It was set to context.Background by all callers, for the same reasons.
Set it locally instead, to simplify call sites.
Signed-off-by: Josh Bleecher Snyder <josharian@gmail.com>
The old implementation knew too much about how wireguard-go worked.
As a result, it missed genuine problems that occurred due to unrelated bugs.
This fourth attempt to fix the health checks takes a black box approach.
A receive func is healthy if one (or both) of these conditions holds:
* It is currently running and blocked.
* It has been executed recently.
The second condition is required because receive functions
are not continuously executing. wireguard-go calls them and then
processes their results before calling them again.
There is a theoretical false positive if wireguard-go go takes
longer than one minute to process the results of a receive func execution.
If that happens, we have other problems.
Updates #1790
Signed-off-by: Josh Bleecher Snyder <josharian@gmail.com>
They were not doing their job.
They need yet another conceptual re-think.
Start by clearing the decks.
Signed-off-by: Josh Bleecher Snyder <josharian@gmail.com>
The existing implementation was completely, embarrassingly conceptually broken.
We aren't able to see whether wireguard-go's receive function goroutines
are running or not. All we can do is model that based on what we have done.
This commit fixes that model.
Fixes#1781
Signed-off-by: Josh Bleecher Snyder <josharian@gmail.com>
Avery reported a sub-ms health transition from "receiveIPv4 not running" to "ok".
To avoid these transient false-positives, be more precise about
the expected lifetime of receive funcs. The problematic case is one in which
they were started but exited prior to a call to connBind.Close.
Explicitly represent started vs running state, taking care with the order of updates.
Signed-off-by: Josh Bleecher Snyder <josharian@gmail.com>
We were accidentally logging oldPort -> oldPort.
Log oldPort as well as c.port; if we failed to get the preferred port
in a previous rebind, oldPort might differ from c.port.
Signed-off-by: Josh Bleecher Snyder <josharian@gmail.com>
Track endpoints internally with a new tailcfg.Endpoint type that
includes a typed netaddr.IPPort (instead of just a string) and
includes a type for how that endpoint was discovered (STUN, local,
etc).
Use []tailcfg.Endpoint instead of []string internally.
At the last second, send it to the control server as the existing
[]string for endpoints, but also include a new parallel
MapRequest.EndpointType []tailcfg.EndpointType, so the control server
can start filtering out less-important endpoint changes from
new-enough clients. Notably, STUN-discovered endpoints can be filtered
out from 1.6+ clients, as they can discover them amongst each other
via CallMeMaybe disco exchanges started over DERP. And STUN endpoints
change a lot, causing a lot of MapResposne updates. But portmapped
endpoints are worth keeping for now, as they they work right away
without requiring the firewall traversal extra RTT dance.
End result will be less control->client bandwidth. (despite negligible
increase in client->control bandwidth)
Updates tailscale/corp#1543
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
It existed to work around the frequent opening and closing
of the conn.Bind done by wireguard-go.
The preceding commit removed that behavior,
so we can simply close the connections
when we are done with them.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
Upstream wireguard-go has changed its receive model.
NewDevice now accepts a conn.Bind interface.
The conn.Bind is stateless; magicsock.Conns are stateful.
To work around this, we add a connBind type that supports
cheap teardown and bring-up, backed by a Conn.
The new conn.Bind allows us to specify a set of receive functions,
rather than having to shoehorn everything into ReceiveIPv4 and ReceiveIPv6.
This lets us plumbing DERP messages directly into wireguard-go,
instead of having to mux them via ReceiveIPv4.
One consequence of the new conn.Bind layer is that
closing the wireguard-go device is now indistinguishable
from the routine bring-up and tear-down normally experienced
by a conn.Bind. We thus have to explicitly close the magicsock.Conn
when the close the wireguard-go device.
One downside of this change is that we are reliant on wireguard-go
to call receiveDERP to process DERP messages. This is fine for now,
but is perhaps something we should fix in the future.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
e.g.
$ tailscale ping 1.1.1.1
exit node found but not enabled
$ tailscale ping 10.2.200.2
node "tsbfvlan2" found, but not using its 10.2.200.0/24 route
$ sudo tailscale up --accept-routes
$ tailscale ping 10.2.200.2
pong from tsbfvlan2 (100.124.196.94) via 10.2.200.34:41641 in 1ms
$ tailscale ping mon.ts.tailscale.com
pong from monitoring (100.88.178.64) via DERP(sfo) in 83ms
pong from monitoring (100.88.178.64) via DERP(sfo) in 21ms
pong from monitoring (100.88.178.64) via [2604:a880:4:d1::37:d001]:41641 in 22ms
This necessarily moves code up from magicsock to wgengine, so we can
look at the actual wireguard config.
Fixes#1564
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
No server support yet, but we want Tailscale 1.6 clients to be able to respond
to them when the server can do it.
Updates #1310
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
There was a logical race where Conn.Rebind could acquire the
RebindingUDPConn mutex, close the connection, fail to rebind, release
the mutex, and then because the mutex was no longer held, ReceiveIPv4
wouldn't retry reads that failed with net.ErrClosed, letting that
error back to wireguard-go, which would then stop running that receive
IP goroutine.
Instead, keep the RebindingUDPConn mutex held for the entirety of the
replacement in all cases.
Updates tailscale/corp#1289
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
Also change the type to netaddr.IP while here, because it made sorting
easier.
Updates tailscale/corp#1397
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
* move probing out of netcheck into new net/portmapper package
* use PCP ANNOUNCE op codes for PCP discovery, rather than causing
short-lived (sub-second) side effects with a 1-second-expiring map +
delete.
* track when we heard things from the router so we can be less wasteful
in querying the router's port mapping services in the future
* use portmapper from magicsock to map a public port
Fixes#1298Fixes#1080Fixes#1001
Updates #864
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
We modified the standard net package to not allocate a *net.UDPAddr
during a call to (*net.UDPConn).ReadFromUDP if the caller's use
of the *net.UDPAddr does not cause it to escape.
That is https://golang.org/cl/291390.
This is the companion change to magicsock.
There are two changes required.
First, call ReadFromUDP instead of ReadFrom, if possible.
ReadFrom returns a net.Addr, which is an interface, which always allocates.
Second, reduce the lifetime of the returned *net.UDPAddr.
We do this by immediately converting it into a netaddr.IPPort.
We left the existing RebindingUDPConn.ReadFrom method in place,
as it is required to satisfy the net.PacketConn interface.
With the upstream change and both of these fixes in place,
we have removed one large allocation per packet received.
name old time/op new time/op delta
ReceiveFrom-8 16.7µs ± 5% 16.4µs ± 8% ~ (p=0.310 n=5+5)
name old alloc/op new alloc/op delta
ReceiveFrom-8 112B ± 0% 64B ± 0% -42.86% (p=0.008 n=5+5)
name old allocs/op new allocs/op delta
ReceiveFrom-8 3.00 ± 0% 2.00 ± 0% -33.33% (p=0.008 n=5+5)
Co-authored-by: Sonia Appasamy <sonia@tailscale.com>
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
addrSet maintained duplicate lists of netaddr.IPPorts and net.UDPAddrs.
Unify to use the netaddr type only.
This makes (*Conn).ReceiveIPvN a bit uglier,
but that'll be cleaned up in a subsequent commit.
This is preparatory work to remove an allocation from ReceiveIPv4.
Co-authored-by: Sonia Appasamy <sonia@tailscale.com>
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
The fix can make this test run unconditionally.
This moves code from 5c619882bc4911a2c9e7d0bb491b9e50d27afcd7 for
testability but doesn't fix it yet. The #1282 problem remains (when I
wrote its wake-up mechanism, I forgot there were N DERP readers
funneling into 1 UDP reader, and the code just isn't correct at all
for that case).
Also factor out some test helper code from BenchmarkReceiveFrom.
The refactoring in magicsock.go for testability should have no
behavior change.
Also, don't try to use IPv6 LinkLocalUnicast addresses for now. Like endpoints
exchanged with control, we share them but don't yet use them.
Updates #1172
c8c493f3d9bf925e9459236bf1ecea823be6f825 made it always say
`created=false` which scared me when I saw it, as that would've implied
things were broken much worse. Fortunately the logging was just wrong.
To save CPU and wakeups, don't run the DERP cleanup timer regularly
unless there is a non-home DERP connection open.
Also eliminates the goroutine, moving to a time.AfterFunc.
Updates #1034
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
This reverts commit 08baa17d9a785635891c3462d01e601759b8b8b6.
It caused deadlocks due to lock ordering violations.
It was not the right fix, and thus should simply be reverted
while we look for the right fix (if we haven't already found it
in the interim; we've fixed other logging-after-test issues).
Fixes#1161
context.cancelCtx.Done involves a mutex and isn't as cheap as I
previously assumed. Convert the donec method into a struct field and
store the channel value once. Our one magicsock.Conn gets one pointer
larger, but it cuts ~1% of the CPU time of the ReceiveFrom benchmark
and removes a bubble from the --svg output :)
22507adf5489a8293e03a5af06bd6af41d031468 stopped relying on
our fork of wireguard-go's UpdateDst callback.
As a result, we can unwind that code,
and the extra return value of ReceiveIPv{4,6}.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
Previously, this benchmark relied on behavior of the legacy
receive codepath, which I changed in 22507adf. With this
change, the benchmark instead relies on the new active discovery
path.
Signed-off-by: David Anderson <danderson@tailscale.com>
This prevents us from continuing to do unnecessary work
(including logging) after the connection has closed.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
This eliminates a dependency on wgcfg.Endpoint,
as part of the effort to eliminate our wireguard-go fork.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
This makes connectivity between ancient and new tailscale nodes slightly
worse in some cases, but only in cases where the ancient version would
likely have failed to get connectivity anyway.
Signed-off-by: David Anderson <danderson@tailscale.com>
In derpWriteChanOfAddr when we call derphttp.NewRegionClient(),
there is a check of whether the connection is already errored and
if so it returns before grabbing the lock. The lock might already
be held and would be a deadlock.
This corner case is not being reliably exercised by other tests.
This shows up in code coverage reports, the lines of code in
derpWriteChanOfAddr are alternately added and subtracted from
code coverage.
Add a test to specifically exercise this code path, and verify that
it doesn't deadlock.
This is the best tradeoff I could come up with:
+ the moment code calls Err() to check if there is an error, we
grab the lock to make sure it would deadlock if it tries to grab
the lock itself.
+ if a new call to Err() is added in this code path, only the
first one will be covered and the rest will not be tested.
+ this test doesn't verify whether code is checking for Err() in
the right place, which ideally I guess it would.
Signed-off-by: Denton Gentry <dgentry@tailscale.com>
netaddr.IP no longer allocates, so don't need a cache or all its associated
code/complexity.
This totally removes groupcache/lru from the deps.
Also go mod tidy.
Not usefully functional yet (mostly a proof of concept), but getting
it submitted for some work @namansood is going to do atop this.
Updates #707
Updates #634
Updates #48
Updates #835
* show DNS name over hostname, removing domain's common MagicDNS suffix.
only show hostname if there's no DNS name.
but still show shared devices' MagicDNS FQDN.
* remove nerdy low-level details by default: endpoints, DERP relay,
public key. They're available in JSON mode still for those who need
them.
* only show endpoint or DERP relay when it's active with the goal of
making debugging easier. (so it's easier for users to understand
what's happening) The asterisks are gone.
* remove Tx/Rx numbers by default for idle peers; only show them when
there's traffic.
* include peers' owner login names
* add CLI option to not show peers (matching --self=true, --peers= also
defaults to true)
* sort by DNS/host name, not public key
* reorder columns
This is a replacement for the key-related parts
of the wireguard-go wgcfg package.
This is almost a straight copy/paste from the wgcfg package.
I have slightly changed some of the exported functions and types
to avoid stutter, added and tweaked some comments,
and removed some now-unused code.
To avoid having wireguard-go depend on this new package,
wgcfg will keep its key types.
We translate into and out of those types at the last minute.
These few remaining uses will be eliminated alongside
the rest of the wgcfg package.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
The previous code used a lot of whole-function variables and shared
behavior that only triggered based on prior action from a single codepath.
Instead of that, move the small amounts of "shared" code into each switch
case.
Signed-off-by: David Anderson <danderson@tailscale.com>
Before, tailscaled would log every 10 seconds when the periodic noteRecvActivity
call happens. This is noisy, but worse it's misleading, because the message
suggests that the disco code is starting a lazy config run for a missing peer,
whereas in fact it's just an internal piece of keepalive logic.
With this change, we still log when going from 0->1 tunnel for the peer, but
not every 10s thereafter.
Signed-off-by: David Anderson <danderson@tailscale.com>
In tests, we force binding to localhost to avoid OS firewall warning
dialogs.
But for IPv6, we were trying (and failing) to bind to 127.0.0.1.
You'd think we'd just say "localhost", but that's apparently ill
defined. See
https://tools.ietf.org/html/draft-ietf-dnsop-let-localhost-be-localhost
and golang/go#22826. (It's bitten me in the past, but I can't
remember specific bugs.)
So use "::1" explicitly for "udp6", which makes the test quieter.
At startup the client doesn't yet have the DERP map so can't do STUN
queries against DERP servers, so it only knows it local interface
addresses, not its STUN-mapped addresses.
We were reporting the interface-local addresses to control, getting
the DERP map, and then immediately reporting the full set of
updates. That was an extra HTTP request to control, but worse: it was
an extra broadcast from control out to all the peers in the network.
Now, skip the initial update if there are no stun results and we don't
have a DERP map.
More work remains optimizing start-up requests/map updates, but this
is a start.
Updates tailscale/corp#557
If no interfaces are up, calm down and stop spamming so much. It was
noticed as especially bad on Windows, but probably was bad
everywhere. I just have the best network conditions testing on a
Windows VM.
Updates #604
Rather than consider bigs jumps in last-received-from activity as a
signal to possibly reconfigure the set of wireguard peers to have
configured, instead just track the set of peers that are currently
excluded from the configuration. Easier to reason about.
Also adds a bit more logging.
This might fix an error we saw on a machine running a recent unstable
build:
2020-08-26 17:54:11.528033751 +0000 UTC: 8.6M/92.6M magicsock: [unexpected] lazy endpoint not created for [UcppE], d:42a770f678357249
2020-08-26 17:54:13.691305296 +0000 UTC: 8.7M/92.6M magicsock: DERP packet received from idle peer [UcppE]; created=false
2020-08-26 17:54:13.691383687 +0000 UTC: 8.7M/92.6M magicsock: DERP packet from unknown key: [UcppE]
If it does happen again, though, we'll have more logs.
Seems to break linux CI builder. Cannot reproduce locally,
so attempting a rollback.
This reverts commit cd7bc02ab1924a5504c6667ffebdb0635272badd.
Signed-off-by: David Crawshaw <crawshaw@tailscale.com>
Without this, a freshly started ipn client will be stuck in the
"Starting" state until something triggers a call to RequestStatus.
Usually a UI does this, but until then we can sit in this state
until poked by an external event, as is evidenced by our e2e tests
locking up when DERP is attached.
(This only recently became a problem when we enabled lazy handshaking
everywhere, otherwise the wireugard tunnel creation would also
trigger a RequestStatus.)
Signed-off-by: David Crawshaw <crawshaw@tailscale.com>
Consider:
Hard NAT (A) <---> Hard NAT w/ mapped port (B)
If A sends a packet to B's mapped port, A can disco ping B directly,
with low latency, without DERP.
But B couldn't establish a path back to A and needed to use DERP,
despite already logging about A's endpoint and adding a mapping to it
for other purposes (the wireguard conn.Endpoint lookup also needed
it).
This adds the tracking to discoEndpoint too so it'll be used for
finding a path back.
Fixestailscale/corp#556
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
For example:
$ tailscale ping -h
USAGE
ping <hostname-or-IP>
FLAGS
-c 10 max number of pings to send
-stop-once-direct true stop once a direct path is established
-verbose false verbose output
$ tailscale ping mon.ts.tailscale.com
pong from monitoring (100.88.178.64) via DERP(sfo) in 65ms
pong from monitoring (100.88.178.64) via DERP(sfo) in 252ms
pong from monitoring (100.88.178.64) via [2604:a880:2:d1::36:d001]:41641 in 33ms
Fixes#661
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
1) we weren't waking up a discoEndpoint that once existed and
went idle for 5 minutes and then got a disco message again.
2) userspaceEngine.noteReceiveActivity had a buggy check; fixed
and added a test
This removes the atomic bool that tried to track whether we needed to acquire
the lock on a future recursive call back into magicsock. Unfortunately that
hack doesn't work because we also had a lock ordering issue between magicsock
and userspaceEngine (see issue). This documents that too.
Fixes#644
If a node is behind a hard NAT and is using an explicit local port
number, assume they might've mapped a port and add their public IPv4
address with the local tailscaled's port number as a candidate endpoint.
Starting with fe68841dc7649162c43849beb2fcf9a2ad80ee7c, some e2e tests
got flaky. Rather than debug them (they're gnarly), just revert to the old
behavior as far as those tests are concerned. The tests were somehow
using magicsock without a private key and expecting it to do ... something.
My goal with fe68841dc7649162c43849beb2fcf9a2ad80ee7c was to stop log spam
and unnecessary work I saw on the iOS app when when stopping the app.
Instead, only stop doing that work on any transition from
once-had-a-private-key to no-longer-have-a-private-key. That fixes
what I wanted to fix while still making the mysterious e2e tests
happy.
Uses natlab only, because the point of this active discovery test is going to be
that it should get through a lot of obstacles.
Signed-off-by: David Anderson <danderson@tailscale.com>
The deadlock was:
* Conn.Close was called, which acquired c.mu
* Then this goroutine scheduled:
if firstDerp {
startGate = c.derpStarted
go func() {
dc.Connect(ctx)
close(c.derpStarted)
}()
}
* The getRegion hook for that derphttp.Client then ran, which also
tries to acquire c.mu.
This change makes that hook first see if we're already in a closing
state and then it can pretend that region doesn't exist.
wireguard-go uses 3 goroutines per peer (with reasonably large stacks
& buffers).
Rather than tell wireguard-go about all our peers, only tell it about
peers we're actively communicating with. That means we need hooks into
magicsock's packet receiving path and tstun's packet sending path to
lazily create a wireguard peer on demand from the network map.
This frees up lots of memory for iOS (where we have almost nothing
left for larger domains with many users).
We should ideally do this in wireguard-go itself one day, but that'd
be a pretty big change.
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
Before this patch, the 250ms sleep would not be interrupted by context cancellation,
which would result in the goroutine sometimes lingering in tests (100ms grace period).
Signed-off-by: Dmytro Shynkevych <dmytro@tailscale.com>
Very rarely, cancellation occurs between a successful send on derpRecvCh
and a call to copyBuf on the receiving side.
Without this patch, this situation results in <-copyBuf blocking indefinitely.
Signed-off-by: Dmytro Shynkevych <dmytro@tailscale.com>
Peers advertising a discovery key know how to speak the discovery
protocol and do their own heartbeats to get through NATs and keep NATs
open. No need for the pinger except for with legacy peers.
There's a lot of confusion around what tailscale status shows, so make it better:
show region names, last write time, and put stars around DERP too if active.
Now stars are always present if activity, and always somewhere.
* fix tailscale status for peers using discovery
* as part of that, pull out disco address selection into reusable
and testable discoEndpoint.addrForSendLocked
* truncate ping/pong logged hex txids in half to eliminate noise
* move a bunch of random time constants into named constants
with docs
* track a history of per-endpoint pong replies for future use &
status display
* add "send" and " got" prefix to discovery message logging
immediately before the frame type so it's easier to read than
searching for the "<-" or "->" arrows earlier in the line; but keep
those as the more reasily machine readable part for later.
Updates #483