2 Access Radio Hardware
Eisenberger Tamas edited this page 2024-01-22 11:49:50 +01:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

About

Now were going to dive into something a little more complex and bring radios into the mix. If youre not familiar with the LPC43xx please read up on the Firmware Architecture before continuing.

So far weve only been dealing with application code with is ran on the M0 of the LPC43xx. Now were going to start working with the baseband side of the codebase which is ran on the LPC43xxs M4 processor. Both of these processors use 8k worth of shared memory from 0x1008_8000 to 0x1008_a000 to pass messages to and from each other. The M0 controls ALL operations of the portapack while the M4 mostly handles the DSP and radio functions.

Complexitys aside with the two processors, accessing the HackRF's radio hardware has been simplified with helper classes such as the TransmitterModel and ReceiverModel. Both of these classes interface with the M4 baseband processes and gives us a more piratical way to control the radio.

Other classes and structs such as baseband api and SharedMemory also bridge the gap between the M0 and M4. Even though the M4's primary responsability is to handle DSP with the radio hardware the M0 can still be used to decode data. For example, classes found in firmware/application/protocols/ like encoders still send data too and from the two processors but also encodes and decodes messages at the higher level protocols.

TX

The code bellow is an example OOK TX application using TransmitterModel, encoders, and baseband.

ui_newapp.hpp

....

// Include TransmitterModel
#include "transmitter_model.hpp"

namespace ui
{
    class NewAppView : public View                                                   // App class declaration
    {
    public:

        ....

    private:

        ....

        void start_tx(std::string& message);                                         // Function declarations
        void stop_tx();
        void on_tx_progress(const uint32_t progress, const bool done); 

        MessageHandlerRegistration message_handler_tx_progress {                     // MessageHandlerRegistration class which relays 
            Message::ID::TXProgress,                                                 // Message::ID::TXProgress messages to your app 
            [this](const Message* const p) {                                         // code from baseband. The Ternary Operator passes   
                const auto message = *reinterpret_cast<const TXProgressMessage*>(p); // an uint32_t progressvalue and a bool stating if  
                this->on_tx_progress(message.progress, message.done);                // TX progress has be complete.
	}};

    };
} 

ui_newapp.cpp

....

// Include encoders and baseband
#include "encoders.hpp"
#include "baseband_api.hpp"

using namespace portapack;

namespace ui
{
     void NewAppView::start_tx(std::string& message)              // Message input as "101101"
     {
         size_t bitstream_length = make_bitstream(message);       // Function from encoders.hpp. Encodes then 
                                                                  // sets message to TX data pointer via... 	
                                                                  // uint8_t * bitstream = shared_memory.bb_data.data; 
                                                                  // on line 34 of encoders.cpp and returns length. 

         transmitter_model.set_tuning_frequency(433920000);       // Center frequency in hz
         transmitter_model.set_sampling_rate(OOK_SAMPLERATE);     // (2280000) Value from encoders.hpp
         transmitter_model.set_rf_amp(true);                      // RF amp on
         transmitter_model.set_baseband_bandwidth(1750000);       // Bandwidth
         transmitter_model.enable();                              // Radio enable

         baseband::set_ook_data(                                  // ASK/OOK TX function
             bitstream_length,                                    // Length of message
             OOK_SAMPLERATE / 1766,                               // Symble period (560us), Sample Rate / Baud 
             4,                                                   // Repeat transmissions
             100                                                  // Pause symbles
         );
    }

    void NewAppView::stop_tx()                                    // Stop TX function
    {
        transmitter_model.disable();                              // Disable transmitter_model

        // Add UI logic to let the user know the TX has stoped 
    } 

    NewAppView::NewAppView(NavigationView &nav)                   // Application Main
    {
        baseband::run_image(portapack::spi_flash::image_tag_ook); // M4 processor is being told to run proc_ook.cpp
                                                                  // found in the firmware/baseband/ folder. M4 is 
                                                                  // then reset after this command.
         // UI widget logic and calls to
         // start_tx() goes here.
         
    }

    void NewAppView::on_tx_progress(const uint32_t progress, const bool done)  // Function logic for when the message handler       
    {                                                                          // sends a TXProgressMessage.
         if(done) {
             stop_tx();
         } else {
             // UI logic, update ProgressBar with progress var
         }
    }
}

RX

Building from the example code for TX lets talk about how the baseband processes are started on the M4. The application code on the M0 uses the baseband api baseband::run_image to tell the M4 to run a process. The baseband images are defined in spi_image.hpp as the struct image_tag_t. These structs and have a 4 char array tag being used as an ID. Below is an example image_tag_t for AFSK RX.

constexpr image_tag_t image_tag_afsk_rx { 'P', 'A', 'F', 'R' };

Under firmware/baseband/CMakeLists.txt the following code snippet shows how the baseband processes are linked to the images defined in spi_image.hpp.

### AFSK RX
set(MODE_CPPSRC
    proc_afskrx.cpp
)
DeclareTargets(PAFR afskrx)

In firmware/baseband, process or "proc" code for the M4 processor like proc_afskrx.cpp for example can be found here. These proc classes are ran by BasebandThread. All proc classes inherent BasebandProcessor and must include the parent functions.

baseband_processor.hpp

#ifndef __BASEBAND_PROCESSOR_H__
#define __BASEBAND_PROCESSOR_H__

#include "dsp_types.hpp"
#include "channel_stats_collector.hpp"
#include "message.hpp"

class BasebandProcessor {
public:
    virtual ~BasebandProcessor() = default;               // Constructor 

    virtual void execute(const buffer_c8_t& buffer) = 0;  // DSP code for TX/RX, shared_memory messages can be sent to
                                                          // M0 application code from this function.

    virtual void on_message(const Message* const) { };    // Shared_memory messages from M0 application code

protected:
    void feed_channel_stats(const buffer_c16_t& channel);

private:
    ChannelStatsCollector channel_stats { };
};

Now that we have a better idea how M0 can drive the M4 lets talk about the Messaging between the two processors. The Message class found under firmware/common/. Common code is used both by application (M0) and baseband (M4). Messages are handled by EventDispatcher found in event_m4.cpp for the baseband code and event_m0.cpp for the application code. Within the same file firmware/commen/message.hpp you can find definitions for spacific message classes and ID. Bellow is an example message class for AFSK RX.

message.hpp

class Message {
public:
    static constexpr size_t MAX_SIZE = 512;

    enum class ID : uint32_t {
        /* Assign consecutive IDs. IDs are used to index array. */

        ....

        AFSKRxConfigure = 22,
	AFSKData = 47,

        ....

    };
}

    ....

// Application Messages (M0) -> Baseband (M4)
class AFSKRxConfigureMessage : public Message {
    public:
        constexpr AFSKRxConfigureMessage(
            const uint32_t baudrate,
            const uint32_t word_length,
            const uint32_t trigger_value,
            const bool trigger_word
        ) : Message { ID::AFSKRxConfigure },
            baudrate(baudrate),
            word_length(word_length),
            trigger_value(trigger_value),
            trigger_word(trigger_word)
        {
        }
	
        const uint32_t baudrate;
        const uint32_t word_length;
        const uint32_t trigger_value;
        const bool trigger_word;
    };


// Baseband Messages (M4) -> Application (M0)
class AFSKDataMessage : public Message {
    public:
        constexpr AFSKDataMessage(
            const bool is_data,
            const uint32_t value
        ) : Message { ID::AFSKData },
            is_data { is_data },
            value { value }
        {
        }
	
        bool is_data;
        uint32_t value;
};

SharedMemory found in firmware/common/ is used to pass data inbetween the application code (M0) to the baseband code (M4). Below is an example from proc_afskrx.cpp on how data is sent back to the application AFSKRxView.

proc_afskrx.cpp

#include "portapack_shared_memory.hpp"

void AFSKRxProcessor::execute(const buffer_c8_t& buffer) {

    ....                                                 // RX Logic

    shared_memory.application_queue.push(data_message);  // data_message is an AFSKDataMessage object

    ....                                                 // MORE RX Logic

};

Continuing to use the same AFSK RX proc code above, below is an example of an RX AFSK application.

ui_newapp.hpp

....

// Include ReceiverModel
#include "receiver_model.hpp"

namespace ui
{
    class NewAppView : public View                                            // App class declaration
    {
    public:

        ....

    private:

        ....

        void start_rx();                                                      // Function declarations
        void stop_rx();
        void on_data();                   
        MessageHandlerRegistration message_handler_packet {                   // MessageHandlerRegistration class which relays
            Message::ID::AFSKData,                                            // relays messages to your app code from baseband.
            [this](Message* const p) {                                        // Every time you get a AFSKData message the
                const auto message = static_cast<const AFSKDataMessage*>(p);  // on_data() function will be triggered. 
                this->on_data(message->value, message->is_data);
        }};

    };
} 

ui_newapp.cpp

....

#include "modems.hpp"
#include "audio.hpp"
#include "string_format.hpp"
#include "baseband_api.hpp"
#include "portapack_persistent_memory.hpp"

using namespace portapack;
using namespace modems;

namespace ui
{
    void NewAppView::start_rx()                                                // Start RX function
    {
        auto def_bell202 = &modem_defs[0];                                     // Bell202 baud rate
        persistent_memory::set_modem_baudrate(def_bell202->baudrate);          // Set RX modem to 1200 baud

        serial_format_t serial_format;                                         // Declare packet format for message
        serial_format.data_bits = 7;                                           // Bit length
        serial_format.parity = EVEN;                                           // Even or odd parity bit
        serial_format.stop_bits = 1;                                           // Stop bit
        serial_format.bit_order = LSB_FIRST;                                   // LSB or MSB first
        persistent_memory::set_serial_format(serial_format);                   // Set RX packet format

        baseband::set_afsk(persistent_memory::modem_baudrate(), 8, 0, false);  // Baud rate, word length, trigger value, trigger word

        receiver_model.set_tuning_frequency(433920000);                        // Center frequency in hz
        receiver_model.set_sampling_rate(3072000);                             // Sampling rate
        receiver_model.set_baseband_bandwidth(1750000);                        // Bandwidth
        receiver_model.set_modulation(ReceiverModel::Mode::NarrowbandFMAudio); // Modulation
        receiver_model.enable();                                               // Start RX

        audio::set_rate(audio::Rate::Hz_24000);                                // Play RX audio to headphone jack
        audio::output::start();
    }

    void NewAppView::stop_rx()                                                 // Stop RX function
    {
        audio::output::stop();                                                 // Stop Audio
        receiver_model.disable();                                              // Stop RX
        baseband::shutdown();                                                  // Stop M4 proc process
    } 

    NewAppView::NewAppView(NavigationView &nav)                       // Application Main
    {
        baseband::run_image(portapack::spi_flash::image_tag_afsk_rx); // M4 processor is being told to run proc_afskrx.cpp
                                                                      // found in the firmware/baseband/ folder. M4 is 
                                                                      // then reset after this command.
         // UI widget logic and calls to start_rx()
         // and stop_rx() goes here.
         
    }

    void NewAppView::on_data(uint32_t value, bool is_data)            // Function logic for when the message handler       
    {                                                                 // sends a AFSKData.
         if(is_data) {
            // RX data handling Logic
         }
    }
}