tailscale/prober/prober.go

387 lines
9.7 KiB
Go
Raw Permalink Normal View History

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package prober implements a simple blackbox prober. Each probe runs
// in its own goroutine, and run results are recorded as Prometheus
// metrics.
package prober
import (
"context"
"errors"
"fmt"
"hash/fnv"
"log"
"math/rand"
"sync"
"time"
"github.com/prometheus/client_golang/prometheus"
)
// ProbeFunc is a function that probes something and reports whether
// the probe succeeded. The provided context's deadline must be obeyed
// for correct probe scheduling.
type ProbeFunc func(context.Context) error
// a Prober manages a set of probes and keeps track of their results.
type Prober struct {
// Whether to spread probe execution over time by introducing a
// random delay before the first probe run.
spread bool
// Whether to run all probes once instead of running them in a loop.
once bool
// Time-related functions that get faked out during tests.
now func() time.Time
newTicker func(time.Duration) ticker
mu sync.Mutex // protects all following fields
probes map[string]*Probe
namespace string
metrics *prometheus.Registry
}
// New returns a new Prober.
func New() *Prober {
return newForTest(time.Now, newRealTicker)
}
func newForTest(now func() time.Time, newTicker func(time.Duration) ticker) *Prober {
p := &Prober{
now: now,
newTicker: newTicker,
probes: map[string]*Probe{},
metrics: prometheus.NewRegistry(),
namespace: "prober",
}
prometheus.DefaultRegisterer.MustRegister(p.metrics)
return p
}
// Run executes fun every interval, and exports probe results under probeName.
//
// Registering a probe under an already-registered name panics.
func (p *Prober) Run(name string, interval time.Duration, labels map[string]string, fun ProbeFunc) *Probe {
p.mu.Lock()
defer p.mu.Unlock()
if _, ok := p.probes[name]; ok {
panic(fmt.Sprintf("probe named %q already registered", name))
}
l := prometheus.Labels{"name": name}
for k, v := range labels {
l[k] = v
}
ctx, cancel := context.WithCancel(context.Background())
probe := &Probe{
prober: p,
ctx: ctx,
cancel: cancel,
stopped: make(chan struct{}),
name: name,
doProbe: fun,
interval: interval,
initialDelay: initialDelay(name, interval),
metrics: prometheus.NewRegistry(),
mInterval: prometheus.NewDesc("interval_secs", "Probe interval in seconds", nil, l),
mStartTime: prometheus.NewDesc("start_secs", "Latest probe start time (seconds since epoch)", nil, l),
mEndTime: prometheus.NewDesc("end_secs", "Latest probe end time (seconds since epoch)", nil, l),
mLatency: prometheus.NewDesc("latency_millis", "Latest probe latency (ms)", nil, l),
mResult: prometheus.NewDesc("result", "Latest probe result (1 = success, 0 = failure)", nil, l),
}
prometheus.WrapRegistererWithPrefix(p.namespace+"_", p.metrics).MustRegister(probe.metrics)
probe.metrics.MustRegister(probe)
p.probes[name] = probe
go probe.loop()
return probe
}
func (p *Prober) unregister(probe *Probe) {
p.mu.Lock()
defer p.mu.Unlock()
probe.metrics.Unregister(probe)
p.metrics.Unregister(probe.metrics)
name := probe.name
delete(p.probes, name)
}
// WithSpread is used to enable random delay before the first run of
// each added probe.
func (p *Prober) WithSpread(s bool) *Prober {
p.spread = s
return p
}
// WithOnce mode can be used if you want to run all configured probes once
// rather than on a schedule.
func (p *Prober) WithOnce(s bool) *Prober {
p.once = s
return p
}
// WithMetricNamespace allows changing metric name prefix from the default `prober`.
func (p *Prober) WithMetricNamespace(n string) *Prober {
p.namespace = n
return p
}
// Wait blocks until all probes have finished execution. It should typically
// be used with the `once` mode to wait for probes to finish before collecting
// their results.
func (p *Prober) Wait() {
for {
chans := make([]chan struct{}, 0)
p.mu.Lock()
for _, p := range p.probes {
chans = append(chans, p.stopped)
}
p.mu.Unlock()
for _, c := range chans {
<-c
}
// Since probes can add other probes, retry if the number of probes has changed.
if p.activeProbes() != len(chans) {
continue
}
return
}
}
// Reports the number of registered probes.
func (p *Prober) activeProbes() int {
p.mu.Lock()
defer p.mu.Unlock()
return len(p.probes)
}
// Probe is a probe that healthchecks something and updates Prometheus
// metrics with the results.
type Probe struct {
prober *Prober
ctx context.Context
cancel context.CancelFunc // run to initiate shutdown
stopped chan struct{} // closed when shutdown is complete
name string
doProbe ProbeFunc
interval time.Duration
initialDelay time.Duration
tick ticker
// metrics is a Prometheus metrics registry for metrics exported by this probe.
// Using a separate registry allows cleanly removing metrics exported by this
// probe when it gets unregistered.
metrics *prometheus.Registry
mInterval *prometheus.Desc
mStartTime *prometheus.Desc
mEndTime *prometheus.Desc
mLatency *prometheus.Desc
mResult *prometheus.Desc
mu sync.Mutex
start time.Time // last time doProbe started
end time.Time // last time doProbe returned
latency time.Duration // last successful probe latency
succeeded bool // whether the last doProbe call succeeded
lastErr error
}
// Close shuts down the Probe and unregisters it from its Prober.
// It is safe to Run a new probe of the same name after Close returns.
func (p *Probe) Close() error {
p.cancel()
<-p.stopped
p.prober.unregister(p)
return nil
}
// probeLoop invokes runProbe on fun every interval. The first probe
// is run after a random delay (if spreading is enabled) or immediately.
func (p *Probe) loop() {
defer close(p.stopped)
if p.prober.spread && p.initialDelay > 0 {
t := p.prober.newTicker(p.initialDelay)
select {
case <-t.Chan():
p.run()
case <-p.ctx.Done():
t.Stop()
return
}
t.Stop()
} else {
p.run()
}
if p.prober.once {
return
}
p.tick = p.prober.newTicker(p.interval)
defer p.tick.Stop()
for {
select {
case <-p.tick.Chan():
p.run()
case <-p.ctx.Done():
return
}
}
}
// run invokes fun and records the results.
//
// fun is invoked with a timeout slightly less than interval, so that
// the probe either succeeds or fails before the next cycle is
// scheduled to start.
func (p *Probe) run() {
start := p.recordStart()
defer func() {
// Prevent a panic within one probe function from killing the
// entire prober, so that a single buggy probe doesn't destroy
// our entire ability to monitor anything. A panic is recorded
// as a probe failure, so panicking probes will trigger an
// alert for debugging.
if r := recover(); r != nil {
log.Printf("probe %s panicked: %v", p.name, r)
p.recordEnd(start, errors.New("panic"))
}
}()
timeout := time.Duration(float64(p.interval) * 0.8)
ctx, cancel := context.WithTimeout(p.ctx, timeout)
defer cancel()
err := p.doProbe(ctx)
p.recordEnd(start, err)
if err != nil {
log.Printf("probe %s: %v", p.name, err)
}
}
func (p *Probe) recordStart() time.Time {
st := p.prober.now()
p.mu.Lock()
defer p.mu.Unlock()
p.start = st
return st
}
func (p *Probe) recordEnd(start time.Time, err error) {
end := p.prober.now()
p.mu.Lock()
defer p.mu.Unlock()
p.end = end
p.succeeded = err == nil
p.lastErr = err
if p.succeeded {
p.latency = end.Sub(p.start)
} else {
p.latency = 0
}
}
// ProbeInfo is the state of a Probe.
type ProbeInfo struct {
Start time.Time
End time.Time
Latency string
Result bool
Error string
}
func (p *Prober) ProbeInfo() map[string]ProbeInfo {
out := map[string]ProbeInfo{}
p.mu.Lock()
probes := make([]*Probe, 0, len(p.probes))
for _, probe := range p.probes {
probes = append(probes, probe)
}
p.mu.Unlock()
for _, probe := range probes {
probe.mu.Lock()
inf := ProbeInfo{
Start: probe.start,
End: probe.end,
Result: probe.succeeded,
}
if probe.lastErr != nil {
inf.Error = probe.lastErr.Error()
}
if probe.latency > 0 {
inf.Latency = probe.latency.String()
}
out[probe.name] = inf
probe.mu.Unlock()
}
return out
}
// Describe implements prometheus.Collector.
func (p *Probe) Describe(ch chan<- *prometheus.Desc) {
ch <- p.mInterval
ch <- p.mStartTime
ch <- p.mEndTime
ch <- p.mResult
ch <- p.mLatency
}
// Collect implements prometheus.Collector.
func (p *Probe) Collect(ch chan<- prometheus.Metric) {
p.mu.Lock()
defer p.mu.Unlock()
ch <- prometheus.MustNewConstMetric(p.mInterval, prometheus.GaugeValue, p.interval.Seconds())
if !p.start.IsZero() {
ch <- prometheus.MustNewConstMetric(p.mStartTime, prometheus.GaugeValue, float64(p.start.Unix()))
}
if p.end.IsZero() {
return
}
ch <- prometheus.MustNewConstMetric(p.mEndTime, prometheus.GaugeValue, float64(p.end.Unix()))
if p.succeeded {
ch <- prometheus.MustNewConstMetric(p.mResult, prometheus.GaugeValue, 1)
} else {
ch <- prometheus.MustNewConstMetric(p.mResult, prometheus.GaugeValue, 0)
}
if p.latency > 0 {
ch <- prometheus.MustNewConstMetric(p.mLatency, prometheus.GaugeValue, float64(p.latency.Milliseconds()))
}
}
// ticker wraps a time.Ticker in a way that can be faked for tests.
type ticker interface {
Chan() <-chan time.Time
Stop()
}
type realTicker struct {
*time.Ticker
}
func (t *realTicker) Chan() <-chan time.Time {
return t.Ticker.C
}
func newRealTicker(d time.Duration) ticker {
return &realTicker{time.NewTicker(d)}
}
// initialDelay returns a pseudorandom duration in [0, interval) that
// is based on the provided seed string.
func initialDelay(seed string, interval time.Duration) time.Duration {
h := fnv.New64()
fmt.Fprint(h, seed)
r := rand.New(rand.NewSource(int64(h.Sum64()))).Float64()
return time.Duration(float64(interval) * r)
}