tstest/natlab: start of in-memory network testing package

Pairing with @danderson
This commit is contained in:
Brad Fitzpatrick 2020-07-02 12:36:12 -07:00
parent c52905abaa
commit 23c93da942

240
tstest/natlab/natlab.go Normal file
View File

@ -0,0 +1,240 @@
// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//lint:file-ignore U1000 in development
//lint:file-ignore S1000 in development
// Package natlab lets us simulate different types of networks all
// in-memory without running VMs or requiring root, etc. Despite the
// name, it does more than just NATs. But NATs are the most
// interesting.
package natlab
import (
"context"
"fmt"
"net"
"strconv"
"sync"
"time"
"inet.af/netaddr"
)
// PacketConner is something that return a PacketConn.
//
// The different network types are all PacketConners.
type PacketConner interface {
PacketConn() net.PacketConn
}
type Network struct {
dhcpPool netaddr.IPPrefix
alloced map[netaddr.IP]bool
pushRoute netaddr.IPPrefix
}
type iface struct {
net *Network
up bool
ips []netaddr.IP
}
type routeEntry struct {
prefix netaddr.IPPrefix
iface *iface
}
// A Machine is a representation of an operating system's network stack.
// It has a network routing table and can have multiple attached networks.
type Machine struct {
mu sync.Mutex
interfaces []*iface
routes []routeEntry // sorted by longest prefix to shortest
conns map[netaddr.IPPort]*conn
}
func (m *Machine) hasv6() bool {
m.mu.Lock()
defer m.mu.Unlock()
for _, f := range m.interfaces {
for _, ip := range f.ips {
if ip.Is6() {
return true
}
}
}
return false
}
func (m *Machine) registerConn(c *conn) error {
m.mu.Lock()
defer m.mu.Unlock()
if _, ok := m.conns[c.ipp]; ok {
return fmt.Errorf("duplicate conn listening on %v", c.ipp)
}
m.conns[c.ipp] = c
return nil
}
func (m *Machine) unregisterConn(c *conn) {
m.mu.Lock()
defer m.mu.Unlock()
delete(m.conns, c.ipp)
}
func (m *Machine) AddNetwork(n *Network) {}
func (m *Machine) ListenPacket(network, address string) (net.PacketConn, error) {
// if udp4, udp6, etc... look at address IP vs unspec
var fam uint8
switch network {
default:
return nil, fmt.Errorf("unsupported network type %q", network)
case "udp":
case "udp4":
fam = 4
case "udp6":
fam = 6
}
host, portStr, err := net.SplitHostPort(address)
if err != nil {
return nil, err
}
if host == "" {
if m.hasv6() {
host = "::"
} else {
host = "0.0.0.0"
}
}
port, err := strconv.ParseUint(portStr, 10, 16)
if err != nil {
return nil, err
}
ip, err := netaddr.ParseIP(host)
if err != nil {
return nil, err
}
ipp := netaddr.IPPort{IP: ip, Port: uint16(port)}
c := &conn{
m: m,
fam: fam,
ipp: ipp,
}
if err := m.registerConn(c); err != nil {
return nil, err
}
return c, nil
}
// conn is our net.PacketConn implementation
type conn struct {
m *Machine
fam uint8 // 0, 4, or 6
ipp netaddr.IPPort
mu sync.Mutex
closed bool
readDeadline time.Time
activeReads map[*activeRead]bool
}
type activeRead struct {
cancel context.CancelFunc
}
// readDeadlineExceeded reports whether the read deadline is set and has already passed.
func (c *conn) readDeadlineExceeded() bool {
c.mu.Lock()
defer c.mu.Unlock()
return !c.readDeadline.IsZero() && c.readDeadline.Before(time.Now())
}
func (c *conn) registerActiveRead(ar *activeRead, active bool) {
c.mu.Lock()
defer c.mu.Unlock()
if c.activeReads == nil {
c.activeReads = make(map[*activeRead]bool)
}
if active {
c.activeReads[ar] = true
} else {
delete(c.activeReads, ar)
}
}
func (c *conn) Close() error {
c.mu.Lock()
defer c.mu.Unlock()
if c.closed {
return nil
}
c.closed = true
c.m.unregisterConn(c)
c.breakActiveReadsLocked()
return nil
}
func (c *conn) breakActiveReadsLocked() {
for ar := range c.activeReads {
ar.cancel()
}
c.activeReads = nil
}
func (c *conn) LocalAddr() net.Addr {
return c.ipp.UDPAddr()
}
func (c *conn) ReadFrom(p []byte) (n int, addr net.Addr, err error) {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
ar := &activeRead{cancel: cancel}
if c.readDeadlineExceeded() {
return 0, nil, context.DeadlineExceeded
}
c.registerActiveRead(ar, true)
defer c.registerActiveRead(ar, false)
select {
// TODO: select on getting data
case <-ctx.Done():
return 0, nil, context.DeadlineExceeded
}
}
func (c *conn) WriteTo(p []byte, addr net.Addr) (n int, err error) {
panic("TODO")
}
func (c *conn) SetDeadline(t time.Time) error {
panic("SetWriteDeadline unsupported; TODO when needed")
}
func (c *conn) SetWriteDeadline(t time.Time) error {
panic("SetWriteDeadline unsupported; TODO when needed")
}
func (c *conn) SetReadDeadline(t time.Time) error {
c.mu.Lock()
defer c.mu.Unlock()
now := time.Now()
if t.After(now) {
panic("SetReadDeadline in the future not yet supported; TODO?")
}
if !t.IsZero() && t.Before(now) {
c.breakActiveReadsLocked()
}
c.readDeadline = t
return nil
}