Over time, other magicsock refactors have made Start effectively a
no-op, except that some other functions choose to panic if called
before Start.
Signed-off-by: David Anderson <danderson@tailscale.com>
Our prod code doesn't eagerly handshake, because our disco layer enables
on-demand handshaking. Configuring both peers to eagerly handshake leads
to WireGuard handshake races that make TestTwoDevicePing flaky.
Signed-off-by: David Anderson <danderson@tailscale.com>
It only existed to override one test-only behavior with a
different test-only behavior, in both cases working around
an annoying feature of our CI environments. Instead, handle
that weirdness entirely in the test code, with a tweaked
TestOnlyPacketListener that gets injected.
Signed-off-by: David Anderson <danderson@tailscale.com>
The docstring said it was meant for use in tests, but it's specifically a
special codepath that is _only_ used in tests, so make the claim stronger.
Signed-off-by: David Anderson <danderson@tailscale.com>
Instead of using the legacy codepath, teach discoEndpoint to handle
peers that have a home DERP, but no disco key. We can still communicate
with them, but only over DERP.
Signed-off-by: David Anderson <danderson@tailscale.com>
magicsock makes multiple calls to Now per packet.
Move to mono.Now. Changing some of the calls to
use package mono has a cascading effect,
causing non-per-packet call sites to also switch.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
logBufWriter had no serialization.
It just so happens that none of its users currently ever log concurrently.
Make it safe for concurrent use.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
The DERPTestPort int meant two things before: which port to use, and
whether to disable TLS verification. Users would like to set the port
without disabling TLS, so break it into two options.
Updates #1264
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
After allowing for custom DERP maps, it's convenient to be able to see their latency in
netcheck. This adds a query to the local tailscaled for the current DERPMap.
Updates #1264
Signed-off-by: julianknodt <julianknodt@gmail.com>
Pull in the latest version of wireguard-windows.
Switch to upstream wireguard-go.
This requires reverting all of our import paths.
Unfortunately, this has to happen at the same time.
The wireguard-go change is very low risk,
as that commit matches our fork almost exactly.
(The only changes are import paths, CI files, and a go.mod entry.)
So if there are issues as a result of this commit,
the first place to look is wireguard-windows changes.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
magicsock.Conn.ParseEndpoint requires a peer's public key,
disco key, and legacy ip/ports in order to do its job.
We currently accomplish that by:
* adding the public key in our wireguard-go fork
* encoding the disco key as magic hostname
* using a bespoke comma-separated encoding
It's a bit messy.
Instead, switch to something simpler: use a json-encoded struct
containing exactly the information we need, in the form we use it.
Our wireguard-go fork still adds the public key to the
address when it passes it to ParseEndpoint, but now the code
compensating for that is just a couple of simple, well-commented lines.
Once this commit is in, we can remove that part of the fork
and remove the compensating code.
Signed-off-by: Josh Bleecher Snyder <josharian@gmail.com>
For historical reasons, we ended up with two near-duplicate
copies of curve25519 key types, one in the wireguard-go module
(wgcfg) and one in the tailscale module (types/wgkey).
Then we moved wgcfg to the tailscale module.
We can now remove the wgcfg key type in favor of wgkey.
Signed-off-by: Josh Bleecher Snyder <josharian@gmail.com>
Track endpoints internally with a new tailcfg.Endpoint type that
includes a typed netaddr.IPPort (instead of just a string) and
includes a type for how that endpoint was discovered (STUN, local,
etc).
Use []tailcfg.Endpoint instead of []string internally.
At the last second, send it to the control server as the existing
[]string for endpoints, but also include a new parallel
MapRequest.EndpointType []tailcfg.EndpointType, so the control server
can start filtering out less-important endpoint changes from
new-enough clients. Notably, STUN-discovered endpoints can be filtered
out from 1.6+ clients, as they can discover them amongst each other
via CallMeMaybe disco exchanges started over DERP. And STUN endpoints
change a lot, causing a lot of MapResposne updates. But portmapped
endpoints are worth keeping for now, as they they work right away
without requiring the firewall traversal extra RTT dance.
End result will be less control->client bandwidth. (despite negligible
increase in client->control bandwidth)
Updates tailscale/corp#1543
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
We don't use the port that wireguard-go passes to us (via magicsock.connBind.Open).
We ignore it entirely and use the port we selected.
When we tell wireguard-go that we're changing the listen_port,
it calls connBind.Close and then connBind.Open.
And in the meantime, it stops calling the receive functions,
which means that we stop receiving and processing UDP and DERP packets.
And that is Very Bad.
That was never a problem prior to b3ceca1dd7,
because we passed the SkipBindUpdate flag to our wireguard-go fork,
which told wireguard-go not to re-bind on listen_port changes.
That commit eliminated the SkipBindUpdate flag.
We could write a bunch of code to work around the gap.
We could add background readers that process UDP and DERP packets when wireguard-go isn't.
But it's simpler to never create the conditions in which wireguard-go rebinds.
The other scenario in which wireguard-go re-binds is device.Down.
Conveniently, we never call device.Down. We go from device.Up to device.Close,
and the latter only when we're shutting down a magicsock.Conn completely.
Rubber-ducked-by: Avery Pennarun <apenwarr@tailscale.com>
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
Upstream wireguard-go has changed its receive model.
NewDevice now accepts a conn.Bind interface.
The conn.Bind is stateless; magicsock.Conns are stateful.
To work around this, we add a connBind type that supports
cheap teardown and bring-up, backed by a Conn.
The new conn.Bind allows us to specify a set of receive functions,
rather than having to shoehorn everything into ReceiveIPv4 and ReceiveIPv6.
This lets us plumbing DERP messages directly into wireguard-go,
instead of having to mux them via ReceiveIPv4.
One consequence of the new conn.Bind layer is that
closing the wireguard-go device is now indistinguishable
from the routine bring-up and tear-down normally experienced
by a conn.Bind. We thus have to explicitly close the magicsock.Conn
when the close the wireguard-go device.
One downside of this change is that we are reliant on wireguard-go
to call receiveDERP to process DERP messages. This is fine for now,
but is perhaps something we should fix in the future.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
The code is not obviously better or worse, but this makes the little warning
triangle in my editor go away, and the distraction removal is worth it.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
It can end up executing an a new goroutine,
at which point instead of immediately stopping test execution, it hangs.
Since this is unexpected anyway, panic instead.
As a bonus, it makes call sites nicer and removes a kludge comment.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
The tstun packagen contains both constructors for generic tun
Devices, and a wrapper that provides additional functionality.
Signed-off-by: David Anderson <danderson@tailscale.com>
There was a logical race where Conn.Rebind could acquire the
RebindingUDPConn mutex, close the connection, fail to rebind, release
the mutex, and then because the mutex was no longer held, ReceiveIPv4
wouldn't retry reads that failed with net.ErrClosed, letting that
error back to wireguard-go, which would then stop running that receive
IP goroutine.
Instead, keep the RebindingUDPConn mutex held for the entirety of the
replacement in all cases.
Updates tailscale/corp#1289
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
UIs need to see the full unedited netmap in order to know what exit nodes they
can offer to the user.
Signed-off-by: David Anderson <danderson@tailscale.com>
* move probing out of netcheck into new net/portmapper package
* use PCP ANNOUNCE op codes for PCP discovery, rather than causing
short-lived (sub-second) side effects with a 1-second-expiring map +
delete.
* track when we heard things from the router so we can be less wasteful
in querying the router's port mapping services in the future
* use portmapper from magicsock to map a public port
Fixes#1298Fixes#1080Fixes#1001
Updates #864
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
When a handshake race occurs, a queued data packet can get lost.
TestTwoDevicePing expected that the very first data packet would arrive.
This caused occasional flakes.
Change TestTwoDevicePing to repeatedly re-send packets
and succeed when one of them makes it through.
This is acceptable (vs making WireGuard not drop the packets)
because this only affects communication with extremely old clients.
And those extremely old clients will eventually connect,
because the kernel will retry sends on timeout.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
We modified the standard net package to not allocate a *net.UDPAddr
during a call to (*net.UDPConn).ReadFromUDP if the caller's use
of the *net.UDPAddr does not cause it to escape.
That is https://golang.org/cl/291390.
This is the companion change to magicsock.
There are two changes required.
First, call ReadFromUDP instead of ReadFrom, if possible.
ReadFrom returns a net.Addr, which is an interface, which always allocates.
Second, reduce the lifetime of the returned *net.UDPAddr.
We do this by immediately converting it into a netaddr.IPPort.
We left the existing RebindingUDPConn.ReadFrom method in place,
as it is required to satisfy the net.PacketConn interface.
With the upstream change and both of these fixes in place,
we have removed one large allocation per packet received.
name old time/op new time/op delta
ReceiveFrom-8 16.7µs ± 5% 16.4µs ± 8% ~ (p=0.310 n=5+5)
name old alloc/op new alloc/op delta
ReceiveFrom-8 112B ± 0% 64B ± 0% -42.86% (p=0.008 n=5+5)
name old allocs/op new allocs/op delta
ReceiveFrom-8 3.00 ± 0% 2.00 ± 0% -33.33% (p=0.008 n=5+5)
Co-authored-by: Sonia Appasamy <sonia@tailscale.com>
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
addrSet maintained duplicate lists of netaddr.IPPorts and net.UDPAddrs.
Unify to use the netaddr type only.
This makes (*Conn).ReceiveIPvN a bit uglier,
but that'll be cleaned up in a subsequent commit.
This is preparatory work to remove an allocation from ReceiveIPv4.
Co-authored-by: Sonia Appasamy <sonia@tailscale.com>
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
I based my estimation of the required timeout based on locally
observed behavior. But CI machines are worse than my local machine.
16s was enough to reduce flakiness but not eliminate it. Bump it up again.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
We removed the "fast retry" code from our wireguard-go fork.
As a result, pings can take longer to transit when retries are required.
Allow that.
Fixes#1277
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
The fix can make this test run unconditionally.
This moves code from 5c619882bc for
testability but doesn't fix it yet. The #1282 problem remains (when I
wrote its wake-up mechanism, I forgot there were N DERP readers
funneling into 1 UDP reader, and the code just isn't correct at all
for that case).
Also factor out some test helper code from BenchmarkReceiveFrom.
The refactoring in magicsock.go for testability should have no
behavior change.