnitude calculation, (better map diagonal lines reproduction, and less artifacts in APT signal(t)
|
||
out_mag_sq = __SMUAD(out_i, out_q); // "cross-magnitude" of the complex (out_i + j out_q)
|
||
out_mag_sq_lpf = sos_mag_sq.execute((out_mag_sq)) * 2.0f; // LPF quater band = 1.5khz APT signal
|
||
|
||
out_mag_sq_lpf /= 32768.0f; // normalize ;
|
||
// Compress clipping positive APT signal [-1.5 ..1.5] input , converted to [-1.0 ...1.0] with "S" compressor gain shape.
|
||
if (out_mag_sq_lpf > 1.0f) {
|
||
out_mag_sq_lpf = 1.0f; // clipped signal at +1.0f, APT signal is positive, no need to clip -1.0
|
||
} else {
|
||
out_mag_sq_lpf = out_mag_sq_lpf * (1.5f - ((out_mag_sq_lpf * out_mag_sq_lpf) / 2.0f));
|
||
}
|
||
}
|
||
|
||
} /* namespace dsp */
|